JP4474553B2 - Low temperature film formation of potassium niobate - Google Patents
Low temperature film formation of potassium niobate Download PDFInfo
- Publication number
- JP4474553B2 JP4474553B2 JP2006244764A JP2006244764A JP4474553B2 JP 4474553 B2 JP4474553 B2 JP 4474553B2 JP 2006244764 A JP2006244764 A JP 2006244764A JP 2006244764 A JP2006244764 A JP 2006244764A JP 4474553 B2 JP4474553 B2 JP 4474553B2
- Authority
- JP
- Japan
- Prior art keywords
- potassium niobate
- thin film
- single crystal
- low temperature
- nbo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 title claims description 33
- 230000015572 biosynthetic process Effects 0.000 title claims description 4
- 239000013078 crystal Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 8
- 239000010409 thin film Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、ニオブ酸カリウムの低温製膜法に関する。 The present invention relates to a low temperature film forming method for potassium niobate.
ニオブ酸カリウム(KNbO3)は、大きな電気機械結合係数を有することから、チタン酸ジルコン酸鉛(PZT)に代わる鉛を含まない次世代の弾性表面波(SAW)デバイス用の圧電材料として注目されている。そして、ほかの半導体材料とモノリシック化(一体化)可能な薄膜材料が近年注目されており、ニオブ酸カリウムについても薄膜化することにより、良好な電気機械結合係数と温度係数を有する圧電材料が得られるものと期待されている。 Since potassium niobate (KNbO 3 ) has a large electromechanical coupling coefficient, it has attracted attention as a piezoelectric material for next-generation surface acoustic wave (SAW) devices that do not contain lead in place of lead zirconate titanate (PZT). ing. In recent years, thin film materials that can be monolithically integrated with other semiconductor materials have attracted attention. By reducing the thickness of potassium niobate, a piezoelectric material having good electromechanical coupling coefficient and temperature coefficient can be obtained. It is expected to be
従来のニオブ酸カリウムの薄膜を形成する方法としては、例えば、CVD法等が報告させているが、従来の方法では、真空や高エネルギーを必要とする特殊な装置を用いるか、又は高価で特殊な原料を使用する必要があった。また、従来の方法では、実用領域の高品位な薄膜の作製は実現されていない。 As a conventional method of forming a thin film of potassium niobate, for example, the CVD method has been reported. However, in the conventional method, a special apparatus that requires vacuum or high energy is used, or an expensive and special method is used. It was necessary to use a new raw material. In addition, the conventional method has not realized the production of a high-quality thin film in a practical range.
ところで、本発明者らは、層状ペロブスカイト型の前駆体K2NbO3Fを水中で撹拌すると、K2NbO3FからK及びFが脱落してニオブ酸カリウム(KNbO3)ナノ粒子が生成されることを本発明者らは報告している(非特許文献1)。このナノ粒子は焼結性が良いなど、有用な材料である。 By the way, when the present inventors stir the layered perovskite-type precursor K 2 NbO 3 F in water, K and F are dropped from K 2 NbO 3 F, and potassium niobate (KNbO 3 ) nanoparticles are generated. The present inventors have reported that (Non-Patent Document 1). These nanoparticles are useful materials because they have good sinterability.
しかし、実際にこのナノ粒子を用いてニオブ酸カリウムの薄膜を形成するには、900℃以上の高温で焼結させる必要があった。 However, in order to actually form a thin film of potassium niobate using these nanoparticles, it was necessary to sinter at a high temperature of 900 ° C. or higher.
また、水熱合成法によりニオブ酸カリウム結晶を得る方法が開示されている(特許文献1)。
しかし、この水熱合成法においても、100〜435℃の高温、高圧下で結晶育成する必要があった。 However, also in this hydrothermal synthesis method, it was necessary to grow crystals at a high temperature of 100 to 435 ° C. under high pressure.
そこで、本発明は上記問題点に鑑み、真空や高エネルギーを必要とする特殊な装置や、高価で特殊な原料を使用することなく、低温でニオブ酸カリウムの薄膜を作製することのできる、ニオブ酸カリウムの低温製膜法を提供することをその目的とする。 Therefore, in view of the above problems, the present invention is capable of producing a potassium niobate thin film at a low temperature without using a special apparatus requiring a vacuum or high energy or an expensive and special raw material. An object of the present invention is to provide a low-temperature film forming method for potassium acid.
上記課題を達成するため種々検討した結果、前駆体K2NbO3Fの単結晶を室温で潮解させることにより、一方向に配向した結晶構造を有する単結晶薄膜を得ることができることを見出し、本発明を完成させた。 As a result of various studies to achieve the above problems, it was found that a single crystal thin film having a crystal structure oriented in one direction can be obtained by deliquescent the single crystal of the precursor K 2 NbO 3 F at room temperature. Completed the invention.
すなわち、本発明のニオブ酸カリウムの低温製膜法は、K2NbO3Fの単結晶を基板上で潮解させ、乾燥することを特徴とする。 That is, the low-temperature film forming method of potassium niobate according to the present invention is characterized in that a single crystal of K 2 NbO 3 F is deliquescent on a substrate and dried.
また、潮解させる際の湿度は、60%以上であることを特徴とする。 Moreover, the humidity at the time of deliquescent is 60% or more.
さらに、潮解させる際の温度は、0〜50℃であることを特徴とする。 Further, the temperature when deliquescent is 0 to 50 ° C.
本発明のニオブ酸カリウムの低温製膜法によれば、真空や高エネルギーを必要とする特殊な装置や、高価で特殊な原料を使用することなく、室温で高品位のニオブ酸カリウムの単結晶薄膜を作製することができる。 According to the low-temperature film formation method of potassium niobate of the present invention, high-quality potassium niobate single crystals at room temperature without using special equipment that requires vacuum or high energy, or using expensive and special raw materials A thin film can be produced.
本発明のニオブ酸カリウムの低温製膜法は、K2NbO3Fの単結晶を基板上で潮解させ、乾燥するものである。 The low-temperature film forming method of potassium niobate according to the present invention is a method in which a K 2 NbO 3 F single crystal is deliquescent on a substrate and dried.
K2NbO3Fの単結晶を基板上に載置すると、結晶が空気中の水蒸気を吸収して溶解し、K2NbO3FよりKとFが脱離する。そして、これを室温で自然乾燥することで、一方向に配向した結晶構造を有するニオブ酸カリウム(KNbO3)の単結晶薄膜が生成する。 When a single crystal of K 2 NbO 3 F is placed on the substrate, the crystal absorbs water vapor in the air and dissolves, and K and F are desorbed from K 2 NbO 3 F. Then, this is naturally dried at room temperature to produce a single crystal thin film of potassium niobate (KNbO 3 ) having a crystal structure oriented in one direction.
ここで、結晶が容易に潮解するように、潮解させる際の空気中の湿度は、60%以上とするのが好ましい。さらに、湿度100%、すなわち飽和水蒸気圧の雰囲気下に結晶を置くのが最も好ましい。 Here, it is preferable that the humidity in the air when deliquescent is 60% or more so that the crystals can be easily deliquescent. Furthermore, it is most preferable to place the crystal in an atmosphere of 100% humidity, that is, saturated water vapor pressure.
また、K2NbO3F中のK、Fの結合は非常に弱く、室温で容易にニオブ酸カリウムを生成する。したがって、潮解させる際に加温する必要がなく、潮解させる際の温度は0〜50℃でよい。 In addition, the bond of K and F in K 2 NbO 3 F is very weak and easily produces potassium niobate at room temperature. Therefore, it is not necessary to heat when deliquescing, and the temperature when deliquescent may be 0 to 50 ° C.
結晶を載置する基板は、特定のものに限定されず、金属、ガラス、プラスチックなど、あらゆるものを用いることができる。 The substrate on which the crystal is placed is not limited to a specific one, and any material such as metal, glass, plastic, and the like can be used.
本発明のニオブ酸カリウムの低温製膜法により得られるニオブ酸カリウムの単結晶薄膜は、一方向に配向した結晶構造を有するため、ニオブ酸カリウムの焼結体よりも高い圧電性を示す。また、単結晶薄膜は透明であるため、非線形光学素子などの光学材料として用いることができる。 The single crystal thin film of potassium niobate obtained by the low temperature film formation method of potassium niobate according to the present invention has a crystal structure oriented in one direction, and therefore exhibits higher piezoelectricity than a sintered body of potassium niobate. In addition, since the single crystal thin film is transparent, it can be used as an optical material such as a nonlinear optical element.
なお、本発明は上記実施形態に限定されるものではなく、本発明の思想を逸脱しない範囲で種々の変形実施が可能である。以下、具体例に基づき、より詳細に説明する。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. Hereinafter, it demonstrates in detail based on a specific example.
はじめに、前駆体となるK2NbO3Fの単結晶を合成した。原料には関東化学株式会社製のK2CO3(純度99.5%)、Nb2O5(純度99.95%)、KF(純度99.0%)を用いた。 First, a single crystal of K 2 NbO 3 F as a precursor was synthesized. K 2 CO 3 (purity 99.5%), Nb 2 O 5 (purity 99.95%), and KF (purity 99.0%) manufactured by Kanto Chemical Co., Ltd. were used as raw materials.
K2CO3:Nb2O5:KF=1.0:1.0:18の質量比で原料を秤量し、アセトンを加えてメノウ乳鉢で原料を混合した。ここで、K2CO3とNb2O5の比はほぼ化学量論比となっている。KFはフラックスとして化学量論に基づく量よりも過剰に添加した。 The raw materials were weighed at a mass ratio of K 2 CO 3 : Nb 2 O 5 : KF = 1.0: 1.0: 18, acetone was added, and the raw materials were mixed in an agate mortar. Here, the ratio of K 2 CO 3 and Nb 2 O 5 is almost stoichiometric. KF was added in excess of the stoichiometric amount as a flux.
混合した試料を大気下、白金るつぼ中で790℃に加熱して1時間焼成してから、600℃まで4℃/時間で徐冷し、その後、自然冷却した。XRD測定で、c軸配向したK2NbO3Fの単結晶が得られたことが確認された。 The mixed sample was heated to 790 ° C. in a platinum crucible in the atmosphere and calcined for 1 hour, then gradually cooled to 600 ° C. at 4 ° C./hour, and then naturally cooled. XRD measurement confirmed that c-axis oriented K 2 NbO 3 F single crystals were obtained.
つぎに、ニオブ酸カリウム(KNbO3)の単結晶薄膜を作製した。 Next, a single crystal thin film of potassium niobate (KNbO 3 ) was produced.
合成したK2NbO3Fの単結晶を石英ガラス基板上に載置し、室温の湿度100%の空気中に放置すると、K2NbO3Fは潮解した。これを室温の空気中で自然乾燥することで、膜厚50μmのニオブ酸カリウムの単結晶薄膜が得られた。この薄膜は透明であった。 When the synthesized single crystal of K 2 NbO 3 F was placed on a quartz glass substrate and allowed to stand in air at a room temperature of 100% humidity, K 2 NbO 3 F was deliquescent. This was naturally dried in air at room temperature to obtain a single crystal thin film of potassium niobate having a thickness of 50 μm. This thin film was transparent.
上記のニオブ酸カリウムの単結晶薄膜をスパーテルにて石英ガラス基板から剥離し、XRD測定を行った。その結果、図1の中段に示すように、(001)、(100)、(002)、(200)の回折ピークのみが確認できた。特に、これらの回折ピークの中で(001)、(002)の回折ピークが顕著に確認できた。これは生成した薄膜がc軸配向していることを示している。 The single crystal thin film of potassium niobate was peeled off from the quartz glass substrate with a spatula and subjected to XRD measurement. As a result, only the diffraction peaks of (001), (100), (002), and (200) were confirmed as shown in the middle part of FIG. In particular, among these diffraction peaks, diffraction peaks of (001) and (002) were remarkably confirmed. This indicates that the generated thin film is c-axis oriented.
さらに、上記の薄膜を粉砕してXRD測定を行った結果、図1の下段に示すように、斜方晶系のニオブ酸カリウムの他の回折ピークが出現した。このように、粉砕後のXRDパターンもc軸配向したパターンを示した。なお、図1の上段は、比較のために、斜方晶のニオブ酸カリウムについてXRDパターンをシミュレーションした結果を示す。 Furthermore, as a result of XRD measurement by crushing the above thin film, other diffraction peaks of orthorhombic potassium niobate appeared as shown in the lower part of FIG. Thus, the XRD pattern after pulverization also showed a c-axis oriented pattern. The upper part of FIG. 1 shows the result of simulating an XRD pattern for orthorhombic potassium niobate for comparison.
また、得られたニオブ酸カリウム薄膜に、波長1064nmのQ-switch Nd:YAG3+レーザー光を照射したところ、第二高調波発生による波長532nmの緑色発光が観測され、本実施例で得られたニオブ酸カリウム薄膜が波長変換機能を有することが確認された。 Further, when the obtained potassium niobate thin film was irradiated with a Q-switch Nd: YAG 3+ laser beam having a wavelength of 1064 nm, green light emission having a wavelength of 532 nm due to second harmonic generation was observed, which was obtained in this example. It was confirmed that the potassium niobate thin film has a wavelength conversion function.
以上のように、本実施例によれば、室温で高品位のニオブ酸カリウムの単結晶薄膜を作製することができることが確認された。 As described above, according to this example, it was confirmed that a high-quality potassium niobate single crystal thin film can be produced at room temperature.
[比較例]
実施例1と同様にK2NbO3Fの単結晶を合成し、この単結晶を石英ガラス基板上に載置し、純水を滴下して溶解した。そして、室温の空気中で自然乾燥した。XRD測定を行ったところ、配向していないニオブ酸カリウムの回折ピークが得られた。電子顕微鏡の観察によると、得られたのはニオブ酸カリウムの微結晶の集合体であった。このように純水を滴下して溶解した場合には、配向したニオブ酸カリウムの単結晶を得ることはできなかった。
[Comparative example]
A single crystal of K 2 NbO 3 F was synthesized in the same manner as in Example 1, and this single crystal was placed on a quartz glass substrate and dissolved by dropping pure water. And it dried naturally in the air of room temperature. When XRD measurement was performed, a diffraction peak of unoriented potassium niobate was obtained. As a result of observation with an electron microscope, it was an aggregate of potassium niobate microcrystals. Thus, when pure water was dripped and melt | dissolved, the oriented single crystal of potassium niobate could not be obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006244764A JP4474553B2 (en) | 2006-09-08 | 2006-09-08 | Low temperature film formation of potassium niobate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006244764A JP4474553B2 (en) | 2006-09-08 | 2006-09-08 | Low temperature film formation of potassium niobate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008063198A JP2008063198A (en) | 2008-03-21 |
JP4474553B2 true JP4474553B2 (en) | 2010-06-09 |
Family
ID=39286216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006244764A Active JP4474553B2 (en) | 2006-09-08 | 2006-09-08 | Low temperature film formation of potassium niobate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4474553B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114256365B (en) * | 2021-12-28 | 2023-10-24 | 陕西师范大学 | KNb 3 O 8 Nanobelt, preparation method and application thereof in deep ultraviolet photoelectric detection |
-
2006
- 2006-09-08 JP JP2006244764A patent/JP4474553B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008063198A (en) | 2008-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shahrokhi et al. | Emergence of ferroelectricity in halide perovskites | |
Fan et al. | Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2 (Na0. 82K0. 18) 1/2TiO3 lead-free piezoceramics | |
Azuma et al. | Rhombohedral–tetragonal phase boundary with high Curie temperature in (1-x) BiCoO3–xBiFeO3 solid solution | |
Poterala et al. | Mechanistic interpretation of the aurivillius to perovskite topochemical microcrystal conversion process | |
He et al. | Preparation and characterization of new Pb (Yb1/2Nb1/2) O3-Pb (Mg1/3Nb2/3) O3-PbTiO3 ternary piezo-/ferroelectric crystals | |
JP4943043B2 (en) | Method for manufacturing piezoelectric ceramics | |
Zhengfa et al. | Grain growth and piezoelectric property of KNN-based lead-free ceramics | |
JP2010143788A (en) | Oxynitride piezoelectric material and method for producing the same | |
WO2004102689A1 (en) | Piezoelectric material, manufacturing method thereof, and non-linear piezoelectric element | |
JP2007246326A (en) | Composite structure, its producing method, and thermoelectric conversion element using the composite structure | |
Zhou et al. | Strain and illumination triggered regulations of up-conversion luminescence in Er-doped Bi0. 5Na0. 5TiO3BaTiO3/Mica flexible multifunctional thin films | |
CN102011189B (en) | Tellurium-caesium molybdate crystal, growth of tellurium-caesium molybdate crystal by flux method and application | |
Kang et al. | Direct growth of ferroelectric oxide thin films on polymers through laser-induced low-temperature liquid-phase crystallization | |
CN100582016C (en) | Method of producing LiNbO* nanowire | |
Burns et al. | Sizing up (K 1− x Na x) NbO 3 films: a review of synthesis routes, properties & applications | |
JP4474553B2 (en) | Low temperature film formation of potassium niobate | |
Sharma et al. | Optical properties of lead-free ferroelectric potassium sodium niobate (KxNa1-xNbO3) thin films | |
JP2015099848A (en) | Ferroelectric ceramic and manufacturing method thereof | |
US7527690B2 (en) | Ferroelectric ceramic compound, a ferroelectric ceramic single crystal, and preparation processes thereof | |
JP5643472B2 (en) | Piezoelectric thin film element | |
CN104152997B (en) | Quaternary system relaxation type monocrystalline piezoelectric material and its growing method | |
CN102701740A (en) | Method for preparing potassium sodium niobate functional ceramic film on glass base surface by using laser | |
JP2009054934A (en) | Piezoelectric element | |
JP4599562B2 (en) | Synthesis method of potassium niobate single crystal | |
Rai et al. | Development of lead-free materials for piezoelectric energy harvesting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |