JP2004285440A - Hcd/ubms hybrid pvd method, and apparatus thereof - Google Patents

Hcd/ubms hybrid pvd method, and apparatus thereof Download PDF

Info

Publication number
JP2004285440A
JP2004285440A JP2003080560A JP2003080560A JP2004285440A JP 2004285440 A JP2004285440 A JP 2004285440A JP 2003080560 A JP2003080560 A JP 2003080560A JP 2003080560 A JP2003080560 A JP 2003080560A JP 2004285440 A JP2004285440 A JP 2004285440A
Authority
JP
Japan
Prior art keywords
cathode
ubms
work
film
hcd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003080560A
Other languages
Japanese (ja)
Inventor
Hiroyuki Miura
弘幸 三浦
Ryoetsu Shindo
亮悦 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Kogyo Co Ltd
Original Assignee
Daiwa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Kogyo Co Ltd filed Critical Daiwa Kogyo Co Ltd
Priority to JP2003080560A priority Critical patent/JP2004285440A/en
Publication of JP2004285440A publication Critical patent/JP2004285440A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To deposit a smooth PVD film having high coating property and adhesivity on three-dimensional mirror-finished works for a die, a machine structural component and the like without stain or damages caused by droplets or abnormal discharge. <P>SOLUTION: An HCD/UBMS hybrid PVD apparatus has an HCD cathode and a UBMS cathode 6 in a same vacuum chamber 1 in a three-dimensional manner as shown in Fig. so as to deposit a smooth film having excellent coating property on a three-dimensional work. In addition, the apparatus prevents abnormal discharge by applying positive electric potential in pulses at the frequency of 5-50 kHz to a conductive target of negative electric potential and the work, and also prevents stain of the film caused by scattered particles such as droplets or damages of the work. The apparatus arbitrarily controls the incident ion energy while preventing abnormal discharge. Ion mixing effect and ion anchoring effect can be positively utilized thereby, and a film having high adhesive strength can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、反応性雰囲気中で成膜するHCD法、UBMS法、スパッタ法およびPVD装置に関するものである。
【0002】
【従来の技術】
従来のPVD装置としては、反応性ガス中で、HCD法、スパッタ(含むUBMS)法、カソードアーク(マルチアーク)法等が知られているが、これらのプラズマ発生電源やバイアス印加電源は、主として直流電源が使用されている。
【0003】
【発明が解決しようとする課題】
PVD成膜法は、現在、HCD法、カソードアーク法(マルチアーク法)、スパッタ法(含UBMS法)が主に用いられている。しかし、カソードアーク法(マルチアーク法)はカソード上で真空アーク放電によりプラズマを発生するシステムであるため、プラズマ発生と同じに金属の溶融した液滴いわゆるドロップレット(マクロパーティクル=直径1〜3μm前後の金属粒)の発生が伴う。そのため、カソードアーク法(マルチアーク法)による成膜では、鏡面仕上げされたワークがドロップレットに汚損され、その防止は困難である。
【0004】
UBMS法を含めたスパッタリングにおいて、従来の直流ドライブ方式では、反応性雰囲気中での成膜時にターゲット表面に絶縁物や高抵抗物が堆積し、そこに電荷の集中が起こるため異常放電(アーキング)が発生し、アーキングによるドロップレット(金属液滴)や飛散粒子がワークに付着し、鏡面仕上げされたワーク等は致命的欠陥となる。
【0005】
また、耐久性をもった被膜を形成させるためには成膜プロセス上、Arガス中でワークに直流高圧(−500〜−1000V)を印加し、ワーク表面をスパッタクリーニング(ボンバードメント)する工程は不可欠である。しかし、その際ワーク形状やワークからのアウトガス又は、ワーク上の高抵抗物質を起点とした異常放電(アーキング)が発生し、ワークに致命的な損傷を与える場合がある。
【0006】
HCD法は、ドロップレット等の無い平滑な被膜を得られる成膜法であるが、成膜金属を水冷ハース中で溶融し、プラズマを発生するシステムであるため、そのハースは成膜室の底面にしか配置できない。そのためプラズマ発生面から外れた部分への被覆性が劣る。さらに、放電システム的に融点が2300℃以下の金属しか使用できない。
【0007】
本発明は、かかる課題を解決するためのPVD法とその装置開発を目的としたものである。すなわち、装置の真空成膜室底面にはHCDカソードを、側面には高密度プラズマの発生可能なUBMSカソードを配置し、さらにワークを自公転させることにより被覆性の格段な向上を図り、また、ワークおよびUBMSカソードは、負電位に正電位を5〜50KHzでパルス状に印加することより異常放電(アーキング)を発生させずにイオンエネルギーを制御する方式を採用した。このことにより3次元形状の鏡面仕上げされた金型等のワークに高速で均一、かつ高品位、耐久性に優れたセラミックス被膜の成膜が可能である。
【0008】
【課題を解決するための手段】
1. ドロップレットによるワーク汚損の解決手段
現在、PVD成膜法としては、カソードアーク法(マルチアーク法)、HCD法、スパッタ法(含UBMS法)が主に用いられている。カソードアーク法は、カソードの真空アーク放電で、プラズマを発生させるため、ドロップレットの発生を防止することは困難である。そこで、本発明のPVD装置は、ドロップレットが生じないHCD法とUBMS法を併用することによりワーク汚損を解決した。
【0009】
2. UBMSカソードの異常放電による被膜欠陥の解決手段
本発明のUBMSカソードスパッタ法は、反応ガス雰囲気中で、負電位の導電性ターゲットに正電位を5〜50KHzでパルス状に印加する。このことにより、カソードターゲット上に形成される絶縁物や高抵抗物質が誘電体として作用し、寄生コンデンサを形成し、電荷の集中・蓄積による異常放電に進行する前に、電荷の蓄積を正電位パルスで開放できるため、異常放電による被膜欠陥の発生を防止できる。なお、導電性ターゲットはTi、Cr、Al、Si、Zr、Hf、Mo、C、W、Nb又はこれらの合金とし、反応ガスは、N2、CH4、C2H2、O2、H2、He、Arのいずれか1つ又は2つ以上の混合ガスとしても良い。
【0010】
3. ワーク上での異常放電による損傷発生の解決手段
従来のPVD成膜におけるワークバイアスは、一般に直流負電位を印加する方式である。ボンバードメント(逆スパッタによるワーク表面のエッチング)あるいは、界面とのミキシングやアンカー効果による被膜の高い密着力を得るため、成膜初期に直流高圧(−400〜−1000V)を印加する。その際、ワーク形状効果やアウトガス又は、ワーク表面の高抵抗物質が寄生コンデンサを形成したりして、電荷の集中・蓄積による異常放電を発生し、ワークに致命的な損傷を与える場合がある。本発明は、負電位のワークに正電位を5〜50KHzでパルス状に印加することにより、上記課題を解決するものである。さらに異常放電が発生しないため、印加負電圧(イオン加速電圧)を従来手法より高くでき、高エネルギーイオンによるアンカー効果やミキシング作用を積極的に用い、200N以上の高い密着力を有する成膜が可能である。
【0011】
4. 3次元形状ワークに対する被覆性の解決手段
従来のHCD法は、ドロップレットのない高速成膜が可能な優れた成膜法である。しかし、成膜原料をホロカソード放電を用い、溶融し、蒸発物質を放電エネルギーでイオン化するシステムであるため、成膜原料を入れる水冷ハースの配置は真空成膜室底面に限定され、その結果、蒸発源(ハース)に正対した面に対する被覆性は優れるが、側面や面取部、段差部に対しての被覆性は劣る。本発明のハイブリットPVD装置は、固体導電性ターゲットから直接高密度プラズマの発生が可能なUBMSカソードを真空成膜室側面に、さらにHCDカソードを底面に配置し、負電位のワークおよびUBMSカソードに正電位を5〜50KHzでパルス状に印加し、ワークを自公転させることにより、上記課題を解決した装置である。
【0012】
5. 高融点成膜素材を用いた成膜の解決手段
従来のHCD法では、ホロカソード放電により水冷ハース中の成膜素材を溶融し、プラズマを発生させるシステムであるため、溶融可能な成膜素材は、Ti、Cr、Al、Si等の融点が2300℃以下の素材に限られていた。本発明のハイブリットPVD装置は、UBMSカソードを併用することにより、スパッタ作用により、C、W、のような融点が3000℃以上の素材も用いることが可能である。これらの単一組成、複合組成の成膜はもとより、両カソードの印加電力のコントロールにより、その組成比率も任意に調整可能である。なお、導電性ターゲットはTi、Cr、Al、B、Zr,Hf,Mo,Si、C、W、Nb又はこれらの合金とし、反応ガスは、N2、CH4、C2H2、H2、He、Arのいずれか1つ又は2つ以上の混合ガスとしても良い。
【0013】
【発明の実施の形態】
図1に、本発明のHCD・UBMSハイブリットPVD装置の概要を示す。
真空成膜室1を外部のクライオポンプ又は、ターボポンプ等の真空排気系2にバルブ3を介して接続し、真空成膜室1内の真空度調節を自在任意とするとともに、真空成膜室1内にワーク4(金型等)を自公転ワークホルダー5に取り付け、UBMSカソード6を真空成膜室1の側面に、HCDカソード7を真空成膜室1の底面に配置した。UBMSカソード6には、導電性ターゲットをクランプし、真空成膜室1内のターゲット19直近に、ガスボンベ等のガス供給源10よりスパッタガスをガス圧調節弁10aおよびガス導入管8を介して供給し、反応ガス9をガス圧調節弁9aを介して供給するように接続した。
【0014】
HCDカソード7には、カソード放電用Arガスをガス供給源11よりガス圧調節弁11aを介して供給するようにした。UBMSカソード6には、直流パルス電源12を接続し、負電位のUBMSカソード6に正電位を所定の周波数で、パルス状に印加できるようにした。また、HCDカソード7には、HCD電源17を接続し、負電位を印加するようにし、水冷ハース14には、HCD電源より正電位を印加し、水冷ハース中の蒸着原料金属とホロカソード放電ができるようにした。
【0015】
UBMSカソード6の背面に、非平衡磁場マグネトロンスパッタのためのマクネット18を取り付け、外周側をSmCo系強磁場、内周側をフェライト系弱磁場とし、アンバランスマグネトロンスパッタによる高密度プラズマを発生せるようにした。なお、UBMSカソード6は水冷とし、真空成膜室1は、シースヒータ16により、300℃までのベーキング処理をできるようにした。
【0016】
【実施例1】
初めに、真空成膜室1内のUBMSカソード6に導電性ターゲット19として、Ti製ターゲットをクランプした。次に、水冷ハース14にTiインゴットを入れ、自公転ワークホルダー5に洗浄済のワークを取り付けた。
続いて、真空成膜室1内を真空排気系2によりシースヒータで加熱しながら300℃、1.8×10−5Torrまで排気した後、真空成膜室1内のガス圧力が1.5×10−2Torrになるまで、Arガスをガス供給源11、ガス圧調節弁11aを介して導入した。
【0017】
次に自公転ワークホルダー5を介し、ワーク4に直流パルス電源13より、−3000Vを印加し、20分間Arボンバードを行い、ワーク4の表面汚れを除去した。その際、負電位のワーク4にパルス状に印加する正電位の印加時間は、5μsecとした。図2に、その時の波形モデルを示す。また、図3に負電位のワーク4に印加する正電位の周波数毎に異常放電の回数を測定した結果を示す。図3から明らかのように、周波数5KHzで、異常放電回数がほぼ0となり、周波数を5KHz以上にすると異常放電が発生しないことが判明した。
【0018】
【実施例2】
真空成膜室1内を2×10−3Torrの一定とし、ワーク4のバイアス電圧を成膜条件まで下げ、UBMSカソード6に導入管8を介してスパッタガス(Ar:N2=1:1)を導入し、出力を1KWの一定とした。この状態でUBMSカソード6に、パルス電源から周波数を変化させて、図2に示すパルス状に負電位に正電位を印加し、UBMSスパッタを行った。さらに、HCDカソード7よりホローカソード放電し、反応ガス調圧弁9aを介してN2ガスを導入しながらワーク4に窒化チタン(TiN)膜を形成した。なお、パルス状に印加する正電位の時間は、5μsecとした。その際のUBMSカソード6における異常放電回数をUBMSカソード6に印加する周波数毎に測定した結果を図4に示す。
図4から明らかのように、負電位に印加する正電位の周波数の増加に伴い,異常放電回数は減少し,周波数5KHz以上では、その回数は0となった。
【0019】
低圧力(10−2Torr前後)や反応性雰囲気中において、直流高電圧ボンバード(スパッタクリーニング)あるいは直流スパッタを行なう際、ワーク形状、ワークからのアウトガス、高抵抗物質の存在、高抵抗堆積物に起因する寄生コンデンサ形成による電荷の集中・蓄積からアーク放電による急激な電荷の放出と言う異常放電(アーキング)が発生する。その結果、ワークの損傷・汚損が生じることがある。しかし、本発明では、図3、4に示すように負電位に正電位をパルス状に印加するすることにより前記の電荷の集中・蓄積をパルス状(5μsec以下)に中和・開放することにより異常放電の発生を防止している。なお、異常放電は、ワーク形状、成膜装置、処理条件により変化するため、正電位のパルス幅、電圧などは、任意設定が可能で本実施例の条件に限定されない。
【0020】
また、UBMSカソードのターゲット金属は、Ti、Cr、Al、B、Zr、Hf、Mo、Si、W、Nb、C又は、これらの合金等で、さらにHCDハース投入物質は、Ti、Cr、Si,Al,B、Zr等で、反応ガスはN2、CH4、C2H2、O2、Ar、Heもしくはこれらの混合ガスとすることにより、セラミックス被膜は、TiN、CrN、TiAlN、TiSiN、AlCrN、c−BN等の窒化物系、TiCN、CrCN、TiAlCN、TiSiCN、AlCrCN等の炭窒化物系、TiC,CrC、SiC、DLC等の炭化物系まで、原料金属、反応ガスの組み合わせにより、耐摩耗性、耐食性、固体潤滑性等のトライボロジー特性に優れた被膜形成が可能である。
【0021】
図1では、UBMSカソード18に直流パルス電源から、負電位に一定の周波数で、正電位をパルス状に印加する電源の組み合わせとしたが、これに限定されるものではなく、13.56MHZの高周波パルス電源とすることにより、高密度パルス高周波プラズマによる成膜も可能である。この際、直流パルス電源13(バイアス側電源)には、ワークと電源の間にチョークコイル(L.P.F;ローパスフィルタ)を設け、直流電源の高周波からの保護を必要とする。
【0022】
【実施例3】
洗浄、乾燥済みのワーク4を真空成膜室1のワークホルダー5に取り付け、300℃、1.8×10−5Torrまでに脱ガス処理し、所定の条件にてArイオンボンバードを行った。その後、UBMSカソード6の電力を1KW、パルス正電位を5KHz、5μsec、HCDカソード7の放電条件を140A、25Vの一定とし、各々の成膜原料はTi、反応ガス9はN2、スパッタガス10は、N2とArの混合ガス(1:1)とし、ワーク4は自公転させ、ガス圧力2×10−3Torr、25分の条件で成膜を行なった。その際、HCDカソード7のみで成膜した場合と、HCDカソード7とUBMSカソード6を併用した場合のワーク4の側面部4bと正面部4aの膜厚測定結果を図5.図6に示す。
【0023】
HCDカソード7のみで成膜した場合、図5、図6に示すように、正面部4aの膜厚は2.6μmであるが、側面部は1.2μmと正面部4aの1/2以下であった。また、側面部の膜厚は、正面部に比較して1/2弱であり、側面部位、立ち上り部位、面取り部位を有する3次元形状の金型および部品の寿命に与える影響は大きいと考えられる。
【0024】
HCDカソード7とUBMSカソード6を併用し、前記条件にて成膜した場合、図5.図6から明らかのように、側面部4bの膜圧は2.7μmで、正面部4aとほぼ同様であった。このように本発明のHCD・UBMSハイブリッドPVD法(装置)は、優れた被覆性を有することが確認できた。また、得られた被膜の密着強度は、母材が超硬合金(V30)の場合200N、SKD11相当のダイス鋼の場合90N、平滑性は、21nm(Ra)と優れた値を示した。
【0025】
【発明の効果】
本発明のHCD・UBMSハイブリット法によるときは、反応性雰囲気中で、負電位のワークおよびUBMSカソードに正電位を一定の周波数でパルス状に印加しながら成膜を行うようにした。そのため、成膜プロセス中にワークおよびUBMSカソードでの電荷の集中・蓄積をパルス的に中和・開放し、異常放電(アーキング)を未然に防止することにより、ドロップレットや欠陥・損傷がなく、3次元的に均一な膜厚の被膜が高速に成膜できる効果がある。
【0026】
また、異常放電(アーキング)を積極的に防止できるため、逆スパッタによるワーク表面のクリーニング(ボンバードメント)の際の、印加電圧や初期成膜時の印加電圧を従来の−500〜−1000Vから−2000〜−4000Vまで上げることが可能である。そのため、入射するイオンエネルギーを500〜1000eVから2〜4倍の2000〜4000eVまで利用できることから、ワークと被膜界面でのイオンミキシング効果や、イオンアンカー効果を高め、従来のPVD被膜の密着強度70〜140Nレベルを大幅に上回る200N強の強固な被膜が得られる。
【0027】
さらに本発明のHCD・UBMSハイブリットPVD装置によるとき、3次元形状の精密・鏡面金型および機械部品等に、異常放電(アーキング)による汚損・損傷の無い、極めて平滑で被覆性に優れたセラミックス被膜を形成できるPVD装置を提供する効果がある。
【0028】
【図面の簡単な説明】
【図1】本発明のPVD法を実施するためのHCD・UBMSハイブリットPVD装置の概略図
【図2】図1の装置のUBMSカソードおよびワーク(金型、機械部品)に印加される電位のモデル図
【図3】本発明PVD法の実施例1におけるワークの逆スパッタによるクリーニング(Arイオンボンバード)時の周波数と異常放電回数の関係
【図4】本発明PVD法の実施例2におけるUBMSカソードによるスパッタ成膜時の周波数と異常放電回数の関係
【図5】本発明PVD法の実施例3における成膜条件とワーク側面部の膜厚の関係
【図6】本発明PVD法の実施例3における成膜条件とワーク正面部の膜厚の関係
【0029】
【符号の説明】
1. 真空成膜室
2. 真空排気系
3. 真空排気調圧弁
4. ワーク(金型、機械部品)
5. 自公転式ワークホルダー
6. UBMSカソード(スパッタ源)
7. HCDカソード
8. UBMSカソード放電ガス導入管
9. 反応ガスボンベ 9a反応ガス調圧弁
10.UBMSカソード放電用(Ar+N2)混合ガス
10a.UBMSカソード放電用(Ar+N2)混合ガス調圧弁
11.HCDカソード用およびボンバード用Arガス
11a.HCDカソード用およびボンバード用Arガス調圧弁
12.UBMSカソード放電用直流パルス電源
13.ワークボンバード、バイアス用直流パルス電源
14.HCDカソード用水冷ハース(蒸発プラズマ源)
15.シャッター
16.真空成膜室加熱用シースヒータ
17.HCD放電用直流電源
18.非平衡磁場マグネット
19.UBMSスパッタ用導電性ターゲット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an HCD method, a UBMS method, a sputtering method, and a PVD apparatus for forming a film in a reactive atmosphere.
[0002]
[Prior art]
As a conventional PVD apparatus, an HCD method, a sputtering (including UBMS) method, a cathode arc (multi-arc) method, and the like in a reactive gas are known. DC power supply is used.
[0003]
[Problems to be solved by the invention]
As the PVD film forming method, HCD method, cathode arc method (multi-arc method), and sputtering method (including UBMS method) are mainly used at present. However, the cathode arc method (multi-arc method) is a system in which plasma is generated by vacuum arc discharge on the cathode, and therefore, in the same manner as the plasma generation, molten metal droplets, so-called droplets (macro particles = about 1-3 μm in diameter) Metal particles). Therefore, in the film formation by the cathode arc method (multi-arc method), the mirror-finished work is contaminated by the droplet, and it is difficult to prevent the work.
[0004]
In sputtering including the UBMS method, in the conventional DC drive method, an insulator or a high-resistance substance is deposited on a target surface during film formation in a reactive atmosphere, and charges are concentrated on the target surface, resulting in abnormal discharge (arcing). Is generated, droplets (metal droplets) and scattered particles due to arcing adhere to the work, and a mirror-finished work or the like becomes a fatal defect.
[0005]
Further, in order to form a film having durability, a step of applying a DC high voltage (−500 to −1000 V) to a work in an Ar gas and performing sputter cleaning (bombardment) on the work surface in the Ar gas in the film forming process is performed. It is essential. However, at that time, outgassing from the work or the work, or abnormal discharge (arcing) starting from a high-resistance substance on the work occurs, which may cause fatal damage to the work.
[0006]
The HCD method is a film forming method capable of obtaining a smooth film without droplets and the like. However, since the film forming metal is melted in a water-cooled hearth to generate plasma, the hearth is formed on the bottom of the film forming chamber. Can only be placed in For this reason, the coatability on the portion deviating from the plasma generation surface is poor. Further, only metals having a melting point of 2300 ° C. or less can be used in a discharge system.
[0007]
An object of the present invention is to develop a PVD method and an apparatus for solving the problem. That is, an HCD cathode is provided on the bottom surface of the vacuum deposition chamber of the apparatus, and a UBMS cathode capable of generating high-density plasma is provided on the side surface. For the work and the UBMS cathode, a method of controlling ion energy without generating abnormal discharge (arcing) by applying a positive potential as a negative potential in a pulse form at 5 to 50 KHz was adopted. As a result, it is possible to form a ceramic film with high speed, uniformity, high quality, and excellent durability on a three-dimensionally shaped workpiece such as a mirror-finished mold.
[0008]
[Means for Solving the Problems]
1. Solution to Workpiece Contamination by Droplets At present, as a PVD film forming method, a cathode arc method (multi-arc method), an HCD method, and a sputtering method (including a UBMS method) are mainly used. In the cathodic arc method, plasma is generated by vacuum arc discharge of the cathode, so that it is difficult to prevent the generation of droplets. Therefore, the PVD apparatus of the present invention solves the contamination of the work by using both the HCD method and the UBMS method that do not generate droplets.
[0009]
2. Means for Solving Coating Defects Due to Abnormal Discharge of UBMS Cathode In the UBMS cathode sputtering method of the present invention, a positive potential is pulsed at 5 to 50 KHz to a negative potential conductive target in a reaction gas atmosphere. This allows the insulator or high-resistance material formed on the cathode target to act as a dielectric, form a parasitic capacitor, and charge accumulation to a positive potential before proceeding to abnormal discharge due to concentration and accumulation of charge. Since it can be opened by a pulse, it is possible to prevent the occurrence of film defects due to abnormal discharge. The conductive target is Ti, Cr, Al, Si, Zr, Hf, Mo, C, W, Nb or an alloy thereof, and the reaction gas is N2, CH4, C2H2, O2, H2, He, or Ar. Alternatively, one or a mixture of two or more gases may be used.
[0010]
3. Means for Solving Damage Caused by Abnormal Discharge on Work The work bias in the conventional PVD film formation is generally a method of applying a DC negative potential. In order to obtain high adhesion of the coating by bombardment (etching of the work surface by reverse sputtering) or mixing with the interface or an anchor effect, a DC high voltage (-400 to -1000 V) is applied at the initial stage of film formation. At that time, the workpiece shape effect, outgassing, or a high-resistance substance on the surface of the workpiece may form a parasitic capacitor, causing an abnormal discharge due to concentration and accumulation of electric charges, causing fatal damage to the workpiece. The present invention solves the above-mentioned problem by applying a positive potential to a work having a negative potential in a pulse form at 5 to 50 KHz. Furthermore, since abnormal discharge does not occur, the applied negative voltage (ion acceleration voltage) can be higher than that of the conventional method, and the film can be formed with a high adhesion force of 200 N or more by positively using the anchor effect and mixing action by high energy ions. It is.
[0011]
4. Means for Solving Coverability of Three-Dimensional Workpiece The conventional HCD method is an excellent film forming method capable of high-speed film formation without droplets. However, since the system uses a holo-cathode discharge to melt the film-forming material and ionize the evaporating substance with the discharge energy, the arrangement of the water-cooled hearth for the film-forming material is limited to the bottom of the vacuum film-forming chamber. The coverage on the surface directly facing the source (hearth) is excellent, but the coverage on the side surfaces, chamfered portions, and step portions is poor. In the hybrid PVD apparatus of the present invention, a UBMS cathode capable of generating high-density plasma directly from a solid conductive target is disposed on the side of a vacuum film forming chamber, and an HCD cathode is disposed on a bottom. This is an apparatus that solves the above-described problem by applying a potential in the form of a pulse at 5 to 50 KHz and revolving the work on its own axis.
[0012]
5. Solution method of film formation using high melting point film formation method In the conventional HCD method, a film formation material in a water-cooled hearth is melted by holocathode discharge to generate plasma. Materials such as Ti, Cr, Al, and Si are limited to materials having a melting point of 2300 ° C. or less. By using the UBMS cathode together with the hybrid PVD apparatus of the present invention, it is possible to use a material having a melting point of 3000 ° C. or more, such as C or W, by a sputtering action. The composition ratio can be arbitrarily adjusted by controlling the electric power applied to both cathodes, as well as forming the single composition and the composite composition. The conductive target is Ti, Cr, Al, B, Zr, Hf, Mo, Si, C, W, Nb, or an alloy thereof, and the reaction gas is N2, CH4, C2H2, H2, He, or Ar. Alternatively, one or a mixture of two or more gases may be used.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an outline of an HCD / UBMS hybrid PVD apparatus of the present invention.
The vacuum film forming chamber 1 is connected to an external vacuum evacuation system 2 such as a cryopump or a turbo pump via a valve 3 so that the degree of vacuum in the vacuum film forming chamber 1 can be freely adjusted. A work 4 (a mold or the like) was mounted on a rotation-revolving work holder 5 in the inside 1, and a UBMS cathode 6 was arranged on a side surface of the vacuum film formation chamber 1, and an HCD cathode 7 was arranged on a bottom surface of the vacuum film formation chamber 1. A conductive target is clamped to the UBMS cathode 6, and a sputtering gas is supplied from a gas supply source 10 such as a gas cylinder via a gas pressure control valve 10 a and a gas introduction pipe 8 to a position near the target 19 in the vacuum film formation chamber 1. Then, the reaction gas 9 was connected so as to be supplied via a gas pressure control valve 9a.
[0014]
Argon gas for cathode discharge was supplied to the HCD cathode 7 from a gas supply source 11 via a gas pressure control valve 11a. A DC pulse power supply 12 is connected to the UBMS cathode 6, so that a positive potential can be applied to the negative potential UBMS cathode 6 in a pulsed manner at a predetermined frequency. An HCD power supply 17 is connected to the HCD cathode 7 so that a negative potential is applied. A positive potential is applied to the water-cooled hearth 14 from the HCD power supply, so that the vapor source metal in the water-cooled hearth and the hollow cathode can be discharged. I did it.
[0015]
A magnet 18 for non-equilibrium magnetic field magnetron sputtering is attached to the back of the UBMS cathode 6, the outer peripheral side is a strong SmCo magnetic field, the inner peripheral side is a ferrite weak magnetic field, and high-density plasma is generated by unbalanced magnetron sputtering. I did it. The UBMS cathode 6 was water-cooled, and the vacuum deposition chamber 1 was baked up to 300 ° C. by the sheath heater 16.
[0016]
Embodiment 1
First, a Ti target as a conductive target 19 was clamped to the UBMS cathode 6 in the vacuum film forming chamber 1. Next, the Ti ingot was put into the water-cooled hearth 14, and the cleaned work was attached to the rotation and revolution work holder 5.
Subsequently, the inside of the vacuum film formation chamber 1 was evacuated to 300 ° C. and 1.8 × 10 −5 Torr while being heated by a vacuum heater 2 using a sheath heater. Until -2 Torr, Ar gas was introduced through the gas supply source 11 and the gas pressure control valve 11a.
[0017]
Next, -3000 V was applied from the DC pulse power supply 13 to the work 4 via the rotation and revolution work holder 5 and Ar bombardment was performed for 20 minutes to remove surface dirt on the work 4. At this time, the application time of the positive potential applied in a pulse shape to the negative potential work 4 was set to 5 μsec. FIG. 2 shows a waveform model at that time. FIG. 3 shows the result of measuring the number of abnormal discharges for each frequency of the positive potential applied to the work 4 having the negative potential. As is clear from FIG. 3, it was found that the abnormal discharge frequency was almost 0 at a frequency of 5 KHz, and that no abnormal discharge occurred when the frequency was 5 KHz or more.
[0018]
Embodiment 2
The inside of the vacuum film forming chamber 1 is kept constant at 2 × 10 −3 Torr, the bias voltage of the work 4 is lowered to the film forming condition, and the sputtering gas (Ar: N 2 = 1: 1) is supplied to the UBMS cathode 6 through the introduction pipe 8. And the output was kept constant at 1 KW. In this state, the UBMS cathode 6 was subjected to UBMS sputtering by changing the frequency from a pulse power source and applying a positive potential to a negative potential in a pulsed manner as shown in FIG. Further, hollow cathode discharge was performed from the HCD cathode 7, and a titanium nitride (TiN) film was formed on the work 4 while introducing N2 gas through the reaction gas pressure regulating valve 9a. The time of the positive potential applied in a pulsed manner was 5 μsec. FIG. 4 shows the result of measuring the number of abnormal discharges in the UBMS cathode 6 at each frequency applied to the UBMS cathode 6 at that time.
As is apparent from FIG. 4, the number of abnormal discharges decreased with an increase in the frequency of the positive potential applied to the negative potential, and became zero at a frequency of 5 KHz or more.
[0019]
When performing DC high-voltage bombardment (sputter cleaning) or DC sputtering in a low pressure (around 10-2 Torr) or reactive atmosphere, it is caused by the workpiece shape, outgas from the workpiece, the presence of a high-resistance substance, and a high-resistance deposit. Abnormal discharge (arcing) called rapid discharge of electric charge due to arc discharge occurs from concentration and accumulation of electric charge due to formation of a parasitic capacitor. As a result, the work may be damaged or stained. However, in the present invention, as shown in FIGS. 3 and 4, by applying a positive potential to a negative potential in a pulse form, the concentration and accumulation of the charges are neutralized and released in a pulse form (5 μsec or less). Abnormal discharge is prevented. Since the abnormal discharge changes depending on the shape of the workpiece, the film forming apparatus, and the processing conditions, the pulse width and voltage of the positive potential can be arbitrarily set, and are not limited to the conditions of the present embodiment.
[0020]
The target metal of the UBMS cathode is Ti, Cr, Al, B, Zr, Hf, Mo, Si, W, Nb, C or an alloy thereof, and the HCD hearth input material is Ti, Cr, Si. , Al, B, Zr, etc., and the reaction gas is N2, CH4, C2H2, O2, Ar, He or a mixed gas thereof, and the ceramic film is made of TiN, CrN, TiAlN, TiSiN, AlCrN, c-BN. Abrasion resistance, corrosion resistance, etc., depending on the combination of raw material metals and reaction gas, from nitrides such as TiCN, CrCN, TiAlCN, TiSiCN, carbonitrides such as AlCrCN, and carbides such as TiC, CrC, SiC and DLC. A film having excellent tribological properties such as solid lubricity can be formed.
[0021]
In FIG. 1, a combination of a DC pulse power supply to the UBMS cathode 18 and a power supply for applying a positive potential in a pulsed manner to a negative potential at a constant frequency is used. However, the present invention is not limited to this, and a high frequency of 13.56 MHZ is used. By using a pulse power supply, film formation by high-density pulse high-frequency plasma is also possible. At this time, a choke coil (LPF; low-pass filter) is provided between the work and the power supply in the DC pulse power supply 13 (bias-side power supply), and the DC power supply needs to be protected from high frequencies.
[0022]
Embodiment 3
The washed and dried work 4 was mounted on the work holder 5 in the vacuum film forming chamber 1, degassed at 300 ° C. and 1.8 × 10 −5 Torr, and subjected to Ar ion bombardment under predetermined conditions. Thereafter, the power of the UBMS cathode 6 was 1 KW, the pulse positive potential was 5 KHz, 5 μsec, the discharge conditions of the HCD cathode 7 were constant at 140 A and 25 V, the respective film forming materials were Ti, the reaction gas 9 was N 2, and the sputtering gas 10 was , A mixed gas of N2 and Ar (1: 1), the work 4 was revolved around itself, and a film was formed under the conditions of a gas pressure of 2 × 10 −3 Torr and 25 minutes. FIG. 5 shows the results of measuring the film thickness of the side surface 4b and the front surface 4a of the work 4 when the film is formed only with the HCD cathode 7 and when the HCD cathode 7 and the UBMS cathode 6 are used together. As shown in FIG.
[0023]
When the film is formed only with the HCD cathode 7, as shown in FIGS. 5 and 6, the thickness of the front part 4a is 2.6 μm, but the side part is 1.2 μm, which is less than half of the front part 4a. there were. In addition, the thickness of the side portion is less than half of that of the front portion, and it is considered that the influence on the life of the three-dimensional mold and the component having the side portion, the rising portion, and the chamfered portion is large. .
[0024]
When the HCD cathode 7 and the UBMS cathode 6 are used in combination and a film is formed under the above conditions, FIG. As is clear from FIG. 6, the film pressure of the side portion 4b was 2.7 μm, which was almost the same as that of the front portion 4a. Thus, it was confirmed that the HCD / UBMS hybrid PVD method (apparatus) of the present invention had excellent covering properties. The adhesion strength of the obtained coating film was 200 N when the base material was a cemented carbide (V30), 90 N when the die steel was equivalent to SKD11, and the smoothness was 21 nm (Ra), which was an excellent value.
[0025]
【The invention's effect】
When the HCD / UBMS hybrid method of the present invention is used, film formation is performed in a reactive atmosphere while a positive potential is applied in a pulsed manner at a constant frequency to a negative potential workpiece and a UBMS cathode. Therefore, during the film formation process, the concentration and accumulation of electric charges at the work and the UBMS cathode are neutralized and released in a pulsed manner, and abnormal discharge (arcing) is prevented beforehand. There is an effect that a film having a three-dimensionally uniform film thickness can be formed at a high speed.
[0026]
In addition, since abnormal discharge (arcing) can be positively prevented, the applied voltage at the time of cleaning (bombardment) of the work surface by reverse sputtering and the applied voltage at the time of initial film formation are reduced from the conventional -500 to -1000 V to- It is possible to increase to 2000-4000V. Therefore, since the incident ion energy can be used from 500 to 1000 eV to 2000 to 4000 eV, which is 2 to 4 times, the ion mixing effect and the ion anchoring effect at the interface between the work and the coating are enhanced, and the adhesion strength of the conventional PVD coating is 70 to A strong film of 200N or more, which greatly exceeds the 140N level, can be obtained.
[0027]
Furthermore, according to the HCD / UBMS hybrid PVD apparatus of the present invention, a very smooth and excellently coatable ceramic coating on three-dimensional precision / mirror molds and machine parts without contamination / damage due to abnormal discharge (arcing). There is an effect of providing a PVD device capable of forming the above.
[0028]
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an HCD / UBMS hybrid PVD apparatus for performing the PVD method of the present invention. FIG. 2 is a model of a potential applied to a UBMS cathode and a work (die, mechanical part) of the apparatus of FIG. FIG. 3 shows the relationship between the frequency and the number of abnormal discharges when cleaning the workpiece by reverse sputtering (Ar ion bombardment) in Example 1 of the PVD method of the present invention. FIG. 4 shows the UBMS cathode in Example 2 of the PVD method of the present invention. Relationship between frequency during sputter film formation and number of abnormal discharges. FIG. 5 Relationship between film formation conditions and film thickness on the side surface of the work in Example 3 of the present invention PVD method. FIG. Relationship between film forming conditions and film thickness at front of work
[Explanation of symbols]
1. 1. Vacuum deposition chamber 2. Vacuum exhaust system 3. Evacuation pressure regulating valve Work (mold, machine parts)
5. Self-revolving work holder 6. UBMS cathode (sputter source)
7. HCD cathode8. UBMS cathode discharge gas inlet tube 9. 9. Reaction gas cylinder 9a Reaction gas pressure regulating valve (Ar + N2) mixed gas for UBMS cathode discharge 10a. 10. UBMS cathode discharge (Ar + N2) mixed gas pressure regulating valve Ar gas for HCD cathode and bombardment 11a. 11. Ar gas pressure regulating valve for HCD cathode and bombardment 12. DC pulse power supply for UBMS cathode discharge 13. DC pulse power supply for work bombardment and bias Water-cooled hearth for HCD cathode (evaporation plasma source)
15. Shutter 16. Sheath heater for heating a vacuum film forming chamber 17. DC power supply for HCD discharge 18. Non-equilibrium magnetic field magnet 19. Conductive target for UBMS sputtering

Claims (4)

反応性雰囲気中で、PVD(Physical Vapor Deposition)にて成膜する際、同一真空成膜室内にHCD(Hollow Cathode Discharge)カソードおよびUBMS(Unbalaced Magnetron Sputter)カソードを有する成膜方法。When forming a film by PVD (Physical Vapor Deposition) in a reactive atmosphere, a film forming method including an HCD (Hollow Cathode Discharge) cathode and a UBMS (Unbalanced Magnetron Sputter) cathode in the same vacuum film forming chamber. 前記蒸着物質は、Ti、Cr、Al、B、Si、Zr、Hf、Mo、C、W、Nb又はこれらの合金であり、また反応ガスは、N2、NH3、H2、O2、CH4、C2H2およびAr、Heのいずれか1つ又は2つ以上の混合ガスであることを特徴とする請求事項1項に記載する方法。The deposition material is Ti, Cr, Al, B, Si, Zr, Hf, Mo, C, W, Nb or an alloy thereof, and the reaction gas is N2, NH3, H2, O2, CH4, C2H2 and 2. The method according to claim 1, wherein the gas is a gas mixture of one or more of Ar and He. 真空成膜室にワークを取り付け、反応性雰囲気中でHCDカソードおよびUBMSカソードにより、ワーク上に被膜を形成する装置において、UBMSカソードおよびワークに対し、負電位に正電位を周波数5〜50KHzでパルス状に印加する電源を接続したことを特長とするPVD装置。A work is mounted in a vacuum film forming chamber, and in a device for forming a film on the work with an HCD cathode and a UBMS cathode in a reactive atmosphere, a positive potential is pulsed to the UBMS cathode and the work at a frequency of 5 to 50 KHz with a negative potential. A PVD apparatus characterized in that a power supply to be applied in a shape is connected. 真空成膜にワークを取り付け、反応性雰囲気中でHCDカソードおよびUBMSカソードによりワーク上に被膜を形成する装置において、UBMSカソードに13.56MHzの高周波又は、1〜5KHzの高周波パルス電源を接続したことを特長とするPVD装置。In a device that attaches a work to a vacuum film formation and forms a film on the work with an HCD cathode and a UBMS cathode in a reactive atmosphere, a high frequency pulse power of 13.56 MHz or a high frequency pulse power of 1 to 5 KHz is connected to the UBMS cathode. PVD apparatus characterized by the following.
JP2003080560A 2003-03-24 2003-03-24 Hcd/ubms hybrid pvd method, and apparatus thereof Pending JP2004285440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080560A JP2004285440A (en) 2003-03-24 2003-03-24 Hcd/ubms hybrid pvd method, and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080560A JP2004285440A (en) 2003-03-24 2003-03-24 Hcd/ubms hybrid pvd method, and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2004285440A true JP2004285440A (en) 2004-10-14

Family

ID=33294382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080560A Pending JP2004285440A (en) 2003-03-24 2003-03-24 Hcd/ubms hybrid pvd method, and apparatus thereof

Country Status (1)

Country Link
JP (1) JP2004285440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009310A (en) * 2005-07-04 2007-01-18 Kobe Steel Ltd Method for forming amorphous carbon film
US20090068450A1 (en) * 2005-07-15 2009-03-12 Wolf-Dieter Muenz Method and Apparatus for Multi-Cathode PVD Coating and Substrate with PVD Coating
CZ304905B6 (en) * 2009-11-23 2015-01-14 Shm, S.R.O. Method of depositing PVD layers, using cylindrical rotating cathode and apparatus for making the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009310A (en) * 2005-07-04 2007-01-18 Kobe Steel Ltd Method for forming amorphous carbon film
JP4607687B2 (en) * 2005-07-04 2011-01-05 株式会社神戸製鋼所 Method for forming amorphous carbon film
US20090068450A1 (en) * 2005-07-15 2009-03-12 Wolf-Dieter Muenz Method and Apparatus for Multi-Cathode PVD Coating and Substrate with PVD Coating
CZ304905B6 (en) * 2009-11-23 2015-01-14 Shm, S.R.O. Method of depositing PVD layers, using cylindrical rotating cathode and apparatus for making the same

Similar Documents

Publication Publication Date Title
US6113752A (en) Method and device for coating substrate
US20070071993A1 (en) Carbon film-coated article and method of producing the same
JP2010174310A (en) Method of producing diamond-like carbon membrane
JP6245576B2 (en) Drill with covering
US20050136656A1 (en) Process for depositing composite coating on a surface
CN107338409B (en) Process method for preparing nitrogen-based hard coating by adjustable magnetic field arc ion plating
JP4449187B2 (en) Thin film formation method
JP6935897B2 (en) Reaction film forming apparatus and forming method by magnetron sputtering method
JP6243796B2 (en) Method for forming diamond-like carbon film
CN111560582A (en) Method for manufacturing superhard high-entropy alloy nitride coating on alloy cutter
JP2004292934A (en) Ion nitriding apparatus and deposition system using the same
JP2003268571A (en) Composite hard film, its manufacturing method, and film deposition apparatus
Eichenhofer et al. Industrial Use of HiPIMS up to Now and a Glance into the Future, A Review by a Manufacturer Introduction of the hiP-V hiPlus Technology
JP2004285440A (en) Hcd/ubms hybrid pvd method, and apparatus thereof
CN107675136A (en) A kind of method of workpiece surface PVD plated films
KR100920725B1 (en) Thin film deposition apparatus, thin film deposition process and coated tool thereof
US20050233089A1 (en) Sputter method or device for the production of natural voltage optimized coatings
CN114574829A (en) Micro-deep hole internal coating process and coating device
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JP2010229552A (en) Method for manufacturing amorphous carbon-coated member
KR20120129445A (en) The method of high wear and oxidation resistant multi-layer coating material process.
KR200436092Y1 (en) A vacuum evaporation coating apparatus for ion nitriding treatment
KR20110117528A (en) Method for coating aluninum on steel
JP6832572B2 (en) Method of forming a decorative film by the magnetron sputtering method
JPH0674497B2 (en) Ceramic hard film coating method