JP2004285448A - Method for producing blank for iron-nickel base alloy cold-rolled sheet for shadow mask having excellent etching piercing property - Google Patents

Method for producing blank for iron-nickel base alloy cold-rolled sheet for shadow mask having excellent etching piercing property Download PDF

Info

Publication number
JP2004285448A
JP2004285448A JP2003081319A JP2003081319A JP2004285448A JP 2004285448 A JP2004285448 A JP 2004285448A JP 2003081319 A JP2003081319 A JP 2003081319A JP 2003081319 A JP2003081319 A JP 2003081319A JP 2004285448 A JP2004285448 A JP 2004285448A
Authority
JP
Japan
Prior art keywords
mass
alloy
less
cao
shadow mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003081319A
Other languages
Japanese (ja)
Other versions
JP4059118B2 (en
Inventor
Hiroki Asada
博樹 浅田
Shinichi Okimoto
伸一 沖本
Hiroshi Tanaka
宏 田中
Tsuneo Kondo
恒雄 近藤
Tomohiko Uchino
知彦 内野
Eiju Matsuno
英寿 松野
Tamako Ariga
珠子 有賀
Atsushi Chino
淳 千野
Masabumi Ikeda
正文 池田
Akihiko Inoue
明彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003081319A priority Critical patent/JP4059118B2/en
Publication of JP2004285448A publication Critical patent/JP2004285448A/en
Application granted granted Critical
Publication of JP4059118B2 publication Critical patent/JP4059118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a blank for Fe-Ni base alloy cold-rolled sheet for shadow masks having an excellent etching piercing property useable as the shadow mask material of a highly clear and bright TV. <P>SOLUTION: When the blank for Fe-Ni base alloy cold-rolled sheet for shadow mask is produced, a deoxidizing process is performed in which an aluminum deoxidizer is added by ≤ 3.0 kg/ton of molten steel while reacting the molten alloy after adjusting the Ni component and CaO-Al<SB>2</SB>O<SB>3</SB>-MgO base slag containing ≥ 57 mass% CaO and Al<SB>2</SB>O<SB>3</SB>in which the ratio of CaO/(CaO + Al<SB>2</SB>O<SB>3</SB>) is ≥ 0.45, ≤ 25 mass% MgO, ≤ 15 mass% SiO<SB>2</SB>and ≤ 3 mass% total of oxides of metals having weaker affinity to oxygen than that of silicon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高鮮明TVのシャドウマスク用材料として使用するために実施するエッチング穿孔の際孔形不良の発生しない、エッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法に関する。
【0002】
【従来の技術】
高鮮明TVのシャドウマスク材としてのFe−Ni系合金冷延板には、エッチング穿孔時に孔形不良欠陥が発生しないことが要求される。
【0003】
この問題を解決する技術として、特許文献1に開示されたものが知られている。この技術は、30から45mass%の範囲内の量のNiを含有する、脱隣および脱炭したFe−Ni系溶融合金を調整し、20から40mass%の範囲内の量のCaOを含有するMgO−CaO系耐火物製の取鍋内において、このように調製した前記Fe−Ni系溶融合金にアルミニウムを添加し、下記からなるCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、と反応させて、Fe−Ni系溶融合金を脱酸し、鋳造〜圧延して、粒径が6μm以下で、かつ、酸素に換算して0.002mass%以下の合計量の非金属介在物を含有するFe−Ni系合金冷延板を製造するものである。
【0004】
しかしながら、この先行技術は次のような問題点を含んでいる。すなわち、そこに示されるスラグを用いてアルミニウムとともに脱酸しても、アルミニウム使用量が多いと脱酸時の発生Al量も多く、個別の非金属介在物粒径が6μm以下となっても、これらが凝集合体してクラスター化しやすくなる。その結果、エッチング孔面積率が65%を越えるような高輝度ブラウン管用シャドウマスク製造時にはクラスター化した非金属介在物がエッチング孔にかかってしまい、エッチング孔形不良となってしまう。
【0005】
Alを主体とするクラスターを解消するためには、Mg合金を添加することにより介在物をAl・MgOに改質することが有効であることが知られているが(特許文献2、特許文献3等)、Mgは高蒸気圧元素であり、極めて反応性に富んでいるので、介在物の組成制御に必要な比較的大量のMg合金を添加すると、溶融合金中の酸素とMgとの反応により溶融合金の飛散等をともない、安全上の問題がある。また、Mg合金は高価でありより安価であることが求められている。
【0006】
【特許文献1】
特開平4−218644号公報
【特許文献2】
特開平4−333359号公報
【特許文献3】
特開平6−212236号公報
【0007】
【発明が解決しようとする課題】
以上のように、エッチング穿孔時において欠陥が発生しない、高鮮明・高輝度TV用シャドウマスク材として使用可能なFe−Ni系合金冷延板用素材を有効に製造する方法はいまだ確立されているとはいえないのが現状である。
【0008】
本発明はかかる事情に鑑みてなされたものであって、高鮮明・高輝度TVのシャドウマスク材として使用可能なエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上述した観点から、エッチング孔面積率が65%を越えるような高鮮明・高輝度TV用シャドウマスク材として使用することができる、エッチング穿孔時に孔形不良欠陥が発生しないエッチング穿孔性に優れたFe−Ni系合金冷延板用素材の製造方法を開発すべく鋭意研究を重ねた結果、次の知見を得た。
【0010】
孔形不良部を電子顕微鏡で観察すると数μmの介在物が集合してクラスター化したものが圧延方向に展伸され、その一部がエッチング孔にかかって図1に示すように孔形不良が発生していることがわかった。つまり、冷延板段階で非金属介在物量が酸素に換算して0.002mass%まで低減されていても、残留介在物が集合してクラスター化してしまうと圧延加工時に展伸されてしまい、エッチング孔にかかって欠陥の原因となってしまうのである。
【0011】
そこで、従来技術に示されているような、30〜45mass%のNiを含有するFe−Ni系溶融合金を調整し、脱炭処理を実施した後、下記のCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、と溶融金属とを反応させつつアルミニウム脱酸を実施する際、脱酸時に添加するアルミニウム量とシャドウマスク製造時の冷延板エッチング穿孔時の孔形不良欠陥発生率の関係を調査したところ、これらの間に大きな相関関係があることが確認された。
【0012】
すなわち、図2に示すように脱酸時アルミニウム添加量が3.0kg/溶鋼−Tonを超えた材料はエッチング穿孔後の孔形検査において孔形不良欠陥発生比率が増加してくる。これは、脱酸時にアルミニウムを添加する際、溶鋼中の溶存酸素やスラグ中の低級酸化物とアルミニウムが反応して発生するアルミナ(Al)量が多すぎると脱酸中の介在物浮上分離過程で介在物の凝集・合体が進み、これらのうち除去しきれなかった一部のクラスター化した介在物が残留し、有害化するためと考えられる。アルミニウム添加量の低減により冷延板中に残留するクラスター化した介在物の量も低減し、アルミニウム添加量が3.0kg/溶鋼−Ton以下であれば、エッチング時の孔形不良発生比率が工業的に問題のない0.5%以下とすることができる。
【0013】
また、脱酸終了後の攪拌時間とシャドウマスク製造時の冷延板エッチング穿孔時の孔形不良欠陥発生率の関係を調査したところ大きな相関関係をもっていることがわかった。
【0014】
すなわち、図3に示すように、脱酸終了後に取鍋底吹きガス量1.0〜2.5Nl/min・Tonの強攪拌を所定時間実施し、その後鍋底吹きガス量0.5〜1.5Nl/min・Tonの弱攪拌を10分間実施するた場合、強攪拌時間が5分間以上でエッチング穿孔時の孔形不良欠陥発生率を0とすることができ、また図4に示すように、5分間の強攪拌に続き、同様の弱攪拌を10分間以上実施することでエッチング穿孔時の孔形不良欠陥発生率を0とすることができる。つまり、強攪拌を5分間以上実施した後、弱攪拌を10分間以上行うことにより、エッチング穿孔時の孔形不良欠陥発生率をほぼ0とすることができる。これは、強攪拌により介在物のスラグへの吸着が促進され、さらに弱攪拌を実施することで攪拌によりスラグに吸着しきれなかった分の介在物が浮上分離によりスラグに吸着され、製品中の介在物が低減するからである。
【0015】
さらに、図5に示すように、溶製終了後、鋳造開始までの静置時間とシャドウマスク製造時の冷延板エッチング穿孔時の孔形不良欠陥発生率の関係を調査したところ、これらも相関関係をもっていることがわかった。静置時間を確保することで介在物が浮上分離し、製品中の介在物が低減し、30分間以上の静置することによりエッチング時の孔形不良欠陥発生率をほぼ0とすることができる。
【0016】
さらにまた、Mg合金を用いずに介在物をAl・MgOに改質するためには、溶製中のスラグを特定組成のCaO−Al−MgO系スラグに制御し、溶融合金のSol.Al濃度を調整したうえでスラグと溶融合金を十分に攪拌することが有効であることが判明した。
【0017】
本発明は以上のような知見に基づいてなされたものであり、以下の(1)〜(6)を提供する。
【0018】
(1) Ni:30〜45mass%、
Mn:0.1〜1.0mass%、
Al:0.003〜0.030mass%、および
残部のFeおよび不可避的不純物からなり、
前記不可避的不純物中の炭素は0.005mass%以下、酸素は0.002mass%以下であるシャドウマスク用Fe−Ni系合金冷延板用素材を、
母材溶解工程と、母材溶解により得られた溶融合金を取鍋精錬設備にて昇熱し、Ni粗調整を行う昇熱・Ni粗調整工程と、真空脱炭工程と、脱酸工程と、成分最終調整工程と、これらを経てインゴットまたは連続鋳造機にて鋳造する鋳造工程とにより製造するシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法であって、
前記脱酸工程は、Ni成分調整後の溶融合金と、下記からなるCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、とを反応させながらアルミニウム脱酸剤を3.0kg/溶鋼−Ton以下添加することを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
【0019】
(2) Ni:30〜45mass%、
Mn:0.1〜1.0mass%、
Al:0.003〜0.030mass%および、
残部のFeおよび不可避的不純物からなり、
前記不可避的不純物中の炭素は0.005mass%以下、酸素は0.002mass%以下であるシャドウマスク用Fe−Ni系合金冷延板用素材を、
転炉にて酸素吹錬により脱炭した炭素鋼溶鋼に、予め溶解炉にて溶解したFe−Ni溶湯を取鍋にて合わせて目標Ni成分のFe−Ni溶融合金を粗調整する工程と、得られたFe−Ni溶融合金を取鍋精錬設備にて昇熱し、Ni調整を行う昇熱・Ni調整工程と、真空脱炭工程と、脱酸工程と、成分最終調整工程と、これらを経てインゴットまたは連続鋳造機にて鋳造する鋳造工程とにより製造するシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法であって、
前記脱酸工程は、Ni成分調整後の溶融合金と、下記からなるCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、とを反応させながらアルミニウム脱酸剤を3.0kg/溶鋼−Ton以下添加することを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
【0020】
(3)上記(1)または(2)において、前記Fe−Ni系合金冷延板用素材を製造するにあたり、真空脱炭工程前にあらかじめ炭素、シリコン、アルミニウム等の脱酸剤で溶融合金溶存酸素量を100ppm以上、400ppm以下とすることで最終脱酸時のアルミニウム脱酸剤添加量を3.0kg/溶鋼−Ton以下とすることを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
【0021】
(4)上記(1)または(2)において、前記Fe−Ni系合金冷延板用素材を製造するにあたり、アルミニウム脱酸剤添加後、取鍋底吹きガス量1.0〜2.5Nl/min・Tonで5分間以上の強攪拌と、続いて0.5〜1.5Nl/min・Ton以下で10分間以上弱攪拌とを実施し、非金属介在物の浮上分離促進を図ることを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
【0022】
(5)上記(1)または(2)において、前記Fe−Ni系合金冷延板用素材を製造するにあたり、溶製後30分以上取鍋を静止させ、非金属介在物の浮上促進を図ることを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
【0023】
(6)Ni:30〜50mass%を含有するシャドウマスク用Fe−Ni系合金冷延板用素材を製造するにあたり、Fe−Ni合金を溶製する際のスラグ組成をCaO:40〜60mass%、Al:10〜40mass%、MgO:10〜30mass%のCaO−Al−MgO系スラグに制御し、かつ、溶融合金中のSol.Alを0.005〜0.05mass%に調整し、スラグと溶融合金とを十分に攪拌して、素材中に含まれる酸化物系介在物組成をAl・MgOおよび/またはMgOに制御することを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について具体的に説明する。
本発明の第1の実施形態においては、Ni:30〜45mass%、Mn:0.1〜1.0mass%、Al:0.003〜0.030mass%、および残部のFeおよび不可避的不純物からなり、前記不可避的不純物中の炭素は0.005mass%以下、酸素は0.002mass%以下であるシャドウマスク用Fe−Ni系合金冷延板用素材を、母材溶解工程と、母材溶解により得られた溶融合金を取鍋精錬設備にて昇熱し、Ni粗調整を行う昇熱・Ni粗調整工程と、真空脱炭工程と、脱酸工程と、成分最終調整工程と、これらを経てインゴットまたは連続鋳造機により鋳造する鋳造工程とにより製造するにあたり、または、転炉にて酸素吹錬により脱炭した炭素鋼溶鋼に、予め溶解炉にて溶解したFe−Ni溶湯を取鍋にて合わせて目標Ni成分のFe−Ni溶融合金を粗調整する工程と、得られたFe−Ni溶融合金を取鍋精錬設備にて昇熱し、Ni調整を行う昇熱・Ni調整工程と、真空脱炭工程と、脱酸工程と、成分最終調整工程と、これらを経てインゴットまたは連続鋳造機により鋳造する鋳造工程とにより製造するにあたり、脱酸工程において、Ni成分調整後の溶融合金と、下記からなるCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、とを反応させながらアルミニウム脱酸剤を3.0kg/溶鋼−Ton以下添加し、前記鋳造工程をインゴットまたは連続鋳造機にて行う。
【0025】
まず、素材の化学成分組成について説明する。
(1)Ni:
NiはFe−Ni系合金板の熱膨張率に大きな影響を及ぼす成分である。ニッケル含有量が、30から45mass%の範囲内では、合金板の熱膨張率が小さい。しかしながら、30mass%未満の場合には、合金板の熱膨張率が高くなる。一方、ニッケル含有量が、45mass%を超えても、合金の熱膨張率が高くなる。熱膨張率の高いFe−Ni系合金冷延板をシャドウマスク材として使用したときには、色ずれの原因となる。したがって、ニッケル含有量は、30から45mass%の範囲内とする。
【0026】
(2)Mn:
Mnは、Fe−Ni系合金板の熱間加工性を向上させる作用を有している。しかしながら、マンガン含有量が0.1mass%未満では、上述した作用に所望の効果が得られない。一方、マンガン含有量が1.0mass%を超えると、合金板の硬度が過度に高くなり、シャドウマスク材として適さない。したがって、マンガン含有量は、0.1から1.0mass%の範囲内とする。
【0027】
(3)Al:
Alは、Fe−Ni系合金板中の非金属介在物の量およびその粒径の大きさに影響を及ぼす成分である。アルミニウムの含有量が0.003から0.030mass%の範囲内では、粒径の小さい、そして微量の非金属介在物が合金板中に生成する。しかしながら、アルミニウムの含有量が0.003mass%未満では、粒径が大きく、そして融点が低く、かつ展伸性が高い非金属介在物が多量に生成して、冷延板中に線状の形で存在する。その結果、合金板中のエッチング穿孔時に欠陥を生じる。一方、アルミニウムの含有量が0.030mass%を超えると、合金板の黒化処理性が低下する。従って、アルミニウムの含有量は、0.003から0.030mass%の範囲内とする。
【0028】
以上の成分の残部はFeおよび以下に示す不可避的不純物である。
(4)C:
Cは、Fe−Ni系合金中に不可避的に混入する不純物の一つである。C含有量は、少ないほど好ましいが、炭素含有量を、工業的規模で大幅に低減させることは経済性の観点から困難である。しかしながら、炭素含有量が0.005mass%を超えると、Fe−Ni系合金板中に鉄炭化物が多量に生成して、合金板のエッチング穿孔性を阻害し、穿孔欠陥を生じる原因となるとともに、合金板のプレス成形性が低下する。したがって、炭素含有量は0.005mass%以下であることが望ましい。
【0029】
(5)O:
Oは、Fe−Ni系合金中に不可避的に混入する不純物の一つである。O含有量は、少ないほど好ましいが、O含有量を、工業的規模で大幅に低減させることは経済性の観点から困難である。しかしながら、O含有量が0.002mass%を超えると、合金中に酸化物系非金属介在物が多量に生成して、合金板のエッチング穿孔性を阻害し、穿孔欠陥を生じる原因となる。したがって、O含有量は0.002mass%以下であることが望ましい。
【0030】
(6)Si:
Siも不可避的不純物であるが、その含有量が0.05mass%を超えると、Fe−Ni系合金板にSiの酸化物が生成する結果、黒化膜の黒色度が劣化する。したがって、Siの含有量は0.05mass%以下であることが望ましい。
【0031】
(7)Cr:
Crは、Fe−Ni系合金の溶製時に不可避的に混入する不純物の一つである。Crの含有量が0.05mass%を超えると、Fe−Ni系合金板にクロムの酸化物が生成する結果、黒化膜の黒色度が劣化する。したがって、Crの含有量は0.05mass%以下であることが望ましい。
【0032】
(8)Ti:
Tiは、Fe−Ni系合金の溶製時に不可避的に混入する不純物の一つである。Tiの含有量が0.02mass%を超えると、Fe−Ni系合金板にTiの酸化物が生成する結果、黒化膜の黒色度が劣化する。したがって、Tiの含有量は0.02mass%以下であることが望ましい。
【0033】
(9)Al、Si、CrおよびTiの合計含有量:
上述した、Al、Si、CrおよびTiの各々の含有量が上述した範囲内であっても、これらの合計含有量が0.10mass%を越えると、黒化膜の黒色度および熱幅射率が劣化する。したがって、Al、Si、CrおよびTiの合計含有量は、0.10mass%以下であることが望ましい。
【0034】
(10)Mo、W、Nb、V、Cu、As、Sb:
Fe−Ni系合金冷延板の表面に形成される黒化膜の熱幅射率を向上させるためには、黒化膜の黒色度を高めることに加えて、黒化膜の成長を促進させ、所定時間内に、所定の厚さの黒化膜を形成することが必要である。Fe−Ni系合金の溶製時に、Mo、W、Nb、V、Cu、As、Sb等が不可避的に混入するが、これらの元素の含有量が所定値を超えると、黒化膜の成長速度が低下し、所定時間内に所定厚さの黒化膜を形成することができなくなる。
【0035】
このような観点からMoの含有量を0.05mass%以下、Wの含有量を0.02mass%以下、Nbの含有量を0.02mass%以下、Vの含有量を0.02mass%以下、Cuの含有量を0.02mass%以下、Asの含有量を0.005mass%以下、そして、Sbの含有量を0.01mass%以下とすることが望ましい。
【0036】
Mo、W、Nb、V、Cu、As、Sbの含有量が上記値を越えると、黒色膜の成長速度が阻害される原因については、必ずしも明らかではないが、次のように推定される。すなわち、上記各元素の含有量が上記範囲内を越えると、Fe−Ni系合金冷延板と黒化膜との界面に、上記各元素が濃厚に存在するようになる。その結果、黒色の酸化膜すなわち黒色膜が形成されにくくなり、その成長速度が阻害される。
【0037】
(11)B:
Bは、Fe−Ni系合金の溶製時に不可避的に混入する不純物元素の一つである。B含有量が0.0005mass%を超えると、黒化膜の密着性が劣化する。したがって、Bの含有量は0.0005mass%以下にするのが望ましい。
【0038】
(12)H:
Fe−34〜38mass%Niインバー合金を溶製する際の製錬工程においては、一般にCaO系のスラグが使用されている。CaO系スラグは、水分を吸収しやすいために合金中への水素の供給源となる。したがって、Fe−Ni系合金中には、その溶製時に不可避的に水素が混入する。その結果、Fe−Ni系合金冷延板の表面に黒化膜を形成する時に、合金板中から水素ガスが放出されて、黒化膜が多孔質となるために、黒化膜の剛性が小さくなり、その密着性が劣化する問題が生する。このような問題は、水素の含有量が1.0ppmを越えると顕著になる。したがって、水素の含有量は1.0ppm以下に限定することが好ましい。
【0039】
(13)希土類元素:
希土類元素は、本合金の溶製時に不可避的に混入する不純物の一つである。希土類元素の含有量が1種または、2種以上の合計で0.0002mass%を超えると、黒化膜の黒色度が劣化する。したがって、希土類元素の1種または2種以上の合計含有量が0.0002mass%以下に限定することが好ましい。
【0040】
次に、このような成分組成のFe−Ni系合金冷延板素材の製造方法について説明する。
第1の方法は、予め目標組成となるように調整した30から45mass%のニッケルを含有するFe−Ni系合金の母材を溶解し、得られたFe−Ni溶融合金を取鍋精錬設備にて昇熱しながらNi成分粗調整を実施し、真空脱炭にて炭素を0.005mass%以下まで除去した後、下記からなるCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、とFe−Ni系溶融合金を反応させながらアルミニウム脱酸剤を3.0kg/溶鋼−Ton以下添加して脱酸し、成分最終調整を経て、インゴットまたは連続鋳造機にて鋳造を行い、鋳片を製造する。
【0041】
第2の方法は、転炉にて酸素吹錬により脱炭した炭素鋼溶鋼に、予め溶解炉にて溶解したFe−Ni溶湯を取鍋にて合わせて目標Ni成分のFe−Ni溶融合金を粗調整し、得られたFe−Ni溶融合金を取鍋精錬設備にて昇熱しながらNi成分調整を実施し、同様にして真空脱炭、脱酸、成分最終調整を経て鋳造を行い、鋳片を製造する。
【0042】
次に、脱酸工程で、上記CaO−Al−MgO系スラグを使用する理由について以下に説明する。
【0043】
(1)CaOおよびAl:57mass%以上
CaOおよびAlが57mass%未満ではMgO:25mass%以下、SiO:15mass%以下、およびシリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下を満たさないため、CaOおよびAlを57mass%以上とした。
【0044】
(2)CaO/(CaO+Al)の比が0.45以上
CaO/(CaO+Al)の比が0.45未満では、スラグ中のAlの活量が0.5を超える。スラグ中のAlの活量が0.5を超えると、アルミニウムの量を一定にした場合のアルミニウムの脱酸力が低下する。したがって、CaO/(CaO+Al)の比を0.45以上とした。
【0045】
(3)MgO:25mass%以下
スラグ中のMgO含有量が25mass%を超えると、スラグの融点が上昇して、スラグのFe−Ni系溶融合金との反応が低下する。したがって、MgOの含有量を25mass%以下とした。
【0046】
(4)SiO:15mass%以下
スラグ中のSiO含有量が15mass%を超えると、スラグ中のSiOの活量が上昇し、そして、Fe−Ni系溶融合金中の酸素量がSiOによって増加する。その結果、Fe−Ni系溶融合金中の酸素量が0.002mass%を超える。したがって、SiOの含有量を15mass%以下とした。
【0047】
(5)シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下
スラグ中における、Siよりも酸素親和力の弱い金属の酸化物の合計量が3mass%を超えると、Fe−Ni系合金冷延板中に存在する酸素含有量が0.002mass%を超える。したがって、シリコンよりも酸素親和力の弱い金属の酸化物の合計量を3mass%以下とした。
【0048】
このスラグとFe−Ni溶融合金とを反応させながら、アルミニウム脱酸剤にて脱酸する際、アルミニウム添加量が3.0kg/溶鋼−Ton以下とするのは、この値を超えると、上述の図2に示されるように冷延板エッチング穿孔時の穿孔不良が増加してくるからである。よって、アルミニウム脱酸剤添加量を3.0kg/溶鋼−Ton以下とした。
【0049】
また、真空脱炭前の鋼中溶存酸素量であるが、400ppm以上あると脱酸中のアルミニウム脱酸剤の添加量が3.0kg/溶鋼−Tonを超えてしまうので、真空脱炭前までにカーボン、アルミニウム等の脱酸剤で事前に脱酸しておくことで、エッチング穿孔時の不良発生がなくなる。ただし、事前脱酸を過度に実施し、鋼中溶存酸素量が100ppm未満となると電極加熱時のカーボンピックアップ、真空脱炭不良等の問題が発生するため、100ppm以上は確保し、さらに、以下に示すように、脱酸終了後の溶鋼の攪拌時間と処理終了から鋳込開始までの溶鋼の静置時間を確保することが好ましい。
【0050】
脱酸終了後、取鍋底吹きガス量1.0〜2.5Nl/min・Tonの強攪拌を5分以上と、これに続き、取鍋底吹きガス量0.5〜1.5Nl/min・Tonの弱攪拌10分以上を実施することで、上述した図4に示すように、孔形不良欠陥発生はなくなる。したがって、脱酸終了後上記条件にて溶鋼の攪拌を行って介在物の浮上分離を行うことが好ましい。ただし、この場合には、上述したように脱酸中のアルミニウム脱酸剤の添加量を3.0kg/溶鋼−Ton以下に抑えることに加えて、下記に示すとおり処理終了から鋳込開始までの溶鋼の静置時間を確保することが望ましい。
【0051】
溶製終了から鋳造開始までの溶鋼の静置時間を確保することで、上述した図5に示すように、シャドウマスク製造時の冷延板エッチング穿孔時の孔形不良欠陥の発生がなくなる。よって、溶製終了から鋳込開始までの溶鋼の静置時間を30分以上確保することが好ましい。
【0052】
次に、本発明の第2の実施形態について説明する。
本発明の第2の実施形態においては、Ni:30〜50mass%を含有するシャドウマスク用Fe−Ni系合金冷延板用素材を製造するにあたり、Fe−Ni合金を溶製する際のスラグ組成をCaO:40〜60mass%、Al:10〜40mass%、MgO:10〜30mass%のCaO−Al−MgO系スラグに制御し、かつ、溶融合金中のSol.Alを0.005〜0.05mass%に調整し、スラグと溶融合金とを十分に攪拌して、素材中に含まれる酸化物系介在物組成をAl・MgOおよび/またはMgOに制御する。
【0053】
CaO−Al−MgO系スラグとFe系溶融合金が接している場合、下記(1)式に示すように、スラグ中のMgOがAlと反応してMgが供給される。これにより、Mg合金を添加したのと同様の効果を、溶融合金の飛散等をともなわずに安全に、かつ安価に得ることができる。
3MgO+2Al → 3Mg+Al (1)
【0054】
しかも、溶融合金中にNiを含有しているので、図6に示すように、Mg濃度の増加を期待することができる。
【0055】
また、図7には、Fe−36mass%Niにおける溶融合金中のSol.Al濃度とMg濃度とが平衡する酸化物相を示すが、溶融合金中のMgとAlの濃度の制御によりAl・MgO、MgOの生成領域とすることが可能である。この場合に、Al濃度はその添加量により、またMg濃度はスラグ組成により制御することができ、これにより目標とする介在物領域へコントロールすることができるようになる。
【0056】
実操業においては、スラグ組成をCaO:40〜60mass%、Al:10〜40mass%の低融点組成となるように調整し、スラグの流動性を確保したうえで、スラグ中のMgOを10〜30mass%に制御し、かつ、脱酸後の溶融合金中のSol.Alを、0.005〜0.05mass%に調整し、溶融合金を攪拌することで、素材中に含まれる酸化物系介在物組成をAlから、Al・MgOおよび/またはMgOへと制御して介在物の凝集を防ぐことができる。
【0057】
さらに、素材を冷間圧延した製品について調査した結果、エッチング時に発生する穴形異常や線状欠陥と合金板中の酸化物系介在物の組成との間には極めて強い相関があり、酸化物系介在物の含有率が酸素換算で0.003mass%、MgO/Al質量比率を0.25以上、望ましくは0.4以上とすることで、エッチング穿孔時の欠陥発生をより有効に抑えることができることがわかった。
【0058】
【実施例】
次に、本発明の実施例を比較例と対比しながら説明する。
【0059】
(実施例1)
図8および図9に示す製造工程によってFe−Ni系合金冷延板素材を製造した。
まず、図8に示すように、50Ton電気炉にて表1に示す材料を溶解し、1650℃まで昇熱した後50Ton取鍋中に出鋼した。出鋼時の溶鋼化学成分は表2に示す通りであった。その後、取鍋中に溶鋼と共に流出した電気炉スラグを除滓した。その後、図9に示す条件で真空アーク加熱脱ガス設備(以下VADと記す)および真空送酸脱炭設備(以下VODと記す)にて処理を行った。まず、取鍋をVADに移し、下記条件下で3相電極加熱装置により1680℃まで昇熱しながらNi成分を36.0mass%に調整するため電解Niを添加した。
真空度:200〜600Torr、
底吹きアルゴン流量:0.5〜1.5Nl/min・Ton、
造滓材の投入時期:VAD精錬開始直後、
造滓材内容:焼石灰14kg/Ton、蛍石4kg/Ton、
VAD到着時に鋼中溶存酸素量を測酸プローブにて測定した。溶存酸素量が560ppmであったため、VAD昇熱中にアルミニウムを2.0kg/Ton添加した。その結果、VAD昇熱終了時の鋼中溶存酸素量が251ppmとなった。昇熱終了後の溶融合金の化学成分組成は表2に示すとおりであった。
【0060】
この後、VODに移し、下記条件下にて真空脱炭を実施した。
真空度:1Torr以下、
底吹きアルゴン流量:1.0〜2.5Nl/min・Ton
造滓材投入:なし
脱炭時間:15分間
この結果、炭素含有量は0.0011mass%となった。
【0061】
次いで、引き続きVODにおいてFe−Ni系溶融合金鋼中にアルミニウム脱酸剤を添加して下記条件下にて脱酸を実施した。
真空度:1Torr以下
底吹きアルゴン流量:0.5〜2.5Nl/min・Ton
アルミニウム投入量:1.5kg/Ton
【0062】
さらに、上記アルミニウム投入完了から20分後にアルミニウムおよび成分微調整用の合金鉄を追加投入した。
追加アルミニウム投入量:0.2kg/Ton
合金鉄投入量
電解マンガン:2.8kg/Ton
【0063】
その後、上記条件にて処理を継続し、1540℃にてVOD処理を終了した。この脱酸の際、溶融合金と反応させたスラグ組成は表3に示すとおりであった。また、VOD処理終了時点の溶融合金の化学成分組成は表2に示すとおりであった。
【0064】
次いで、上広型の7Tonまたは12Ton鋳型を使用して、下注ぎ造塊法によって、下記条件でFe−Ni系溶融合金鋼を鋳造した。
注入流温度:1490〜1525℃、
鋳込み速度:150〜190mm/min、
シール状況:取鍋ノズルと注入管との間を覆いで囲み、アルゴンガスを130Nm/Hrの割合で供給した。
注入流から採取した溶融合金の化学成分は表2に示す通りであった。
【0065】
こうして得られた鋼塊を分塊圧延、スラブ表面手入れ、熱間圧延、冷間圧延、焼鈍、冷間圧延、歪み取り熱処理からなる一連の製造工程により冷延板を製造し、シャドウマスク用エッチング処理を実施した。シャドウマスク板200枚を抜き取り、エッチング孔面積率70%の条件でエッチングを実施し、エッチング孔形不良発生の有無を確認したが、不良発生は0.5%以下であった。
【0066】
また、同様の製造方法で条件の異なる材料のエッチング孔形不良発生率を比較した。製造条件およびエッチング孔形不良発生率を表4に示す。また、これらも含め、脱酸処理中のアルミニウム投入量とエッチング孔形発生率との関係を示したものが図2である。表4および図2に示すように、脱酸処理中に添加されるアルミニウム投入量が3.0kg/Ton以下の場合、エッチング孔形状不良発生率は0.5%以下と工業的に問題ないレベルまで低減された。
【0067】
【表1】

Figure 2004285448
【0068】
【表2】
Figure 2004285448
【0069】
【表3】
Figure 2004285448
【0070】
【表4】
Figure 2004285448
【0071】
(実施例2)
図8および図10に示す製造工程によってFe−Ni系合金冷延板素材を製造した。
すなわち、図8に示す実施例1と同様の条件で電気炉操業を行った後、図10に示すように、VODにおける脱炭および溶融合金中のアルミニウム:0.010mass%以上になった時点までの脱酸を実施例1と同様の条件で行い、続いて、VODにおいて以下の処理を行った。
【0072】
すなわち、まず、
真空度:1Torr以下
底吹きアルゴン流量:1.0〜2.5Nl/min・Ton
攪拌時間:5min以上
の条件で強攪拌を実施し、
引き続き、
真空度:1Torr以下
底吹きアルゴン流量:0.5〜1.5Nl/min・Ton
攪拌時間:10min以上
の条件で弱攪拌を実施して、1545℃にてVOD処理を終了した。
【0073】
次いで、実施例1と同様の条件でFe−Ni系溶融合金鋼を鋳造し、得られた鋼塊を分塊圧延、スラブ表面手入れ、熱間圧延、冷間圧延、焼鈍、冷間圧延、歪み取り熱処理からなる一連の製造工程により冷延板を製造し、シャドウマスク用エッチング処理を実施した。シャドウマスク板200枚を抜き取り、エッチング孔面積率70%の条件でエッチングを実施し、エッチング孔形不良発生の有無を確認したが、不良発生はゼロであった。
【0074】
また、同様の製造方法で条件の異なる材料のエッチング孔形不良発生率を比較した。製造条件およびエッチング孔形不良発生率を表5に示す。また、これらも含め脱酸終了後の攪拌時間とエッチング孔形不良発生率の関係を示したものが上述の図3、図4である。
【0075】
これらに示されているとおり、脱酸処理中に添加されるアルミニウム投入量が3.0kg/Ton以下で、脱酸終了後の攪拌時間が強攪拌5分以上、弱攪拌10分以上の場合に、エッチング孔形不良発生率は皆無であった。
【0076】
【表5】
Figure 2004285448
【0077】
(実施例3)
実施例2と同様に脱酸処理中に添加されるアルミニウム投入量が3.0kg/Ton以下で、脱酸終了後の攪拌時間が強攪拌5分以上、弱攪拌10分以上としてFe−Ni系合金冷延板素材を製造し、鋳造開始まで所定時間溶鋼を静置させた後、実施例1と同様の条件でFe−Ni系溶融合金鋼を鋳造し、得られた鋼塊を分塊圧延、スラブ表面手入れ、熱間圧延、冷間圧延、焼鈍、冷間圧延、歪み取り熱処理からなる一連の製造工程により冷延板を製造し、シャドウマスク用エッチング処理を実施した。シャドウマスク板200枚を抜き取り、エッチング孔面積率70%の条件でエッチングを実施し、エッチング孔形不良発生の有無を確認した。その際の製造条件およびエッチング孔不良発生率を表6に示す。また、処理終了から鋳込み開始までの溶鋼の静置時間とエッチング孔形不良発生率を示したものが上述の図5である。
【0078】
これらに示されているとおり、鋳造開始までの溶鋼の静置時間が30分間以上でエッチング孔形不良の発生が皆無であった。
【0079】
【表6】
Figure 2004285448
【0080】
(実施例4)
この実施例は、第2の実施形態に対応するものであり、実施例1,2,3と同様、電気炉での原料溶解、VADでの昇熱・Ni調整、VODでの脱炭ならびにAl脱酸および攪拌、その後の造塊を行った。表7にVODにおいて用いたスラグ組成、ならびに溶融金属の脱炭前、Al脱酸後、および攪拌後のMg濃度を示す。なお、鋳造時の溶融金属中のSol.Alの濃度は0.02mass%であった。結果を表7に示す。表7に示すように、スラグ組成を本発明の範囲内とすることにより、溶融合金中に適量の金属[Mg]を存在させることができ、介在物を微細なAl・MgOおよび/またはMgOに組成制御することができた。
【0081】
【表7】
Figure 2004285448
【0082】
【発明の効果】
以上詳述したように、本発明によれば、高輝度・高鮮明TVのシャドウマスクとして使用することができる、エッチング孔形不良が発生しない、エッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法を提供することができ、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】エッチング孔形不良発生状況(シャドウマスク板を上から見た図)。
【図2】脱酸処理中Al投入量とシャドウマスクエッチング孔形不良発生比率の関係を示す図。
【図3】脱酸終了後の攪拌時間(強攪拌のみ)とシャドウマスクエッチング孔形不良発生比率の関係を示す図。
【図4】脱酸終了後の攪拌時間(強攪拌5分+弱攪拌)とシャドウマスクエッチング孔形不良発生比率の関係を示す図。
【図5】溶製後鋳込開始までの静置時間とシャドウマスクエッチング孔形不良発生比率の関係を示す図。
【図6】溶融合金中のNi濃度とMg濃度がMg蒸気圧に及ぼす影響を示すグラフ。
【図7】Fe−36mass%Niにおける溶融合金中のSol.Al濃度とMg濃度が平衡する酸化物相を示すグラフ。
【図8】実施例1における電気炉での製造条件を示す工程図。
【図9】実施例1におけるVADおよびVODでの製造条件を示す工程図。
【図10】実施例2におけるVADおよびVODでの製造条件を示す工程図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a material for a cold rolled Fe-Ni alloy plate for a shadow mask which is excellent in etching piercing property and does not cause a hole shape defect during etching piercing performed for use as a material for a shadow mask of a high definition TV. It relates to a manufacturing method.
[0002]
[Prior art]
It is required that a cold rolled Fe-Ni alloy plate as a shadow mask material of a high definition TV does not cause a defect in a hole shape at the time of etching.
[0003]
As a technique for solving this problem, a technique disclosed in Patent Document 1 is known. This technique prepares a desorbed and decarburized Fe-Ni-based molten alloy containing an amount of Ni in the range of 30 to 45 mass%, and a MgO containing an amount of CaO in the range of 20 to 40 mass%. -In a ladle made of CaO-based refractory, aluminum is added to the Fe-Ni-based molten alloy thus prepared, and CaO-Al comprising 2 O 3 -MgO-based slag:
CaO and Al 2 O 3 : 57 mass% or more,
However, CaO / (CaO + Al 2 O 3 ) Ratio is 0.45 or more,
MgO: 25 mass% or less,
SiO 2 : 15 mass% or less, and
The total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less, the Fe-Ni-based molten alloy is deoxidized, cast and rolled, and the grain size is 6 µm or less, and This is to produce a Fe-Ni-based alloy cold-rolled sheet containing a total amount of nonmetallic inclusions of 0.002 mass% or less in terms of oxygen.
[0004]
However, this prior art has the following problems. In other words, even if deoxidation is performed together with aluminum using the slag shown there, if a large amount of aluminum is used, Al generated during deoxidation 2 O 3 Even if the amount is large and the individual nonmetallic inclusions have a particle size of 6 μm or less, they tend to aggregate and coalesce to form clusters. As a result, when manufacturing a shadow mask for a high-brightness cathode-ray tube having an etching hole area ratio exceeding 65%, clustered nonmetallic inclusions are applied to the etching holes, resulting in poor etching hole shape.
[0005]
Al 2 O 3 In order to eliminate clusters mainly composed of 2 O 3 -It is known that reforming to MgO is effective (Patent Documents 2 and 3 etc.), but Mg is a high vapor pressure element and extremely reactive, so Mg If a relatively large amount of Mg alloy necessary for controlling the composition is added, there is a problem in safety because the reaction between oxygen and Mg in the molten alloy causes the molten alloy to be scattered. Also, Mg alloys are expensive and are required to be less expensive.
[0006]
[Patent Document 1]
JP-A-4-218644
[Patent Document 2]
JP-A-4-333359
[Patent Document 3]
JP-A-6-212236
[0007]
[Problems to be solved by the invention]
As described above, a method for effectively producing a material for an Fe-Ni-based alloy cold-rolled sheet which is free from defects at the time of etching and can be used as a shadow mask material for a high-definition and high-luminance TV has been established. At present, it cannot be said.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to manufacture a material for a cold rolled sheet of an Fe-Ni alloy for a shadow mask which has excellent etching piercing properties and which can be used as a shadow mask material of a high definition and high brightness TV. The aim is to provide a method.
[0009]
[Means for Solving the Problems]
In view of the above, the present inventors have found that an etching hole area ratio exceeding 65% can be used as a shadow mask material for a high-definition and high-brightness TV. As a result of intensive studies to develop a method of manufacturing a material for a cold rolled Fe—Ni alloy having excellent piercing properties, the following findings were obtained.
[0010]
Observation of the defective hole shape with an electron microscope revealed that clusters of inclusions of several μm were gathered and clustered and expanded in the rolling direction. It was found to be occurring. In other words, even if the amount of nonmetallic inclusions is reduced to 0.002 mass% in terms of oxygen in the cold-rolled sheet stage, if the remaining inclusions are aggregated and clustered, they are expanded during rolling, and are etched. The holes will cause defects.
[0011]
Therefore, a Fe—Ni-based molten alloy containing 30 to 45 mass% of Ni as described in the prior art is prepared and decarburized, and then the following CaO—Al 2 O 3 -MgO-based slag:
CaO and Al 2 O 3 : 57 mass% or more,
However, CaO / (CaO + Al 2 O 3 ) Ratio is 0.45 or more,
MgO: 25 mass% or less,
SiO 2 : 15 mass% or less, and
Total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less, and when performing aluminum deoxidation while reacting with molten metal, the amount of aluminum added during deoxidation and cold rolling during shadow mask production Investigation of the relationship between the rate of occurrence of hole-shaped defect defects at the time of plate etching drilling confirmed that there was a large correlation between them.
[0012]
That is, as shown in FIG. 2, a material in which the amount of aluminum added at the time of deoxidation exceeds 3.0 kg / molten steel-Ton increases the rate of occurrence of defective defects in the hole shape in the hole shape inspection after the etching. This is because, when aluminum is added during deoxidation, alumina (Al) generated by the reaction of aluminum with dissolved oxygen in molten steel or lower oxides in slag 2 O 3 ) If the amount is too large, the inclusions coalesce and coalesce in the process of flotation separation of inclusions during deoxidation, and some of the clustered inclusions that could not be removed remain and become harmful. Conceivable. By reducing the amount of aluminum added, the amount of clustered inclusions remaining in the cold-rolled sheet is also reduced. If the amount of aluminum added is not more than 3.0 kg / molten steel-Ton, the rate of occurrence of hole shape defects during etching is industrial. It can be 0.5% or less, which has no problem.
[0013]
Further, the relationship between the stirring time after the end of deoxidation and the incidence rate of hole-shaped defect defects at the time of drilling the cold-rolled sheet in the production of the shadow mask was found to have a large correlation.
[0014]
That is, as shown in FIG. 3, after the deoxidation is completed, a vigorous stirring of the ladle bottom blowing gas amount of 1.0 to 2.5 Nl / min · Ton is performed for a predetermined time, and then the pan bottom blowing gas amount of 0.5 to 1.5 Nl. /Min.Ton for 10 minutes, the strong stirring time is 5 minutes or more, and the rate of occurrence of hole-shaped defect defects at the time of etching drilling can be made 0. As shown in FIG. By performing the same weak stirring for 10 minutes or more after the strong stirring for 10 minutes, the incidence rate of hole-shaped defect defects at the time of etching perforation can be reduced to zero. In other words, by performing the strong stirring for 5 minutes or more and then performing the weak stirring for 10 minutes or more, it is possible to reduce the incidence of defective hole-shaped defects at the time of etching perforation. This is because the strong agitation promotes the adsorption of inclusions to the slag, and the weak agitation further causes the inclusions that could not be completely absorbed by the slag to be adsorbed to the slag by floating separation. This is because inclusions are reduced.
[0015]
Further, as shown in FIG. 5, the relationship between the standing time from the end of the smelting to the start of the casting and the incidence rate of hole-shaped defect defects at the time of drilling the cold-rolled sheet during the production of the shadow mask was investigated. I knew I had a relationship. By securing the standing time, the inclusions float and separate, the inclusions in the product are reduced, and by leaving still for 30 minutes or more, the incidence of hole-shaped defect defects during etching can be reduced to almost zero. .
[0016]
Furthermore, the inclusions are made Al without using the Mg alloy. 2 O 3 ・ In order to reform into MgO, the slag being melted is converted into CaO-Al 2 O 3 -MgO-based slag, and the molten alloy Sol. It has been found that it is effective to sufficiently stir the slag and the molten alloy after adjusting the Al concentration.
[0017]
The present invention has been made based on the above findings, and provides the following (1) to (6).
[0018]
(1) Ni: 30 to 45 mass%,
Mn: 0.1 to 1.0 mass%,
Al: 0.003 to 0.030 mass%, and
Consisting of the balance of Fe and inevitable impurities,
The material for the cold rolled Fe—Ni alloy for shadow masks, wherein the carbon in the inevitable impurities is 0.005 mass% or less and oxygen is 0.002 mass% or less,
A base material melting step, a step of raising the temperature of the molten alloy obtained by melting the base material in a ladle refining facility, and performing a heat-up / Ni coarse adjustment step of performing Ni coarse adjustment, a vacuum decarburization step, and a deoxidation step; A method for producing a material for a cold-rolled Fe-Ni-based alloy sheet for a shadow mask, which is produced by a component final adjustment step and a casting step of casting with an ingot or a continuous casting machine through these.
The deoxidizing step includes: a molten alloy after Ni component adjustment, and CaO-Al comprising 2 O 3 -MgO-based slag:
CaO and Al 2 O 3 : 57 mass% or more,
However, CaO / (CaO + Al 2 O 3 ) Ratio is 0.45 or more,
MgO: 25 mass% or less,
SiO 2 : 15 mass% or less, and
Excellent in etching piercing property, characterized in that an aluminum deoxidizer is added in an amount of 3.0 kg / mol steel-Ton or less while reacting with a total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less. A method for producing a material for a cold rolled Fe-Ni alloy for a shadow mask.
[0019]
(2) Ni: 30 to 45 mass%,
Mn: 0.1 to 1.0 mass%,
Al: 0.003 to 0.030 mass% and
Consisting of the balance of Fe and inevitable impurities,
The material for the cold rolled Fe—Ni alloy for shadow masks, wherein the carbon in the inevitable impurities is 0.005 mass% or less and oxygen is 0.002 mass% or less,
A step of roughly adjusting the Fe-Ni molten alloy of the target Ni component by combining a molten steel of Fe-Ni previously melted in a melting furnace with a ladle to carbon steel molten steel decarburized by oxygen blowing in a converter, The obtained Fe-Ni molten alloy is heated by a ladle refining facility to raise the temperature of the Ni-adjustment and Ni adjustment step, a vacuum decarburization step, a deoxidation step, a component final adjustment step, and the like. A method for producing a material for a cold-rolled Fe-Ni alloy sheet for a shadow mask, which is produced by a casting step of casting with an ingot or a continuous casting machine,
The deoxidizing step includes: a molten alloy after Ni component adjustment, and CaO-Al comprising 2 O 3 -MgO-based slag:
CaO and Al 2 O 3 : 57 mass% or more,
However, CaO / (CaO + Al 2 O 3 ) Ratio is 0.45 or more,
MgO: 25 mass% or less,
SiO 2 : 15 mass% or less, and
Excellent in etching piercing property, characterized in that an aluminum deoxidizer is added in an amount of 3.0 kg / mol steel-Ton or less while reacting with a total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less. A method for producing a material for a cold rolled Fe-Ni alloy for a shadow mask.
[0020]
(3) In the above (1) or (2), in producing the material for the cold rolled sheet of the Fe—Ni alloy, the molten alloy is dissolved in advance with a deoxidizing agent such as carbon, silicon, or aluminum before the vacuum decarburization step. The amount of aluminum deoxidizer added at the time of final deoxidation is set to 3.0 kg / molten steel-Ton or less by adjusting the oxygen amount to 100 ppm or more and 400 ppm or less. A method for producing a material for cold rolled Ni-based alloy sheets.
[0021]
(4) In the above (1) or (2), in producing the material for a cold rolled Fe-Ni alloy sheet, after adding an aluminum deoxidizing agent, a ladle bottom blowing gas amount of 1.0 to 2.5 Nl / min. -Strong stirring for 5 minutes or more at Ton, followed by weak stirring at 0.5 to 1.5 Nl / min or less for 10 minutes or less to promote floating separation of nonmetallic inclusions. A method for producing a material for cold rolled Fe—Ni alloys for shadow masks having excellent etching piercing properties.
[0022]
(5) In the above (1) or (2), in manufacturing the Fe-Ni alloy cold rolled sheet material, the ladle is kept still for at least 30 minutes after melting to promote the floating of nonmetallic inclusions. A method for producing a material for a cold rolled Fe-Ni alloy for a shadow mask, which is excellent in etching piercing properties.
[0023]
(6) Ni: In producing a material for a cold rolled sheet of an Fe-Ni alloy for a shadow mask containing 30 to 50 mass%, the slag composition for melting the Fe-Ni alloy is CaO: 40 to 60 mass%. Al 2 O 3 : 10 to 40 mass%, MgO: 10 to 30 mass% CaO-Al 2 O 3 -Controlled to MgO-based slag, and Sol. Al was adjusted to 0.005 to 0.05 mass%, the slag and the molten alloy were sufficiently stirred, and the composition of the oxide-based inclusions contained in the material was changed to Al. 2 O 3 A method for producing a material for a cold rolled Fe—Ni alloy for a shadow mask, which is excellent in etching piercing property, characterized by controlling to MgO and / or MgO.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
In the first embodiment of the present invention, Ni is 30 to 45 mass%, Mn is 0.1 to 1.0 mass%, Al is 0.003 to 0.030 mass%, and the balance is Fe and unavoidable impurities. A material for the Fe-Ni alloy cold-rolled sheet for a shadow mask, in which carbon in the unavoidable impurities is 0.005 mass% or less and oxygen is 0.002 mass% or less, is obtained by a base material melting step and a base material melting. The heated molten alloy is heated in a ladle refining facility to perform Ni coarse adjustment, a heat raising / Ni coarse adjustment step, a vacuum decarburization step, a deoxidation step, a component final adjustment step, and an ingot or For the production by the casting process of casting with a continuous casting machine, or in a converter, the Fe-Ni molten metal previously melted in a melting furnace is combined with a molten steel of carbon steel decarburized by oxygen blowing in a converter in a ladle. A step of roughly adjusting the Fe-Ni molten alloy of the target Ni component by heating, a step of raising the temperature of the obtained Fe-Ni molten alloy in a ladle refining facility to adjust Ni, and a step of vacuum decarburization. Step, a deoxidizing step, a component final adjusting step, and a production step of casting by an ingot or a continuous casting machine through these, in the deoxidizing step, the molten alloy after Ni component adjustment, consisting of: CaO-Al 2 O 3 -MgO-based slag:
CaO and Al 2 O 3 : 57 mass% or more,
However, CaO / (CaO + Al 2 O 3 ) Ratio is 0.45 or more,
MgO: 25 mass% or less,
SiO 2 : 15 mass% or less, and
While reacting with the total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less, an aluminum deoxidizer is added in an amount of 3.0 kg / molten steel-Ton or less, and the casting process is performed on an ingot or a continuous casting machine. Do it.
[0025]
First, the chemical composition of the material will be described.
(1) Ni:
Ni is a component that has a large effect on the coefficient of thermal expansion of the Fe—Ni-based alloy plate. When the nickel content is in the range of 30 to 45 mass%, the coefficient of thermal expansion of the alloy plate is small. However, when it is less than 30 mass%, the coefficient of thermal expansion of the alloy plate becomes high. On the other hand, even if the nickel content exceeds 45 mass%, the coefficient of thermal expansion of the alloy increases. When a cold rolled Fe—Ni alloy having a high coefficient of thermal expansion is used as a shadow mask material, it causes color shift. Therefore, the nickel content is in the range of 30 to 45 mass%.
[0026]
(2) Mn:
Mn has an effect of improving the hot workability of the Fe—Ni-based alloy sheet. However, if the manganese content is less than 0.1 mass%, the above effects cannot be obtained as desired. On the other hand, if the manganese content exceeds 1.0 mass%, the hardness of the alloy plate becomes excessively high and is not suitable as a shadow mask material. Therefore, the manganese content is in the range of 0.1 to 1.0 mass%.
[0027]
(3) Al:
Al is a component that affects the amount of nonmetallic inclusions in the Fe-Ni-based alloy plate and the size of the particle size. When the aluminum content is in the range of 0.003 to 0.030 mass%, a small amount of non-metallic inclusions having a small particle size are formed in the alloy plate. However, when the content of aluminum is less than 0.003 mass%, a large amount of non-metallic inclusions having a large particle size, a low melting point, and a high malleability are generated, and a linear shape is formed in the cold-rolled sheet. Exists in. As a result, defects occur at the time of etching perforation in the alloy plate. On the other hand, when the content of aluminum exceeds 0.030 mass%, the blackening property of the alloy plate is reduced. Therefore, the content of aluminum is in the range of 0.003 to 0.030 mass%.
[0028]
The balance of the above components is Fe and the following unavoidable impurities.
(4) C:
C is one of the impurities unavoidably mixed into the Fe-Ni-based alloy. The C content is preferably as small as possible, but it is difficult from the viewpoint of economy to greatly reduce the carbon content on an industrial scale. However, when the carbon content exceeds 0.005 mass%, a large amount of iron carbide is generated in the Fe-Ni-based alloy plate, which hinders the etching piercing property of the alloy plate and causes puncturing defects, The press formability of the alloy sheet decreases. Therefore, the carbon content is desirably 0.005 mass% or less.
[0029]
(5) O:
O is one of the impurities unavoidably mixed into the Fe-Ni-based alloy. Although the O content is preferably as small as possible, it is difficult from the viewpoint of economy to greatly reduce the O content on an industrial scale. However, when the O content exceeds 0.002 mass%, a large amount of oxide-based nonmetallic inclusions are generated in the alloy, which hinders the etching piercing property of the alloy plate and causes puncturing defects. Therefore, it is desirable that the O content be 0.002 mass% or less.
[0030]
(6) Si:
Si is also an unavoidable impurity, but if its content exceeds 0.05 mass%, oxides of Si are formed on the Fe—Ni-based alloy plate, resulting in deterioration of the blackness of the blackened film. Therefore, the content of Si is desirably 0.05 mass% or less.
[0031]
(7) Cr:
Cr is one of the impurities that are inevitably mixed when the Fe—Ni-based alloy is melted. If the Cr content exceeds 0.05 mass%, chromium oxide is generated on the Fe-Ni-based alloy plate, so that the blackness of the blackened film deteriorates. Therefore, the content of Cr is desirably 0.05 mass% or less.
[0032]
(8) Ti:
Ti is one of the impurities that are inevitably mixed when the Fe—Ni-based alloy is melted. If the content of Ti exceeds 0.02 mass%, an oxide of Ti is generated on the Fe—Ni-based alloy plate, and as a result, the blackness of the blackened film deteriorates. Therefore, the content of Ti is desirably 0.02 mass% or less.
[0033]
(9) Total content of Al, Si, Cr and Ti:
Even if the content of each of Al, Si, Cr and Ti is within the above-mentioned range, if the total content of these exceeds 0.10 mass%, the blackness and thermal emissivity of the blackened film are reduced. Deteriorates. Therefore, the total content of Al, Si, Cr and Ti is desirably 0.10 mass% or less.
[0034]
(10) Mo, W, Nb, V, Cu, As, Sb:
In order to improve the thermal emissivity of the blackened film formed on the surface of the Fe—Ni alloy cold-rolled sheet, in addition to increasing the blackness of the blackened film, the growth of the blackened film is promoted. It is necessary to form a blackened film having a predetermined thickness within a predetermined time. Mo, W, Nb, V, Cu, As, Sb, and the like are inevitably mixed during the smelting of the Fe—Ni-based alloy. However, when the content of these elements exceeds a predetermined value, the growth of the blackened film may occur. The speed is reduced, and a blackened film having a predetermined thickness cannot be formed within a predetermined time.
[0035]
From such a viewpoint, the content of Mo is 0.05 mass% or less, the content of W is 0.02 mass% or less, the content of Nb is 0.02 mass% or less, the content of V is 0.02 mass% or less, Cu Is desirably 0.02 mass% or less, the As content is 0.005 mass% or less, and the Sb content is 0.01 mass% or less.
[0036]
When the contents of Mo, W, Nb, V, Cu, As, and Sb exceed the above values, the cause of the inhibition of the growth rate of the black film is not necessarily clear, but is estimated as follows. That is, when the content of each of the above elements exceeds the above range, each of the above elements becomes densely present at the interface between the Fe—Ni-based alloy cold-rolled sheet and the blackened film. As a result, it is difficult to form a black oxide film, that is, a black film, and the growth rate is inhibited.
[0037]
(11) B:
B is one of the impurity elements that are inevitably mixed when the Fe—Ni-based alloy is melted. When the B content exceeds 0.0005% by mass, the adhesion of the blackened film deteriorates. Therefore, the content of B is desirably 0.0005 mass% or less.
[0038]
(12) H:
In the smelting process when melting the Fe-34 to 38 mass% Ni invar alloy, CaO-based slag is generally used. CaO-based slag becomes a supply source of hydrogen into the alloy because it easily absorbs moisture. Therefore, hydrogen is inevitably mixed into the Fe-Ni-based alloy during melting. As a result, when a blackening film is formed on the surface of the Fe—Ni-based alloy cold-rolled sheet, hydrogen gas is released from the alloy sheet, and the blackening film becomes porous. This causes a problem that the adhesiveness is deteriorated. Such a problem becomes remarkable when the hydrogen content exceeds 1.0 ppm. Therefore, the content of hydrogen is preferably limited to 1.0 ppm or less.
[0039]
(13) Rare earth elements:
The rare earth element is one of the impurities that are inevitably mixed when the present alloy is melted. When the content of the rare earth element exceeds one or two or more in total, the blackness of the blackened film deteriorates. Therefore, the total content of one or more rare earth elements is preferably limited to 0.0002 mass% or less.
[0040]
Next, a method for producing an Fe—Ni-based alloy cold-rolled sheet material having such a composition will be described.
The first method is to melt a base material of an Fe-Ni-based alloy containing 30 to 45 mass% of nickel, which has been adjusted so as to have a target composition in advance, and place the obtained Fe-Ni molten alloy in a ladle refining facility. The Ni component is roughly adjusted while raising the temperature by heating, and the carbon is removed to 0.005 mass% or less by vacuum decarburization. 2 O 3 -MgO-based slag:
CaO and Al 2 O 3 : 57 mass% or more,
However, CaO / (CaO + Al 2 O 3 ) Ratio is 0.45 or more,
MgO: 25 mass% or less,
SiO 2 : 15 mass% or less, and
The total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less, and an aluminum deoxidizer added while reacting the Fe-Ni-based molten alloy with 3.0 kg / molten steel-Ton or less to deoxidize, After the final component adjustment, casting is performed with an ingot or a continuous casting machine to produce a slab.
[0041]
The second method is to combine a molten Fe—Ni molten metal previously melted in a melting furnace with a ladle with molten carbon steel that has been decarburized by oxygen blowing in a converter to form an Fe—Ni molten alloy of a target Ni component. Coarse adjustment, Ni component adjustment was carried out while raising the obtained Fe-Ni molten alloy in a ladle refining facility, and casting was performed in the same manner through vacuum decarburization, deoxidation, and final component adjustment, and slabs. To manufacture.
[0042]
Next, in the deoxidation step, the above CaO-Al 2 O 3 The reason for using the MgO-based slag will be described below.
[0043]
(1) CaO and Al 2 O 3 : 57 mass% or more
CaO and Al 2 O 3 Is less than 57 mass%, MgO: 25 mass% or less, SiO 2 : 15 mass% or less, and the total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less, CaO and Al 2 O 3 Was set to 57 mass% or more.
[0044]
(2) CaO / (CaO + Al 2 O 3 ) Ratio is 0.45 or more
CaO / (CaO + Al 2 O 3 ) Is less than 0.45, the Al in the slag 2 O 3 Has an activity of more than 0.5. Al in slag 2 O 3 If the activity exceeds 0.5, the deoxidizing power of aluminum when the amount of aluminum is kept constant decreases. Therefore, CaO / (CaO + Al 2 O 3 ) Was set to 0.45 or more.
[0045]
(3) MgO: 25 mass% or less
If the MgO content in the slag exceeds 25 mass%, the melting point of the slag increases and the reaction of the slag with the Fe-Ni-based molten alloy decreases. Therefore, the content of MgO is set to 25 mass% or less.
[0046]
(4) SiO 2 : 15 mass% or less
SiO in slag 2 If the content exceeds 15 mass%, SiO in the slag 2 Activity increases, and the oxygen content in the Fe—Ni-based molten alloy becomes SiO 2 2 Increase by. As a result, the amount of oxygen in the Fe-Ni-based molten alloy exceeds 0.002 mass%. Therefore, SiO 2 Was 15 mass% or less.
[0047]
(5) Total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less
When the total amount of oxides of metals having a lower oxygen affinity than Si in the slag exceeds 3 mass%, the oxygen content in the Fe-Ni alloy cold-rolled sheet exceeds 0.002 mass%. Therefore, the total amount of metal oxides having a lower oxygen affinity than silicon is set to 3 mass% or less.
[0048]
When the slag and the Fe—Ni molten alloy are reacted and deoxidized with an aluminum deoxidizing agent, the amount of aluminum added is set to 3.0 kg / molten steel-Ton or less. This is because, as shown in FIG. 2, defective drilling during the etching drilling of the cold rolled sheet increases. Therefore, the addition amount of the aluminum deoxidizer was set to 3.0 kg / molten steel-Ton or less.
[0049]
The amount of dissolved oxygen in steel before vacuum decarburization is 400 ppm or more. If it is 400 ppm or more, the amount of aluminum deoxidizer added during deoxidation will exceed 3.0 kg / molten steel-Ton. By previously deoxidizing with a deoxidizing agent such as carbon or aluminum, the occurrence of defects at the time of etching perforation is eliminated. However, excessive pre-deoxidation, if the amount of dissolved oxygen in the steel is less than 100 ppm, problems such as carbon pick-up during electrode heating and poor vacuum decarburization occur. As shown, it is preferable to secure the stirring time of the molten steel after the end of deoxidation and the standing time of the molten steel from the end of the treatment to the start of casting.
[0050]
After the deoxidation, the ladle bottom blown gas amount was 1.0 to 2.5 Nl / min · Ton and the stirring was 5 minutes or more, followed by the ladle bottom blown gas amount of 0.5 to 1.5 Nl / min · Ton. By performing the weak stirring for 10 minutes or more, as shown in FIG. Therefore, it is preferable to stir the molten steel under the above conditions after the deoxidation to separate the inclusions by flotation. However, in this case, as described above, in addition to suppressing the addition amount of the aluminum deoxidizer during deoxidation to 3.0 kg / molten steel-Ton or less, as shown below, from the end of processing to the start of casting. It is desirable to secure the standing time of the molten steel.
[0051]
By securing the standing time of the molten steel from the end of the smelting to the start of the casting, as shown in FIG. 5 described above, the occurrence of a defect in the form of a hole at the time of drilling the cold-rolled sheet during the production of the shadow mask is eliminated. Therefore, it is preferable to secure 30 minutes or more of the standing time of molten steel from the end of smelting to the start of casting.
[0052]
Next, a second embodiment of the present invention will be described.
In the second embodiment of the present invention, in producing a material for a cold rolled sheet of an Fe-Ni alloy for a shadow mask containing 30 to 50 mass% of Ni, a slag composition for melting the Fe-Ni alloy is used. Is CaO: 40-60 mass%, Al 2 O 3 : 10 to 40 mass%, MgO: 10 to 30 mass% CaO-Al 2 O 3 -Controlled to MgO-based slag, and Sol. Al was adjusted to 0.005 to 0.05 mass%, the slag and the molten alloy were sufficiently stirred, and the composition of the oxide-based inclusions contained in the material was changed to Al. 2 O 3 -Control to MgO and / or MgO.
[0053]
CaO-Al 2 O 3 When the MgO-based slag and the Fe-based molten alloy are in contact with each other, MgO in the slag reacts with Al to supply Mg as shown in the following equation (1). Thus, the same effect as that obtained by adding the Mg alloy can be obtained safely and inexpensively without scattering of the molten alloy.
3MgO + 2Al → 3Mg + Al 2 O 3 (1)
[0054]
In addition, since the molten alloy contains Ni, an increase in the Mg concentration can be expected as shown in FIG.
[0055]
In addition, FIG. 7 shows that Sol. The oxide phase shows an equilibrium between the Al concentration and the Mg concentration. However, by controlling the concentrations of Mg and Al in the molten alloy, 2 O 3 -It is possible to set a region for generating MgO and MgO. In this case, the Al concentration can be controlled by the amount of addition, and the Mg concentration can be controlled by the slag composition, whereby the target inclusion region can be controlled.
[0056]
In actual operation, the slag composition was CaO: 40-60 mass%, Al 2 O 3 : Adjusted so as to have a low melting point composition of 10 to 40 mass%, and after securing the fluidity of the slag, controlling MgO in the slag to 10 to 30 mass%, and Sol in the molten alloy after deoxidation. . By adjusting Al to 0.005 to 0.05 mass% and stirring the molten alloy, the composition of the oxide-based inclusions contained in the raw material is changed to Al. 2 O 3 From Al 2 O 3 -Aggregation of inclusions can be prevented by controlling to MgO and / or MgO.
[0057]
In addition, as a result of investigating products obtained by cold rolling the material, there is a very strong correlation between the hole shape abnormality and linear defect generated during etching and the composition of oxide-based inclusions in the alloy plate, The content of the system inclusions is 0.003 mass% in terms of oxygen, MgO / Al 2 O 3 It has been found that by setting the mass ratio to 0.25 or more, desirably 0.4 or more, it is possible to more effectively suppress the occurrence of defects during etching perforation.
[0058]
【Example】
Next, examples of the present invention will be described in comparison with comparative examples.
[0059]
(Example 1)
A Fe—Ni-based alloy cold-rolled sheet material was manufactured by the manufacturing steps shown in FIGS. 8 and 9.
First, as shown in FIG. 8, the materials shown in Table 1 were melted in a 50 Ton electric furnace, heated to 1650 ° C., and then steel was poured into a 50 Ton ladle. The chemical composition of molten steel during tapping was as shown in Table 2. Then, the electric furnace slag which flowed out together with the molten steel into the ladle was removed. Thereafter, the treatment was performed in a vacuum arc heating degassing facility (hereinafter referred to as VAD) and a vacuum acid decarburizing facility (hereinafter referred to as VOD) under the conditions shown in FIG. First, the ladle was moved to a VAD, and electrolytic Ni was added in order to adjust the Ni component to 36.0 mass% while raising the temperature to 1680 ° C. by a three-phase electrode heating device under the following conditions.
Degree of vacuum: 200 to 600 Torr,
Bottom blown argon flow rate: 0.5 to 1.5 Nl / min · Ton,
Timing of slag-making material: Immediately after VAD refining starts
Slag making contents: calcined lime 14 kg / Ton, fluorite 4 kg / Ton,
Upon arrival at VAD, the amount of dissolved oxygen in the steel was measured with an acid measuring probe. Since the amount of dissolved oxygen was 560 ppm, 2.0 kg / Ton of aluminum was added during the heating of the VAD. As a result, the amount of dissolved oxygen in the steel at the end of the heating of the VAD was 251 ppm. The chemical composition of the molten alloy after the completion of the heating was as shown in Table 2.
[0060]
Then, it was transferred to VOD and vacuum decarburization was performed under the following conditions.
Degree of vacuum: 1 Torr or less,
Bottom blow argon flow rate: 1.0 ~ 2.5Nl / min ・ Ton
Slag-making material input: None
Decarburization time: 15 minutes
As a result, the carbon content was 0.0011 mass%.
[0061]
Next, an aluminum deoxidizer was added to the Fe-Ni-based molten alloy steel in the VOD, and deoxidation was performed under the following conditions.
Degree of vacuum: 1 Torr or less
Bottom blown argon flow rate: 0.5 to 2.5 Nl / min · Ton
Aluminum input: 1.5kg / Ton
[0062]
Further, 20 minutes after the completion of the addition of aluminum, aluminum and ferromagnetic alloy for fine component adjustment were additionally added.
Additional aluminum input: 0.2kg / Ton
Ferroalloy input
Electrolytic manganese: 2.8 kg / Ton
[0063]
Thereafter, the process was continued under the above conditions, and the VOD process was terminated at 1540 ° C. The composition of the slag reacted with the molten alloy during this deoxidation was as shown in Table 3. Further, the chemical composition of the molten alloy at the end of the VOD treatment was as shown in Table 2.
[0064]
Next, an Fe-Ni-based molten alloy steel was cast under the following conditions using an upper wide 7-ton or 12-ton mold by a downward pouring ingot casting method.
Injection flow temperature: 1490-1525 ° C,
Pouring speed: 150 to 190 mm / min,
Sealing condition: Enclose the space between the ladle nozzle and the injection pipe with argon gas at 130 Nm 3 / Hr.
The chemical composition of the molten alloy collected from the injection stream was as shown in Table 2.
[0065]
The steel ingot obtained in this way is subjected to a series of manufacturing steps including slab rolling, slab surface care, hot rolling, cold rolling, annealing, cold rolling, and strain removing heat treatment to produce a cold rolled sheet, and etching for a shadow mask. Processing was performed. 200 shadow mask plates were extracted and etched under the condition of an etching hole area ratio of 70%, and the presence or absence of an etching hole shape defect was confirmed. The occurrence of the defect was 0.5% or less.
[0066]
In addition, the rate of occurrence of etching hole shape defects of materials having different conditions was compared by the same manufacturing method. Table 4 shows the manufacturing conditions and the occurrence rate of etching hole shape defects. FIG. 2 shows the relationship between the amount of aluminum input during the deoxidizing treatment and the rate of occurrence of etching hole shape, including these. As shown in Table 4 and FIG. 2, when the amount of aluminum added during the deoxidizing treatment is 3.0 kg / Ton or less, the rate of occurrence of defective etching hole shapes is 0.5% or less, which is an industrially acceptable level. Was reduced to
[0067]
[Table 1]
Figure 2004285448
[0068]
[Table 2]
Figure 2004285448
[0069]
[Table 3]
Figure 2004285448
[0070]
[Table 4]
Figure 2004285448
[0071]
(Example 2)
A Fe—Ni-based alloy cold-rolled sheet material was manufactured by the manufacturing steps shown in FIGS. 8 and 10.
That is, after the electric furnace was operated under the same conditions as in Example 1 shown in FIG. 8, as shown in FIG. 10, the decarburization in VOD and the aluminum in the molten alloy: up to the point of 0.010 mass% or more. Was deoxidized under the same conditions as in Example 1, and subsequently, the following treatment was performed in VOD.
[0072]
That is, first,
Degree of vacuum: 1 Torr or less
Bottom blow argon flow rate: 1.0 ~ 2.5Nl / min ・ Ton
Stirring time: 5 min or more
Under strong stirring,
Continued
Degree of vacuum: 1 Torr or less
Bottom blow argon flow rate: 0.5 to 1.5 Nl / min Ton
Stirring time: 10min or more
, And the VOD treatment was completed at 1545 ° C.
[0073]
Next, Fe-Ni-based molten alloy steel was cast under the same conditions as in Example 1, and the obtained ingot was subjected to slab rolling, slab surface care, hot rolling, cold rolling, annealing, cold rolling, and strain. A cold-rolled sheet was manufactured by a series of manufacturing steps including a heat treatment, and an etching process for a shadow mask was performed. 200 shadow mask plates were extracted and etched under the condition of an etching hole area ratio of 70%, and it was confirmed whether or not an etching hole shape defect occurred. However, no defect occurred.
[0074]
In addition, the rate of occurrence of etching hole shape defects of materials having different conditions was compared by the same manufacturing method. Table 5 shows the manufacturing conditions and the occurrence rate of etching hole shape defects. FIGS. 3 and 4 show the relationship between the stirring time after the completion of deoxidation and the rate of occurrence of etching hole shape defects.
[0075]
As shown in these figures, when the amount of aluminum added during the deoxidation treatment is 3.0 kg / Ton or less and the stirring time after the end of deoxidation is 5 minutes or more with strong stirring and 10 minutes or more with weak stirring. In addition, there was no etching hole shape defect occurrence rate.
[0076]
[Table 5]
Figure 2004285448
[0077]
(Example 3)
In the same manner as in Example 2, the amount of aluminum added during the deoxidation treatment was 3.0 kg / Ton or less, and the stirring time after the completion of deoxidation was 5 minutes or more for strong stirring and 10 minutes or more for weak stirring. An alloy cold-rolled sheet material was manufactured, and the molten steel was allowed to stand for a predetermined time until the start of casting. Then, an Fe-Ni-based molten alloy steel was cast under the same conditions as in Example 1, and the obtained ingot was subjected to slab rolling. A cold-rolled sheet was manufactured through a series of manufacturing steps including slab surface care, hot rolling, cold rolling, annealing, cold rolling, and heat treatment for removing strain, and an etching process for a shadow mask was performed. 200 shadow mask plates were extracted and etched under the condition of an etching hole area ratio of 70%, and it was confirmed whether or not an etching hole shape defect occurred. Table 6 shows the manufacturing conditions and the rate of occurrence of defective etching holes. FIG. 5 shows the standing time of the molten steel from the end of the treatment to the start of the casting and the incidence rate of defective etching hole shape.
[0078]
As shown in these figures, the standing time of the molten steel until the start of casting was 30 minutes or more, and there was no occurrence of poor etching hole shape.
[0079]
[Table 6]
Figure 2004285448
[0080]
(Example 4)
This example corresponds to the second embodiment and, like Examples 1, 2 and 3, dissolves raw materials in an electric furnace, heats up / adjusts Ni by VAD, decarburizes by VOD, and removes Al Deacidification and stirring followed by agglomeration. Table 7 shows the slag composition used in the VOD, and the Mg concentration before decarburizing the molten metal, after deoxidizing Al, and after stirring. In addition, Sol. The concentration of Al was 0.02 mass%. Table 7 shows the results. As shown in Table 7, by setting the slag composition within the range of the present invention, an appropriate amount of metal [Mg] can be present in the molten alloy, and fine inclusions can be formed. 2 O 3 The composition could be controlled to MgO and / or MgO.
[0081]
[Table 7]
Figure 2004285448
[0082]
【The invention's effect】
As described in detail above, according to the present invention, a Fe-Ni-based shadow mask which can be used as a shadow mask of high brightness and high definition TV, does not cause etching hole shape defects, and has excellent etching piercing properties. A method for producing a material for a cold rolled alloy sheet can be provided, and an industrially useful effect can be obtained.
[Brief description of the drawings]
FIG. 1 shows the state of occurrence of an etching hole defect (a top view of a shadow mask plate).
FIG. 2 is a diagram showing the relationship between the amount of Al input during deoxidation and the shadow mask etching hole shape defect occurrence ratio.
FIG. 3 is a graph showing a relationship between a stirring time (only strong stirring) after completion of deoxidation and a shadow mask etching hole shape defect occurrence ratio.
FIG. 4 is a diagram showing the relationship between the stirring time (5 minutes strong stirring + weak stirring) after the end of deoxidation and the shadow mask etching hole shape defect occurrence ratio.
FIG. 5 is a diagram showing the relationship between the standing time from the smelting to the start of casting and the shadow mask etching hole shape defect occurrence ratio.
FIG. 6 is a graph showing the effect of Ni concentration and Mg concentration in a molten alloy on Mg vapor pressure.
FIG. 7 shows that Sol. 5 is a graph showing an oxide phase in which the Al concentration and the Mg concentration are balanced.
FIG. 8 is a process chart showing manufacturing conditions in an electric furnace in Example 1.
FIG. 9 is a process chart showing VAD and manufacturing conditions at VOD in Example 1.
FIG. 10 is a process chart showing VAD and manufacturing conditions at VOD in Example 2.

Claims (6)

Ni:30〜45mass%、
Mn:0.1〜1.0mass%、
Al:0.003〜0.030mass%、および
残部のFeおよび不可避的不純物からなり、
前記不可避的不純物中の炭素は0.005mass%以下、酸素は0.002mass%以下であるシャドウマスク用Fe−Ni系合金冷延板用素材を、
母材溶解工程と、母材溶解により得られた溶融合金を取鍋精錬設備にて昇熱し、Ni粗調整を行う昇熱・Ni粗調整工程と、真空脱炭工程と、脱酸工程と、成分最終調整工程と、これらを経てインゴットまたは連続鋳造機にて鋳造する鋳造工程とにより製造するシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法であって、
前記脱酸工程は、Ni成分調整後の溶融合金と、下記からなるCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、とを反応させながらアルミニウム脱酸剤を3.0kg/溶鋼−Ton以下添加することを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
Ni: 30 to 45 mass%,
Mn: 0.1 to 1.0 mass%,
Al: 0.003 to 0.030 mass%, and the balance of Fe and unavoidable impurities,
The material for the cold rolled Fe—Ni alloy for shadow masks, wherein the carbon in the inevitable impurities is 0.005 mass% or less and oxygen is 0.002 mass% or less,
A base material melting step, a step of raising the temperature of the molten alloy obtained by melting the base material in a ladle refining facility, and performing a heat-up / Ni coarse adjustment step of performing Ni coarse adjustment, a vacuum decarburization step, and a deoxidation step; A method for producing a material for a cold-rolled Fe-Ni-based alloy sheet for a shadow mask, which is produced by a component final adjustment step and a casting step of casting with an ingot or a continuous casting machine through these.
In the deoxidizing step, the molten alloy after the adjustment of the Ni component and a CaO—Al 2 O 3 —MgO-based slag comprising:
CaO and Al 2 O 3 : 57 mass% or more,
However, the ratio of CaO / (CaO + Al 2 O 3 ) is 0.45 or more,
MgO: 25 mass% or less,
While reacting with SiO 2 : 15 mass% or less and the total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less, an aluminum deoxidizer is added in an amount of 3.0 kg / molten steel-Ton or less. A method for producing a material for a cold rolled Fe-Ni alloy for a shadow mask having excellent etching piercing properties.
Ni:30〜45mass%、
Mn:0.1〜1.0mass%、
Al:0.003〜0.030mass%および、
残部のFeおよび不可避的不純物からなり、
前記不可避的不純物中の炭素は0.005mass%以下、酸素は0.002mass%以下であるシャドウマスク用Fe−Ni系合金冷延板用素材を、
転炉にて酸素吹錬により脱炭した炭素鋼溶鋼に、予め溶解炉にて溶解したFe−Ni溶湯を取鍋にて合わせて目標Ni成分のFe−Ni溶融合金を粗調整する工程と、得られたFe−Ni溶融合金を取鍋精錬設備にて昇熱し、Ni調整を行う昇熱・Ni調整工程と、真空脱炭工程と、脱酸工程と、成分最終調整工程と、これらを経てインゴットまたは連続鋳造機にて鋳造する鋳造工程とにより製造するシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法であって、
前記脱酸工程は、Ni成分調整後の溶融合金と、下記からなるCaO−Al−MgO系スラグ:
CaOおよびAl:57mass%以上、
ただし、CaO/(CaO+Al)の比は0.45以上、
MgO:25mass%以下、
SiO:15mass%以下、および
シリコンよりも酸素親和力の弱い金属の酸化物の合計量:3mass%以下、とを反応させながらアルミニウム脱酸剤を3.0kg/溶鋼−Ton以下添加することを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。
Ni: 30 to 45 mass%,
Mn: 0.1 to 1.0 mass%,
Al: 0.003 to 0.030 mass% and
Consisting of the balance of Fe and inevitable impurities,
The material for the cold rolled Fe—Ni alloy for shadow masks, wherein the carbon in the inevitable impurities is 0.005 mass% or less and oxygen is 0.002 mass% or less,
A step of roughly adjusting the Fe-Ni molten alloy of the target Ni component by combining a molten steel of Fe-Ni previously melted in a melting furnace with a ladle to carbon steel molten steel decarburized by oxygen blowing in a converter, The obtained Fe-Ni molten alloy is heated by a ladle refining facility to raise the temperature of the Ni-adjustment and Ni adjustment step, a vacuum decarburization step, a deoxidation step, a component final adjustment step, and the like. A method for producing a material for a cold-rolled Fe-Ni alloy sheet for a shadow mask, which is produced by a casting step of casting with an ingot or a continuous casting machine,
In the deoxidizing step, the molten alloy after the adjustment of the Ni component and a CaO—Al 2 O 3 —MgO-based slag comprising:
CaO and Al 2 O 3 : 57 mass% or more,
However, the ratio of CaO / (CaO + Al 2 O 3 ) is 0.45 or more,
MgO: 25 mass% or less,
While reacting with SiO 2 : 15 mass% or less and the total amount of oxides of metals having a lower oxygen affinity than silicon: 3 mass% or less, an aluminum deoxidizer is added in an amount of 3.0 kg / molten steel-Ton or less. A method for producing a material for a cold rolled Fe-Ni alloy for a shadow mask having excellent etching piercing properties.
前記Fe−Ni系合金冷延板用素材を製造するにあたり、真空脱炭工程前にあらかじめ炭素、シリコン、アルミニウム等の脱酸剤で溶融合金溶存酸素量を100ppm以上、400ppm以下とすることで最終脱酸時のアルミニウム脱酸剤添加量を3.0kg/溶鋼−Ton以下とすることを特徴とする請求項1または請求項2に記載のエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。In producing the Fe-Ni alloy cold rolled sheet material, before the vacuum decarburization step, the dissolved oxygen content of the molten alloy is adjusted to 100 ppm or more and 400 ppm or less with a deoxidizing agent such as carbon, silicon, or aluminum in advance. The Fe-Ni-based alloy for shadow masks having excellent etching piercing properties according to claim 1 or 2, wherein the addition amount of the aluminum deoxidizing agent at the time of deoxidation is 3.0 kg / molten steel-Ton or less. Manufacturing method of cold rolled sheet material. 前記Fe−Ni系合金冷延板用素材を製造するにあたり、アルミニウム脱酸剤添加後、取鍋底吹きガス量1.0〜2.5Nl/min・Tonで5分間以上の強攪拌と、続いて0.5〜1.5Nl/min・Ton以下で10分間以上弱攪拌とを実施し、非金属介在物の浮上分離促進を図ることを特徴とする請求項1または請求項2に記載のエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。In producing the Fe-Ni alloy cold rolled sheet material, after adding an aluminum deoxidizing agent, vigorously stirring for 5 minutes or more at a ladle bottom blowing gas amount of 1.0 to 2.5 Nl / min · Ton, followed by The etching perforation according to claim 1 or 2, wherein weak stirring is performed for 10 minutes or more at 0.5 to 1.5 Nl / min · Ton or less to promote floating separation of nonmetallic inclusions. Of producing a material for a cold rolled Fe-Ni alloy for a shadow mask having excellent heat resistance. 前記Fe−Ni系合金冷延板用素材を製造するにあたり、溶製後30分以上取鍋を静止させ、非金属介在物の浮上促進を図ることを特徴とする請求項1または請求項2に記載のエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。The method according to claim 1 or 2, wherein the ladle is allowed to stand still for at least 30 minutes after melting to promote the floating of nonmetallic inclusions in producing the Fe-Ni alloy cold rolled sheet material. A method for producing a material for a cold rolled Fe-Ni alloy for a shadow mask, which is excellent in the described etching piercing property. Ni:30〜50mass%を含有するシャドウマスク用Fe−Ni系合金冷延板用素材を製造するにあたり、Fe−Ni合金を溶製する際のスラグ組成をCaO:40〜60mass%、Al:10〜40mass%、MgO:10〜30mass%のCaO−Al−MgO系スラグに制御し、かつ、溶融合金中のSol.Alを0.005〜0.05mass%に調整し、スラグと溶融合金とを十分に攪拌して、素材中に含まれる酸化物系介在物組成をAl・MgOおよび/またはMgOに制御することを特徴とするエッチング穿孔性に優れたシャドウマスク用Fe−Ni系合金冷延板用素材の製造方法。Ni: In producing the Fe-Ni-based alloy cold-rolled sheet for the material for a shadow mask containing 30~50mass%, the slag composition at the time of melting the Fe-Ni alloy CaO: 40~60mass%, Al 2 O 3: 10~40mass%, MgO: controlled at 10~30Mass% of CaO-Al 2 O 3 -MgO slag, and, Sol in the molten alloy. The Al content is adjusted to 0.005 to 0.05 mass%, the slag and the molten alloy are sufficiently stirred, and the composition of the oxide-based inclusions contained in the material is controlled to Al 2 O 3 .MgO and / or MgO. A method for producing a material for a cold rolled Fe-Ni alloy for a shadow mask, which is excellent in etching piercing property.
JP2003081319A 2003-03-24 2003-03-24 Method for producing Fe-Ni alloy cold rolled sheet material for shadow mask with excellent etching perforation Expired - Fee Related JP4059118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081319A JP4059118B2 (en) 2003-03-24 2003-03-24 Method for producing Fe-Ni alloy cold rolled sheet material for shadow mask with excellent etching perforation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081319A JP4059118B2 (en) 2003-03-24 2003-03-24 Method for producing Fe-Ni alloy cold rolled sheet material for shadow mask with excellent etching perforation

Publications (2)

Publication Number Publication Date
JP2004285448A true JP2004285448A (en) 2004-10-14
JP4059118B2 JP4059118B2 (en) 2008-03-12

Family

ID=33294924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081319A Expired - Fee Related JP4059118B2 (en) 2003-03-24 2003-03-24 Method for producing Fe-Ni alloy cold rolled sheet material for shadow mask with excellent etching perforation

Country Status (1)

Country Link
JP (1) JP4059118B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736108B1 (en) * 2015-06-09 2017-05-17 주식회사 대화알로이테크 Casting manufacturing method of cermet and cermet manufactured thereby
CN115652180A (en) * 2022-12-02 2023-01-31 江苏维卡金属合金材料有限公司 Duplex smelting process for preparing high-deep-drawing cold-heading Fe-Ni42 alloy
CN115976395A (en) * 2022-12-28 2023-04-18 北冶功能材料(江苏)有限公司 Preparation method of invar alloy for metal mask

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719681B (en) * 2012-07-16 2013-11-13 沈阳金纳新材料股份有限公司 Decarbonization method of nickel or nickel alloy recovery smelting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736108B1 (en) * 2015-06-09 2017-05-17 주식회사 대화알로이테크 Casting manufacturing method of cermet and cermet manufactured thereby
CN115652180A (en) * 2022-12-02 2023-01-31 江苏维卡金属合金材料有限公司 Duplex smelting process for preparing high-deep-drawing cold-heading Fe-Ni42 alloy
CN115976395A (en) * 2022-12-28 2023-04-18 北冶功能材料(江苏)有限公司 Preparation method of invar alloy for metal mask

Also Published As

Publication number Publication date
JP4059118B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
WO2021172381A1 (en) Stainless steel for metal foils, satinless steel foil, method for roducing stainless steel for metal foils, and method for producing satinless steel foil
JP5428020B2 (en) Method for producing Fe-Ni alloy slab
TW202138587A (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
US5207844A (en) Method for manufacturing an Fe-Ni cold-rolled sheet excellent in cleanliness and etching pierceability
JP3247338B2 (en) High Ni alloy and its manufacturing method
JP4059118B2 (en) Method for producing Fe-Ni alloy cold rolled sheet material for shadow mask with excellent etching perforation
US5391241A (en) Fe-Ni alloy cold-rolled sheet excellent in cleanliness and etching pierceability
JP2590626B2 (en) Fe-Ni alloy cold rolled sheet excellent in cleanliness and etching piercing properties and method for producing the same
WO2023062855A1 (en) Nickel alloy having excellent surface properties and manufacturing method thereof
JP3499349B2 (en) Fe-Ni alloy cold rolled sheet excellent in surface properties and method for producing the same
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JP3790690B2 (en) Fe-Ni alloy plate for highly clean shadow mask and method for producing the same
JP3362399B2 (en) Fe-Ni alloy cold rolled sheet excellent in cleanliness and etching piercing properties and method for producing the same
JP3536715B2 (en) Method for producing Fe-Ni-based alloy cold rolled sheet material for shadow mask with excellent etching piercing property
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
JP3881626B2 (en) Refining method of Fe-Ni alloy
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
CN114134284B (en) Hot continuous rolling strip steel inclusion control method and hot continuous rolling strip steel
JP7369266B1 (en) Fe-Cr-Ni alloy with excellent surface properties and its manufacturing method
WO2023274222A1 (en) Calcium treatment method for molten steel
JP3594757B2 (en) Melting method for high purity high Ni molten steel
JP2000273525A (en) Production of high cleanliness steel
JP3840096B2 (en) Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
JP5680451B2 (en) High thermal expansion Fe-Ni-Cr alloy for bimetal and method for melting the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees