JP2004284889A - Hydrothermal synthetic method of potassium niobate crystal or crystal thin film - Google Patents

Hydrothermal synthetic method of potassium niobate crystal or crystal thin film Download PDF

Info

Publication number
JP2004284889A
JP2004284889A JP2003079746A JP2003079746A JP2004284889A JP 2004284889 A JP2004284889 A JP 2004284889A JP 2003079746 A JP2003079746 A JP 2003079746A JP 2003079746 A JP2003079746 A JP 2003079746A JP 2004284889 A JP2004284889 A JP 2004284889A
Authority
JP
Japan
Prior art keywords
crystal
potassium niobate
nbo
knbo
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079746A
Other languages
Japanese (ja)
Inventor
Ryuichi Komatsu
隆一 小松
Kensuke Adachi
謙祐 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003079746A priority Critical patent/JP2004284889A/en
Publication of JP2004284889A publication Critical patent/JP2004284889A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To grow a single domain large size single crystal and a single crystal film, to manufacture an engineered domain, and to provide a hydrothermal synthetic method of a potassium niobate single crystal and a single crystal film, which can be used as a functional material for a piezoelectric element, an optical element or the like. <P>SOLUTION: The hydrothermal synthetic method of the potassium niobate crystal comprises adding K<SB>2</SB>NbO<SB>3</SB>F into deionized water, then keeping the resulting solution at a high temperature and high pressure so as to crystallize KNbO<SB>3</SB>from the K<SB>2</SB>NbO<SB>3</SB>F solution, and forming and growing KNbO<SB>3</SB>. When the crystal is grown in a temperature range of 225-435°C, an orthorhombic crystal having engineered domains in the crystal is obtained, and a single domain crystal is synthesized at a growing temperature of 100-225°C. Further, in a system that a single crystal substrate or the like is immersed in deionized water, the potassium niobate crystal grows as a single crystal thin film on the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、圧電素子,光学素子等に使用されるニオブ酸カリウム(KNbO)の結晶又は結晶薄膜を水熱合成で製造する方法に関する。
【0002】
【従来の技術】
ニオブ酸カリウム(KNbO)は、強誘電特性を呈する物質であり、各種物性値,結晶成長,結晶構造等が研究報告されている。また、ニオブ酸カリウム結晶が非線形光学定数をもつことから、青色レーザ用の波長変換光学結晶として注目されており、ニオブ酸カリウム結晶を組み込んだ青色域固体レーザも市販されている。最近では、ニオブ酸カリウム結晶が弾性表面波,バルク波で大きな電気機械結合係数を示すことが報告され、次世代圧電材料として期待されている。
【0003】
従来法では融液からの結晶成長でニオブ酸カリウム結晶を育成しているが、結晶育成時に結晶欠陥がもち込まれ易い。欠陥導入原因の一つに、ニオブ酸カリウムが不一致溶解(incongruent melting)を示すことが挙げられる。育成中の結晶組成と融液組成が異なり、結晶の成長に伴って融液組成が変化する不一致溶解がある条件下では、均質な結晶を効率よく育成することは難しい。結晶成長時に立方晶であるKNbOが435℃で正方晶に、225℃で斜方晶に相転移することも欠陥導入原因の一つである。立方晶→正方晶→斜方晶の相転移があるため、単結晶を育成できても冷却中に多種類のドメインが生じ、その後の単分域化処理が困難になり、単分域処理中にクラックが発生しがちである。
【0004】
クラックは育成結晶の径が大きくなるほど発生しやすく、育成径が大きくなるとクラックのない単分域処理はほとんどできなくなる。そのため、冷却時に二つの相転移点を通過することになる融液からの結晶成長及び後続の単分域化処理では、圧電素子として有用な大口径の単分域斜方晶ニオブ酸カリウム結晶を製造しがたい。また、結晶欠陥の導入が避けられないため、最大でも直径20〜30mmが結晶育成の限界である。
【0005】
しかし、光学用途を始めとし、弾性表面波,バルク波等を利用した圧電用途での使用を考慮すると、他の圧電結晶と同様に50.8mm(2インチ)以上の大口径単結晶を育成し、その後の分極処理で単分域単結晶を作製すること、或いは径50.8mm(2インチ)以上の面積をもつ単分域単結晶膜の製造が必要となる。
また、結晶中に細かいドメイン(エンジニアード・ドメイン)を数多く出現させると、単分域の結晶よりも圧電特性が向上する。融液成長結晶を用いてエンジニアード・ドメインの作製が検討されているが、冷却中の結晶に熱歪みが存在する融液成長結晶ではエンジニアード・ドメインの作り込みが難しく、実用可能な段階に至っていない。
【0006】
【発明が解決しようとする課題】
水熱合成は、結晶成長温度を相転移温度より低く設定できるので、不一致溶解や結晶育成中の相転移等に影響されず、単分域大口径単結晶,単結晶膜の育成やエンジニアード・ドメインの作製に適している。たとえば、KOH,Nbを180℃,0.5MPa程度の条件下で水熱合成させると、1〜24時間でKNbOが生成されることが報告されている(日本セラミックス協会年会講演予稿集 (2002) 第103頁,日本セラミックス協会秋季シンポジウム講演予稿集第14巻 (2001) 第205頁)。
【0007】
報告された方法を発明者等が追試したところ、3日間の水熱合成で10μmのKNbOを育成できた。しかし、結晶をより大きく成長させるため水熱合成時間を3週間程度に長くすると、育成したKNbOが消失した。KNbOの消失は、生成したKNbOが準安定相であり、水熱合成時間が長くなるに従って平衡に近づき溶解した結果と考えられる。KNbOが準安定相になることは、前掲講演予稿集でKNbOのKを置換してHが結晶中に入ることで相関係が変わると報告されていることからも推定される。
【0008】
他方、本発明者等は、KNbOFの水溶液を用いてニオブ酸カリウム結晶を成長させる方法を報告した(無機マテリアル学会学術講演会講演要旨集第103巻 (2001) 第74〜75頁,日本学術振興会弾性波素子技術第150委員会第71回研究会資料 (2001) 13.1.23〜24)。報告した方法では、KNbOFを純水にいれて攪拌した後、水分を蒸発させ、沈殿物を濾別することによりニオブ酸カリウム結晶を得ている。しかし、水溶液からの育成では、長時間成長させても結晶が大きくならず、満足のいく結晶品質も得られなかった。
【0009】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、KNbOFを用いて水熱合成させることにより、単分域大口径単結晶,単結晶膜の育成やエンジニアード・ドメインの作製を可能とし、圧電素子,光学素子等の機能材料として使用されるニオブ酸カリウム単結晶及び単結晶薄膜を提供することを目的とする。
【0010】
本発明の水熱合成は、その目的を達成するため、純水にKNbOF粉末を添加した溶液を加圧雰囲気下で100〜435℃の温度域に保持し、KNbOFを溶かし込んだ溶液からKNbOを晶出させることを特徴とする。溶融石英等のガラス板やニオブ酸カリウムの結晶基板を純水に予め浸漬しておくと、水熱合成で生成したKNbOが基板上に単結晶薄膜として晶出する。
【0011】
【作用及び実施の形態】
一般的に、溶媒に対する溶質の溶解度が増加するほど結晶成長速度が速くなり、育成結晶径も大きくなる。溶質の溶解度は温度上昇に伴って増加するが、水溶液では最高温度100℃の制約がある。これに対し、水熱合成では育成温度を更に高く設定できるため、結晶成長速度の上昇,育成結晶径の増大に有効な溶解度の向上を期待できる。しかも、ニオブ酸カリウム結晶が相転移温度以下で水熱成長するため、成長温度の制御が可能で正方晶又は斜方晶の強誘電体単結晶が直接合成される。相転移を経ずに低温相の斜方晶結晶を直接合成できることは、単分域結晶の作製が可能なことを意味する。
【0012】
水熱合成は、エンジニアード・ドメインを作り込む上でも有利である。すなわち、水熱成長している結晶では、全体の温度勾配が小さいため熱歪みも僅かである。そこで、結晶育成温度の制御によって正方晶を先ず生成させた後、結晶を冷却すると低温相の核生成密度が大きくなる。その結果、微細なエンジニアード・ドメインがニオブ酸カリウム結晶に作り込まれる。この点、水溶液中の結晶成長では、100℃以下の温度域で結晶の生成・成長が進行するためエンジニアード・ドメインが生じない。
【0013】
水熱合成であっても、Nbからの結晶成長では大口径のニオブ酸カリウム結晶が得られない。たとえば、Nb,KOHを用いて180℃以下で水熱合成させると、育成したKNbOが消失し、大口径のニオブ酸カリウム結晶が得られない。KNbOの消失は、一部のKがHに置換して溶解度の高い(K,H)NbOになっていることに原因があると考えられる。
これに対し、KNbOFからの結晶成長では、KをHで置換する程度が少なく、KNbOが安定的に存在すると考えられる。KNbOの安定的な存在は、生成したニオブ酸カリウム結晶のX線回折結果が融液成長で作製されたニオブ酸カリウム結晶と一致することからも支持される。また、KNbOのソースであるKNbOFが反応系に多量存在することと相俟って、KNbOの消失なく結晶育成が促進される。
【0014】
水熱合成では、純水にKNbOFを添加した懸濁液を高温・高圧雰囲気下に保持することにより、KNbOFが溶け込んだ水溶液が得られる。KNbOFの溶解度は、温度,圧力の調整で変えることができ、最大50g/lの高濃度も達成可能である。KNbOF水溶液を0.1〜20℃/日の緩冷却速度で冷却するとKNbOが晶出し、ニオブ酸カリウム結晶が育成される。
【0015】
NbOFの濃度は雰囲気にもよるが1〜50g/lの範囲で変えることができ、KNbOF濃度が高い懸濁液を使用する場合ほど雰囲気の圧力,温度を高く設定する。結晶育成温度は、相転移を経ない単分域結晶を作製する場合には235℃以下,エンジニアード・ドメインのあるニオブ酸カリウム結晶を作製する場合には235〜435℃の温度範囲から選定される。雰囲気圧は、懸濁液のKNbOF濃度や目標とする結晶成長速度,育成結晶径に応じて0.1〜40MPaの範囲で選定される。
【0016】
【実施例1】
KNbO,KFを質量比1:1の割合で配合し、混合物を圧粉成形した後、850℃で焼成した。焼成体は、X線回折の結果、KNbOFの単相であることが判った。焼成体を機械的に粉砕し、KNbOF粉末を用意した。
NbOF粉末:2gを純水:120mlに加えてKNbOF懸濁液を調整した。純水に対するKNbOFの溶解度は液温と共に高くなり、100℃以上でKNbOFが均質に溶解した溶液となる。
NbOF懸濁液を容量:200mlのオートクレーブにセットした。雰囲気圧25MPaに保持されたオートクレーブ中でKNbOF液を380℃に加熱保持した。2週間の加熱保持後に徐冷し、KNbOF液を取り出し、生成物を濾別した。得られた生成物は、斜方晶のニオブ酸カリウム結晶であり、エンジニアード・ドメインをもっていた(図1)。更に加熱保持を継続すると、従来の融液成長では達成できない大口径にニオブ酸カリウム結晶を育成できた。
【0017】
【実施例2】
実施例1と同様に調製したKNbOF:2gを斜方晶ニオブ酸カリウム種結晶:5gと共に純水:120mlに加えてKNbOF液を用意した。雰囲気圧25MPaに保持した容量:200mlのオートクレーブにKNbOF液を入れ、385℃に加熱保持した。3週間の加熱保持後、KNbOF液から種結晶を取り出し、水熱合成で成長したニオブ酸カリウム結晶を計量したところ8gであった。
得られた生成物は、大口径の斜方晶ニオブ酸カリウム結晶であり、エンジニアード・ドメインをもっていた。生成結晶にNd:YAGレーザを照射したところ波長変換特性が検出され、強誘電体であることが確認された。
【0018】
【実施例3】
実施例1と同様に調製したKNbOF:2gを単分域の斜方晶ニオブ酸カリウム種結晶:2gと共に純水:120mlに加えてKNbOF液を用意した。雰囲気圧5MPaに保持した容量:200mlのオートクレーブにKNbOF液を入れ、180℃に加熱保持した。2週間の加熱保持後に、単分域の斜方晶ニオブ酸カリウム結晶が得られた(図2)。
合成されたニオブ酸カリウム結晶にNd:YAGレーザを照射したところ緑色発光が観察された。緑色発光は、Nd:YAGの1064nmの赤外光を532nmの緑色光に変化させる圧電性による波長変換が生じたことを示す。この結果から、斜方晶のニオブ酸カリウム結晶を種結晶とする斜方晶の単分域ニオブ酸カリウム結晶の育成が確認された。
【0019】
【実施例4】
研磨したニオブ酸カリウム{100}の結晶基板を浸漬した純水にKNbOFを添加し、実施例3と同じ条件下でKNbOを育成した。育成結晶は、結晶基板上に膜厚10μmの単結晶薄膜としてエピタキシャル成長していた。得られた単結晶薄膜は斜方晶の単分域結晶であり、Nd:YAGレーザ照射で緑色発光したことから圧電変換素子,波長変換素子としての展開が期待できる。
【0020】
【発明の効果】
以上に説明したように、KNbOFを原料に用いて水熱合成させると、単分域大口径単結晶,単結晶膜の育成やエンジニアード・ドメインの作製が可能となるため、非線形光学素子としては勿論、圧電素子として必要な大口径の単分域単結晶としても有用なニオブ酸カリウム結晶が得られる。しかも水熱合成で強誘電体結晶が直接的に合成されるため、単結晶育成後に単分域化処理が必要な従来法に比較して圧電用途に適用できるニオブ酸カリウム結晶が低コストで製造される。
【図面の簡単な説明】
【図1】実施例1で合成したニオブ酸カリウム結晶のエンジニアード・ドメインを示す偏光顕微鏡写真
【図2】実施例3で合成した単分域結晶を示すSEM写真
[0001]
[Industrial applications]
The present invention relates to a method for producing a crystal or a crystalline thin film of potassium niobate (KNbO 3 ) used for a piezoelectric element, an optical element or the like by hydrothermal synthesis.
[0002]
[Prior art]
Potassium niobate (KNbO 3 ) is a substance exhibiting ferroelectric properties, and various physical properties, crystal growth, crystal structure, and the like have been reported. Further, potassium niobate crystals have attracted attention as wavelength conversion optical crystals for blue lasers because of their nonlinear optical constants, and blue region solid-state lasers incorporating potassium niobate crystals are also commercially available. Recently, potassium niobate crystals have been reported to exhibit large electromechanical coupling coefficients in surface acoustic waves and bulk waves, and are expected as next-generation piezoelectric materials.
[0003]
In the conventional method, potassium niobate crystals are grown by crystal growth from the melt, but crystal defects are likely to be introduced during crystal growth. One of the causes of defect introduction is that potassium niobate exhibits inconsistent melting. It is difficult to efficiently grow a uniform crystal under the condition that the melt composition is different from the crystal composition during the growth, and the melt composition changes as the crystal grows. One of the causes of defect introduction is that the cubic KNbO 3 undergoes a phase transition at 435 ° C. to a tetragonal phase at 435 ° C. during crystal growth to an orthorhombic phase at 225 ° C. Due to the cubic → tetragonal → orthorhombic phase transition, even if a single crystal can be grown, many types of domains are generated during cooling, making subsequent single domain processing difficult, and during single domain processing Cracks tend to occur.
[0004]
Cracks tend to occur as the diameter of the grown crystal increases, and when the growth diameter increases, single-domain processing without cracks can hardly be performed. Therefore, in crystal growth from the melt that passes through two phase transition points during cooling and subsequent single-domain processing, a large-diameter single-domain orthorhombic potassium niobate crystal useful as a piezoelectric element is formed. It is difficult to manufacture. Further, since the introduction of crystal defects is inevitable, the maximum diameter of the crystal growth is 20 to 30 mm.
[0005]
However, considering the use in piezoelectric applications utilizing surface acoustic waves, bulk waves, and the like, including optical applications, large-diameter single crystals of 50.8 mm (2 inches) or more are grown similarly to other piezoelectric crystals. It is necessary to produce a single-domain single crystal by a subsequent polarization treatment, or to produce a single-domain single crystal film having an area of 50.8 mm (2 inches) or more in diameter.
In addition, when many fine domains (engineered domains) appear in a crystal, piezoelectric characteristics are improved as compared with a single-domain crystal. Fabrication of engineered domains using melt-grown crystals is being studied.However, it is difficult to create engineered domains in melt-grown crystals in which the crystal under cooling has thermal strain, and it is now in a practical stage. Not reached.
[0006]
[Problems to be solved by the invention]
In hydrothermal synthesis, the crystal growth temperature can be set lower than the phase transition temperature, so that it is not affected by inconsistent dissolution or phase transition during crystal growth, etc. Suitable for creating domains. For example, it has been reported that KNbO 3 is produced in 1 to 24 hours when KOH and Nb 2 O 5 are hydrothermally synthesized under conditions of about 180 ° C. and about 0.5 MPa (Lecture of the Annual Meeting of the Ceramic Society of Japan). Proceedings (2002) p. 103, Proceedings of the Autumn Meeting of the Ceramic Society of Japan, Vol. 14 (2001) p. 205).
[0007]
When the inventors repeated the reported method, 10 μm KNbO 3 could be grown by hydrothermal synthesis for 3 days. However, when the hydrothermal synthesis time was increased to about three weeks in order to make the crystals grow larger, the grown KNbO 3 disappeared. It is considered that the disappearance of KNbO 3 is a result of the generated KNbO 3 being in a metastable phase and approaching equilibrium as the hydrothermal synthesis time becomes longer and dissolved. The fact that KNbO 3 becomes a metastable phase is also presumed from the fact that it has been reported in the proceedings of the above-mentioned lecture that the phase relationship changes when H + enters the crystal by replacing K in KNbO 3 .
[0008]
On the other hand, the present inventors have reported a method of growing potassium niobate crystals using an aqueous solution of K 2 NbO 3 F (Abstracts of the Annual Meeting of the Society of Inorganic Materials, Academic Conference, Vol. 103 (2001), pp. 74-75). Materials of the 71st meeting of the 150th Committee of Technology for Acoustic Wave Devices, Japan Society for the Promotion of Science (2001) 13.1.23-24). According to the reported method, potassium niobate crystals are obtained by putting K 2 NbO 3 F in pure water and stirring, then evaporating the water and filtering off the precipitate. However, when grown from an aqueous solution, the crystals did not grow even after long-term growth, and satisfactory crystal quality was not obtained.
[0009]
[Means for Solving the Problems]
The present invention has been devised in order to solve such a problem. By performing hydrothermal synthesis using K 2 NbO 3 F, it is possible to grow single-domain large-diameter single crystals and single crystal films, and to develop engineers. It is an object of the present invention to provide a potassium niobate single crystal and a single crystal thin film which enable fabrication of an ard domain and are used as a functional material of a piezoelectric element, an optical element, and the like.
[0010]
In the hydrothermal synthesis of the present invention, in order to achieve the object, a solution in which K 2 NbO 3 F powder is added to pure water is maintained in a temperature range of 100 to 435 ° C. under a pressurized atmosphere, and K 2 NbO 3 F KNbO 3 is crystallized from a solution in which is dissolved. When a glass plate of fused quartz or the like or a potassium niobate crystal substrate is immersed in pure water in advance, KNbO 3 generated by hydrothermal synthesis is crystallized as a single crystal thin film on the substrate.
[0011]
[Action and Embodiment]
In general, as the solubility of a solute in a solvent increases, the crystal growth rate increases and the grown crystal diameter increases. Solute solubility increases with increasing temperature, but aqueous solutions are limited by a maximum temperature of 100 ° C. On the other hand, in the hydrothermal synthesis, since the growth temperature can be set higher, it is possible to expect an increase in the crystal growth rate and an improvement in the solubility that is effective in increasing the diameter of the grown crystal. In addition, since the potassium niobate crystal is hydrothermally grown below the phase transition temperature, the growth temperature can be controlled and a tetragonal or orthorhombic ferroelectric single crystal can be directly synthesized. The ability to directly synthesize orthorhombic crystals in the low-temperature phase without undergoing phase transition means that single-domain crystals can be produced.
[0012]
Hydrothermal synthesis is also advantageous in creating an engineered domain. That is, in the crystal grown hydrothermally, thermal distortion is small because the entire temperature gradient is small. Therefore, the nucleation density of the low-temperature phase increases when the crystal is cooled after the tetragonal crystal is first generated by controlling the crystal growth temperature. As a result, fine engineered domains are created in the potassium niobate crystal. In this regard, in the crystal growth in the aqueous solution, the generation and growth of the crystal proceeds in a temperature range of 100 ° C. or less, so that no engineered domain is generated.
[0013]
Even with hydrothermal synthesis, large-diameter potassium niobate crystals cannot be obtained by crystal growth from Nb 2 O 5 . For example, when hydrothermal synthesis is performed at 180 ° C. or lower using Nb 2 O 5 and KOH, grown KNbO 3 disappears, and a large-diameter potassium niobate crystal cannot be obtained. It is considered that the disappearance of KNbO 3 is caused by the fact that a part of K is replaced by H to form (K, H) NbO 3 having high solubility.
On the other hand, in crystal growth from K 2 NbO 3 F, the degree of substitution of K for H is small, and it is considered that KNbO 3 is stably present. The stable presence of KNbO 3 is also supported by the fact that the X-ray diffraction results of the generated potassium niobate crystals agree with the potassium niobate crystals produced by melt growth. Also, it can coupled with the source in which K 2 NbO 3 F of KNbO 3 is a large amount in the reaction system, loss without crystal growth of KNbO 3 is promoted.
[0014]
In hydrothermal synthesis, an aqueous solution in which K 2 NbO 3 F is dissolved is obtained by maintaining a suspension in which K 2 NbO 3 F is added to pure water under a high-temperature and high-pressure atmosphere. The solubility of K 2 NbO 3 F can be changed by adjusting the temperature and pressure, and a high concentration of up to 50 g / l can be achieved. When the K 2 NbO 3 F aqueous solution is cooled at a slow cooling rate of 0.1 to 20 ° C./day, KNbO 3 is crystallized, and potassium niobate crystals are grown.
[0015]
The concentration of K 2 NbO 3 F depends on the atmosphere, but can be changed in the range of 1 to 50 g / l, and the pressure and temperature of the atmosphere are set higher as the suspension having a higher K 2 NbO 3 F concentration is used. I do. The crystal growth temperature is selected from a temperature range of 235 ° C. or less for producing a single domain crystal which does not undergo a phase transition, and a temperature range of 235 to 435 ° C. for producing a potassium niobate crystal having an engineered domain. You. The atmospheric pressure is selected in the range of 0.1 to 40 MPa according to the K 2 NbO 3 F concentration of the suspension, the target crystal growth rate, and the grown crystal diameter.
[0016]
Embodiment 1
KNbO 3 and KF were blended at a mass ratio of 1: 1 and the mixture was compacted and fired at 850 ° C. As a result of X-ray diffraction, the fired body was found to be a single phase of K 2 NbO 3 F. The fired body was mechanically pulverized to prepare a K 2 NbO 3 F powder.
K 2 NbO 3 F powder: 2 g of pure water was firstly prepared K 2 NbO 3 F suspension in addition to 120 ml. The solubility of K 2 NbO 3 F in pure water increases with the liquid temperature, and becomes a solution in which K 2 NbO 3 F is homogeneously dissolved at 100 ° C. or higher.
The K 2 NbO 3 F suspension was set in an autoclave with a volume of 200 ml. The K 2 NbO 3 F solution was heated and maintained at 380 ° C. in an autoclave maintained at an atmospheric pressure of 25 MPa. After heating and holding for 2 weeks, the mixture was gradually cooled, the K 2 NbO 3 F solution was taken out, and the product was separated by filtration. The resulting product was orthorhombic potassium niobate crystals with an engineered domain (FIG. 1). When the heating and holding were further continued, potassium niobate crystals could be grown to a large diameter that cannot be achieved by conventional melt growth.
[0017]
Embodiment 2
A K 2 NbO 3 F solution was prepared by adding 2 g of K 2 NbO 3 F prepared in the same manner as in Example 1 and 120 g of pure water together with 5 g of an orthorhombic potassium niobate seed crystal. The K 2 NbO 3 F solution was placed in a 200 ml autoclave, which was kept at an atmospheric pressure of 25 MPa, and heated and maintained at 385 ° C. After heating and holding for 3 weeks, seed crystals were taken out of the K 2 NbO 3 F solution, and potassium niobate crystals grown by hydrothermal synthesis were weighed to be 8 g.
The obtained product was a large-diameter orthorhombic potassium niobate crystal having an engineered domain. When the produced crystal was irradiated with a Nd: YAG laser, the wavelength conversion characteristics were detected, and it was confirmed that the crystal was a ferroelectric substance.
[0018]
Embodiment 3
A K 2 NbO 3 F solution was prepared by adding 2 g of K 2 NbO 3 F prepared in the same manner as in Example 1 and 120 g of pure water together with 2 g of a single-domain orthorhombic potassium niobate seed crystal. The K 2 NbO 3 F solution was charged into a 200 ml autoclave at an atmospheric pressure of 5 MPa, and the autoclave was heated and maintained at 180 ° C. After heating and holding for 2 weeks, single domain orthorhombic potassium niobate crystals were obtained (FIG. 2).
When the synthesized potassium niobate crystal was irradiated with a Nd: YAG laser, green light emission was observed. Green light emission indicates that wavelength conversion by piezoelectricity that changes Nd: YAG 1064 nm infrared light to 532 nm green light has occurred. From these results, it was confirmed that orthorhombic single-domain potassium niobate crystals using the orthorhombic potassium niobate crystals as seed crystals were grown.
[0019]
Embodiment 4
K 2 NbO 3 F was added to pure water immersed in a polished potassium niobate {100} crystal substrate, and KNbO 3 was grown under the same conditions as in Example 3. The grown crystal was epitaxially grown on a crystal substrate as a single-crystal thin film having a thickness of 10 μm. The obtained single-crystal thin film is an orthorhombic single-domain crystal, and emits green light when irradiated with Nd: YAG laser.
[0020]
【The invention's effect】
As described above, when hydrothermal synthesis is performed using K 2 NbO 3 F as a raw material, it becomes possible to grow single-domain large-diameter single crystals and single-crystal films and to produce engineered domains. A potassium niobate crystal useful as a single-domain single crystal having a large diameter required for a piezoelectric element as well as an optical element can be obtained. In addition, since ferroelectric crystals are directly synthesized by hydrothermal synthesis, potassium niobate crystals that can be applied to piezoelectric applications can be manufactured at lower cost than conventional methods that require single-domain treatment after growing single crystals. Is done.
[Brief description of the drawings]
FIG. 1 is a polarizing microscope photograph showing an engineered domain of a potassium niobate crystal synthesized in Example 1. FIG. 2 is an SEM photograph showing a single domain crystal synthesized in Example 3.

Claims (2)

NbOF粉末を添加した純水を加圧雰囲気下で100〜435℃の温度域に保持し、KNbOFを溶かし込んだ溶液からKNbOを晶出させることを特徴とするニオブ酸カリウム結晶の水熱合成方法。Pure water to which K 2 NbO 3 F powder is added is kept in a temperature range of 100 to 435 ° C. under a pressurized atmosphere, and KNbO 3 is crystallized from a solution in which K 2 NbO 3 F is dissolved. A method for hydrothermal synthesis of potassium niobate crystals. 基板を浸漬した純水にKNbOF粉末を添加し、加圧雰囲気下で100〜435℃の温度域に保持し、KNbOFを溶かし込んだ溶液からKNbOを基板上に単結晶薄膜として晶出させることを特徴とするニオブ酸カリウム結晶薄膜の合成方法。It was added K 2 NbO 3 F powder in pure water by immersing the substrate, held at a temperature range of one hundred to four hundred thirty-five ° C. under a pressurized atmosphere, a solution of elaborate dissolving K 2 NbO 3 F a KNbO 3 on the substrate A method for synthesizing a potassium niobate crystal thin film, characterized by crystallizing as a single crystal thin film.
JP2003079746A 2003-03-24 2003-03-24 Hydrothermal synthetic method of potassium niobate crystal or crystal thin film Pending JP2004284889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079746A JP2004284889A (en) 2003-03-24 2003-03-24 Hydrothermal synthetic method of potassium niobate crystal or crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079746A JP2004284889A (en) 2003-03-24 2003-03-24 Hydrothermal synthetic method of potassium niobate crystal or crystal thin film

Publications (1)

Publication Number Publication Date
JP2004284889A true JP2004284889A (en) 2004-10-14

Family

ID=33293781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079746A Pending JP2004284889A (en) 2003-03-24 2003-03-24 Hydrothermal synthetic method of potassium niobate crystal or crystal thin film

Country Status (1)

Country Link
JP (1) JP2004284889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119327A (en) * 2005-10-31 2007-05-17 Niigata Univ Potassium niobate single crystal and method for synthesizing the same
CN101857272A (en) * 2010-06-22 2010-10-13 浙江大学 Preparation method for micro-nano acicular structural KNbO3
WO2012056658A1 (en) * 2010-10-25 2012-05-03 富士フイルム株式会社 Perovskite-type oxide film and ferroelectric film using same, ferroelectric element, and process for producing perovskite-type oxide film
JP2012232862A (en) * 2011-04-28 2012-11-29 Toyama Prefecture Anisotropically shaped powder and method for producing the same
JP2020083693A (en) * 2018-11-22 2020-06-04 堺化学工業株式会社 Production method of alkali metal niobate particle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119327A (en) * 2005-10-31 2007-05-17 Niigata Univ Potassium niobate single crystal and method for synthesizing the same
JP4599562B2 (en) * 2005-10-31 2010-12-15 国立大学法人 新潟大学 Synthesis method of potassium niobate single crystal
CN101857272A (en) * 2010-06-22 2010-10-13 浙江大学 Preparation method for micro-nano acicular structural KNbO3
WO2012056658A1 (en) * 2010-10-25 2012-05-03 富士フイルム株式会社 Perovskite-type oxide film and ferroelectric film using same, ferroelectric element, and process for producing perovskite-type oxide film
JP2012106902A (en) * 2010-10-25 2012-06-07 Fujifilm Corp Perovskite-type oxide film, ferroelectric film using the same, ferroelectric device, and method for manufacturing perovskite-type oxide film
US8872413B2 (en) 2010-10-25 2014-10-28 Fujifilm Corporation Perovskite oxide film and ferroelectric film using the same, ferroelectric device, and method for manufacturing perovskite oxide film
JP2012232862A (en) * 2011-04-28 2012-11-29 Toyama Prefecture Anisotropically shaped powder and method for producing the same
JP2020083693A (en) * 2018-11-22 2020-06-04 堺化学工業株式会社 Production method of alkali metal niobate particle
JP7206847B2 (en) 2018-11-22 2023-01-18 堺化学工業株式会社 Method for producing alkali metal niobate particles

Similar Documents

Publication Publication Date Title
Park et al. Nonstoichiometry and the long‐range cation ordering in crystals of (Na1/2Bi1/2) TiO3
Yoon et al. Morphological aspects of potassium lithium niobate crystals with acicular habit grown by the micro-pulling-down method
KR20100015670A (en) Mg-containing zno mixed single crystal, laminate thereof and their production methods
JPWO2002022920A1 (en) Rare earth-iron garnet single crystal and method for producing the same
JPWO2002022920A6 (en) Rare earth-iron garnet single crystal, method for producing the same, and device using rare earth-iron garnet single crystal
JP2004284889A (en) Hydrothermal synthetic method of potassium niobate crystal or crystal thin film
JP2012001381A (en) Single crystal substrate and method for manufacturing the same
CN113186590A (en) Preparation method of centimeter-level molybdenum trioxide single crystal
CN1847470A (en) Non-linear optical crystal calcium niobate
JP3115250B2 (en) Cesium-lithium-borate crystal
US8679248B2 (en) GaN whiskers and methods of growing them from solution
Justin Raj et al. Investigation of dielectric, piezoelectric and ferroelectric properties of b-axis grown triglycine sulphate single crystal
Sasaki et al. New developments in crystal growth from solutions: Oxides, proteins, and nitrides
Pasupathi et al. Crystal growth, thermal, optical and microhardness studies of tris (thiourea) magnesium sulphate: a semiorganic nlo material
Zhang et al. Enhanced piezoelectricity of Cu-doped K (Ta, Nb) O3 single crystals
JP4474553B2 (en) Low temperature film formation of potassium niobate
Lim Single crystal preparation techniques for manufacturing piezoelectric materials
JP5424476B2 (en) Single crystal substrate, manufacturing method thereof, semiconductor thin film formed on the single crystal substrate, and semiconductor structure
JP5660565B2 (en) BNA crystal
Komatsu et al. Direct growth of orthorhombic potassium niobate (KNbO/sub 3/) crystal from an aqueous solution
JPH0637351B2 (en) Method of manufacturing ferroelectric thin film
Inagaki et al. Growth condition and ferroelectric property of Mn-doped Na0. 5K0. 5NbO3 crystal
KR101311762B1 (en) Manufacturing method for thin film of lithium niobate
JPH04243998A (en) Production of barium beta-metaborate single crystal
Aggarwal et al. Bulk crystal growth, thermophysical, and optical properties of lead magnesium niobate-lead titanate (PMN-PT) piezoelectric single crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630