JP2004283924A - Organic-inorganic nano complex and its manufacturing method - Google Patents

Organic-inorganic nano complex and its manufacturing method Download PDF

Info

Publication number
JP2004283924A
JP2004283924A JP2003076266A JP2003076266A JP2004283924A JP 2004283924 A JP2004283924 A JP 2004283924A JP 2003076266 A JP2003076266 A JP 2003076266A JP 2003076266 A JP2003076266 A JP 2003076266A JP 2004283924 A JP2004283924 A JP 2004283924A
Authority
JP
Japan
Prior art keywords
organic
inorganic nanocomposite
zinc
surfactant
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003076266A
Other languages
Japanese (ja)
Other versions
JP4106432B2 (en
Inventor
Takeshi Sasaki
毅 佐々木
Tsuanhao Ryan
ツァンハオ リャン
Sadaki Shimizu
禎樹 清水
Naoto Koshizaki
直人 越崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003076266A priority Critical patent/JP4106432B2/en
Publication of JP2004283924A publication Critical patent/JP2004283924A/en
Application granted granted Critical
Publication of JP4106432B2 publication Critical patent/JP4106432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide, in a very simple process, a zinc hydroxide-interfacial active agent layered organic-inorganic nano complex constituted only of zinc hyrdoxide and an interfacial active agent, which is conventionally difficult to manufacture, and also to provide its manufacturing method. <P>SOLUTION: This organic-inorganic nano complex is furnished with a structure in which zinc hydroxide and an organic layer are alternately laminated in a nano meter order. The manufacturing method of the organic-inorganic nano complex forms the structure in which zinc hydroxide and the organic layer are alternately laminated in the nano meter order by discharging zinc in an aqueous solution as an atom, ion and a cluster by applying strong energy on a metallic zinc surface in the interfacial active agent aqueous solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光機能性材料、センサ材料、触媒担体、吸着剤あるいは包接化合物のホスト材料などに応用が可能な、亜鉛水酸化物層と有機層、特に界面活性剤層とがナノメートルオーダーで交互に重なった構造を有する層状有機−無機ナノ複合体及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、有機−無機複合材料は、熱に比較的弱い有機材料の性質を改善させ、あるいは有機分子の持つ機能を無機化合物に付与することができることから注目されている。中でも、複合体構造のサイズレンジがナノメートルオーダーである有機−無機ナノ複合材料は、分子やナノメートルサイズのクラスターや微粒子が複合化されており、ナノ複合体中に存在する分子や量子サイズ効果に起因する新規な物性が発現すると期待され、光機能性材料やセンサ材料などとして非常に有望な物質である。
更にこれらのナノ複合体に層状構造を導入することができれば、ナノメートルオーダーの層間に新たな分子を層間挿入する事ができることから、触媒担体、吸着剤あるいは包接化合物のホスト材料としても非常に有望な物質である。
【0003】
これまでに水酸化亜鉛を基本骨格とする層状物質の製造方法としてアモルファス状の水酸化亜鉛と有機オキシ塩化物や有機カルボン酸との反応を利用する方法が知られている(例えば、非特許文献1参照)。
また、亜鉛を含む複水酸化物と界面活性剤を基本骨格とする層状物質の製造方法として、層状複水酸化物を基本骨格層とする層間にミセル状有機アニオン性界面活性剤および非電荷有機物質を層間挿入する方法も報告されている(例えば、特許文献1参照)。
しかし、これらの製造方法の場合、層状物質の基本骨格となる水酸化亜鉛や層状複水酸化物などの水酸化物とカルボン酸やアニオン性界面活性剤などの有機分子とを混合反応させる工程の前に、これらの水酸化物を合成する工程も必要であり操作が極めて複雑となる欠点がある。また、これまで水酸化亜鉛と界面活性剤だけから構成される層状有機無機ナノ複合体を製造することはできなかった。
【0004】
一方、界面活性剤水溶液を用いてレーザーアブレーションを行う技術の報告もある。しかし、この場合は、いずれも貴金属のナノ微粒子サイズの調整又はマンガンのナノワイヤーを得る方法で、金属単体の粒子調製法に過ぎない(非特許文献2及び3並びに特許文献2参照)。
【0005】
【非特許文献1】
機能材料,「水酸化亜鉛と有機カルボン酸の反応による層状構造体の層空間および形態の制御」12巻10号,45−52頁,2001年
【非特許文献2】
”Full physical preparation of size−selected gold nanoparticles in solution: Laser ablation and laser−induced size control”, Mafune F, Kohno JY, Takeda Y, Kondow T, JOURNAL OF PHYSICAL CHEMISTRY B, 106 (31): 7575−7577 AUG 8 2002.
【非特許文献3】
”Growth of gold clusters into nanoparticles in a solution following laser−induced fragmentation”, Mafune F, Kohno JY, Takeda Y, Kondow T, JOURNAL OF PHYSICAL CHEMISTRY B, 106 (34): 8555−8561 AUG 29 2002.
【特許文献1】
特開平6−48742号公報
【特許文献2】
特開2003−2651号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の問題点を解消し非常に単純な工程で、これまで製造が困難とされていた水酸化亜鉛と界面活性剤だけから構成される水酸化亜鉛−界面活性剤層状有機無機ナノ複合体ならびにその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の目的を達成するために鋭意研究を進めたところ、アニオン性界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して、亜鉛を水溶液中に原子、イオン又はクラスターとして放出させることにより、水酸化亜鉛−有機層のナノ複合体結晶を非常に簡単な工程で得ることができるとの知見を得た。
本発明は、この知見に基づいて、
1.水酸化亜鉛と有機層とがナノメートルオーダーで交互に積層した構造を備えていることを特徴とする有機−無機ナノ複合体
2.有機層が界面活性剤であることを特徴とする上記1記載の有機−無機ナノ複合体
3.有機層がアニオン性界面活性剤であることを特徴とする上記2記載の有機−無機ナノ複合体
4.単層が1nm〜6nmである積層構造を備えていることを特徴とする上記1〜3のそれぞれに記載の有機−無機ナノ複合体
5.水酸化亜鉛の層間に有機アニオンがラメラ配列した構造を備えていることを特徴とする上記1〜4のいずれかに記載の有機−無機ナノ複合体
を提供する。
【0008】
また、さらに本発明は、
6.界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して亜鉛を水溶液中に原子、イオン、クラスターとして放出させることにより水酸化亜鉛と有機層とがナノメートルオーダーで交互に積層した構造を形成することを特徴とする有機−無機ナノ複合体の製造方法
7.界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して亜鉛を水溶液中に原子、イオン又はクラスターとして放出させることにより水酸化亜鉛と有機層とがナノメートルオーダーで交互に積層した構造を形成することを特徴とする上記2〜5のいずれかに記載の有機−無機ナノ複合体の製造方法
8.パルスレーザー光の集光照射エネルギーを印加してパルスレーザーアブレーションを行うことを特徴とする上記6又は7記載の有機−無機ナノ複合体の製造方法
9.50mJ/pulse以上のパルスエネルギーを印加することを特徴とする上記6〜8のいずれかに記載の有機−無機ナノ複合体の製造方法
10.金属亜鉛ターゲット表面に1J/cm以上のレーザー光エネルギー密度を付与することを特徴とする上記6〜9のいずれかに記載の有機−無機ナノ複合体の製造方法
11.金属亜鉛ターゲット表面に2J/cm以上のレーザー光エネルギー密度を付与することを特徴とする上記6〜9のいずれかに記載の有機−無機ナノ複合体の製造方法
12.界面活性剤としてアルキル硫酸エステル類を用いることを特徴とする上記6〜11のいずれかに記載の有機−無機ナノ複合体の製造方法
13.界面活性剤としてドデシル硫酸ナトリウムを用いることを特徴とする上記6〜11のいずれかに記載の有機−無機ナノ複合体の製造方法
14.水溶液中の界面活性剤の濃度を0.0001mol/L以上とすることを特徴とする上記6〜13のいずれかに記載の有機−無機ナノ複合体の製造方法
15.水溶液中の界面活性剤の濃度を0.001mol/L以上飽和濃度以下とすることを特徴とする上記6〜13のいずれかに記載の有機−無機ナノ複合体の製造方法
を提供する。
【0009】
【発明の実施の形態】
本発明は、上記の通り、アニオン性界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して、亜鉛を水溶液中に原子、イオン又はクラスターとして放出させ、アニオン性界面活性剤と水の存在下で反応させ、水酸化亜鉛−層状有機無機ナノ複合体結晶を非常に簡単な工程で製造するものであるが、特に金属亜鉛ターゲットにアニオン性界面活性剤水溶液中でパルスレーザー光の集光照射によりエネルギーを印加してパルスレーザーアブレーションを行うと、水酸化亜鉛−界面活性剤層状有機無機ナノ複合体結晶が高効率で得られる。
本発明の実施において、パルスレーザーアブレーションが特に有効であるが、亜鉛を原子、イオン又はクラスターとして放出させることができる強いエネルギーを印加できるものであれば、例えばパルス放電等の方法を適用することもできる。
【0010】
図1に水酸化亜鉛−界面活性剤層状有機無機ナノ複合体の製造装置(縦型セル方式製造装置1−1及び横型セル方式製造装置1−2)を示す。レーザー装置2からレーザー光反射ミラー3、集光レンズ4を介して、石英ガラスセル5に装入した亜鉛金属板ターゲット7にレーザーを照射する。
亜鉛金属板ターゲット7には98%以上の純度の亜鉛金属板を使用する。亜鉛金属板ターゲット7を石英ガラスセル5の底部または台9上の軸10に固定する。石英ガラスセル5中に界面活性剤水溶液、例えばアニオン性界面活性剤水溶液を適量加える。符号11はギアボックス、符号12はターゲット回転駆動用モーターである。
使用可能な界面活性剤は、使用するレーザー光の波長に対して強い光吸収が無ければ、どのようなものでも使用出来る。例えば、アルキル硫酸エステル類:C2n+1SNa(n=10〜18)などが使用出来る。
【0011】
界面活性剤の濃度、例えばアニオン性界面活性剤の濃度は0.0001mol/L以上あればよく、望ましくは0.001mol/L以上、界面活性剤の飽和濃度以下である。
使用可能なレーザー装置2のレーザー光波長は、使用するアニオン性界面活性剤に対して強い吸収が無ければ良く、例えばパルスNd:YAGレーザーの基本波(波長:1064nm)、第二高調波(波長:532nm)、第三高調波(波長:355nm)などが利用できる。
レーザー光のエネルギーとしてはターゲットの亜鉛金属が水溶液中で原子、イオン又はクラスターとして放出されるエネルギーがあれば良く、エネルギー源としてパルスレーザーを用いる場合には、亜鉛金属のレーザーアブレーション現象が発現するに十分に足りるエネルギーがあればよい。
パルスあたりのエネルギーとしては50mJ/pulse以上あれば十分である。ターゲット表面上でのレーザー光のエネルギー密度は1J/cm以上あればよく、望ましくは2J/cmである。
【0012】
次に実際の実験結果について説明する。図2には調製および分析手順を示す。界面活性剤として、カチオン性界面活性剤であるドデシル硫酸ナトリウムを用いてこの水溶液を調製した。水溶液中ではドデシル硫酸ナトリウムはナトリウムイオン(Na)とドデシル硫酸カチオン(C1225OSO )とに電離している。ドデシル硫酸ナトリウムの濃度は0.0001mol/Lから0.1mol/Lの範囲で変化させた。
純度99.9%の亜鉛板(サイズ20mm×20mm、厚さ5mm)を図1の装置に装着し、パルスNd:YAGレーザーの第三高調波(波長:355nm)で10Hzの繰り返し周波数を使用した。
【0013】
100mJ/pulseのパルスエネルギーでターゲット上のレーザー光のスポットサイズが直径1.5mmとなるようにレンズの位置を調製した後、ドデシル硫酸ナトリウム水溶液中でターゲット回転駆動用モーターを介してターゲットを回転させながらパルスレーザー光を1時間照射した。
これにより亜鉛が水溶液中に原子、イオン、クラスターとして放出され、ドデシル硫酸カチオンと水の存在下で直ちに反応し水酸化亜鉛−界面活性剤層状有機無機ナノ複合体が形成された。
【0014】
得られた固形物を遠心分離の後、洗浄した。洗浄と遠心分離を数回繰返して白色の固形生成物を回収した。得られた固形生成物は乾燥空気中常温で乾燥させた後にX線回折分析、透過電子顕微鏡観察および透過電子線回折による構造解析ならびにエネルギー分散型X線分析、フーリエ変換赤外吸収スペクトル測定や熱分析等によって、水酸化亜鉛−界面活性剤層状有機無機ナノ複合体のキャラクタリゼーションを行った。
【0015】
図3に水酸化亜鉛−界面活性剤層状有機無機ナノ複合体のX線回折パターンを示す。(00l)面に相当する回折ピークが観測され生成物が層状構造を有していることが分かる。
回折ピークのピーク位置から層間隔は26.52Åである事が分かった。またこの層間隔は使用するアニオン性界面活性剤の種類によって制御する事ができる。
【0016】
一般的にアニオン性界面活性剤はイオン化しているヘッドグループと、これに結合する疎水性炭化水素鎖から成っており、炭化水素鎖の鎖長が長いものほど得られる水酸化亜鉛−界面活性剤層状有機無機ナノ複合体の層間隔が大きくなる傾向になる。
図4に水酸化亜鉛−界面活性剤層状有機無機ナノ複合体の透過電子顕微鏡写真ならびに透過電子線回折パターンを示す。生成物は8角形の板状結晶で透過電子線回折パターンから無機層骨格である水酸化亜鉛層は六方晶をもつβ−Zn(OH)構造である事が分かる。
【0017】
図5に示すフーリエ変換赤外吸収スペクトル測定から生成物には明らかに水酸基および水和水をふくみ、層間にはドデシル硫酸基が挿入されていることも分かった。
またエネルギー分散型X線分析から生成物にはアニオン性界面活性剤中に含まれていたナトリウムは全く含まれておらず、Zn対S比は1:0.35またZn対C比は1:4.23である事も分かった。
図5に示した熱重量測定の結果から水酸基(OH)対HO比は1:0.13である事も分かった。これらの結果からもとめたドデシル硫酸ナトリウム水溶液中の亜鉛のレーザーアブレーションで形成される水酸化亜鉛−界面活性剤層状有機無機ナノ複合体の化学式を次式に示す。
Zn(OH)1.66(C1225SO0.34・0.22N
【0018】
さらにドデシル硫酸アニオン分子の長さを分子モデルシミュレーションにより計算し層状有機無機ナノ複合体の内でのドデシル硫酸アニオンの配列構造を解析すると、水酸化亜鉛層間中でのドデシル硫酸アニオンの配列構造は、図6に示すように水酸化亜鉛層間中でラメラ構造を形成していると考えられる。
また、オクタデシル硫酸カチオン(C1837OSO )の長さを分子モデルシミュレーションにより計算し、得られる層状有機無機ナノ複合体の層間隔を見積もると、カチオン分子の傾きによっては最大で6nmに達する水酸化亜鉛−界面活性剤層状有機無機ナノ複合体も存在することが観察された。
以上のように、アニオン性界面活性剤水溶液中で金属亜鉛表面にパルスレーザー光を集光照射して亜鉛を水溶液中に原子、イオン、クラスターとして放出させると、水酸化亜鉛の層間に有機アニオンがラメラ配列を伴い挿入された構造を有する水酸化亜鉛−界面活性剤層状有機無機ナノ複合体結晶を非常に簡単な工程で得ることができる。
【0019】
【発明の効果】
本発明は、界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して亜鉛を水溶液中に原子、イオン又はクラスターとして放出させることにより水酸化亜鉛と有機層とがナノメートルオーダーで交互に積層した構造を形成するものであり、非常に単純な工程で、これまで製造が困難とされていた水酸化亜鉛と界面活性剤だけから構成される水酸化亜鉛−界面活性剤層状有機無機ナノ複合体ならびにその製造方法を提供することができるという優れた効果を有する。
【図面の簡単な説明】
【図1】水酸化亜鉛−界面活性剤層状有機無機ナノ複合体製造装置の概略説明図である。
【図2】水酸化亜鉛−界面活性剤層状有機無機ナノ複合体の調製および分析工程を示す図である。
【図3】水酸化亜鉛−界面活性剤層状有機無機ナノ複合体のX線回折パターンを示す図である。
【図4】水酸化亜鉛−界面活性剤層状有機無機ナノ複合体の透過電子顕微鏡写真ならびに透過電子線回折パターンを示す図である。
【図5】水酸化亜鉛−界面活性剤層状有機無機ナノ複合体のフーリエ変換赤外吸収スペクトルを示す図である。
【図6】水酸化亜鉛層間中でドデシル硫酸アニオンがラメラ構造を形成した模式図である。
【符号の説明】
1−1 縦型セル方式製造装置
1−2 横型セル方式製造装置
2 レーザー装置
3 レーザー光反射ミラー
4 集光レンズ
5 石英ガラスセル
6 レーザー光
7 亜鉛金属板ターゲット
8 界面活性剤水溶液
9 台
10 軸
11 ギアボックス
12 ターゲット回転駆動用モーター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is applicable to a photofunctional material, a sensor material, a catalyst carrier, an adsorbent or a host material of an inclusion compound, etc., wherein a zinc hydroxide layer and an organic layer, particularly a surfactant layer, are on the order of nanometers. And a method for producing the same.
[0002]
[Prior art]
In recent years, organic-inorganic composite materials have attracted attention because they can improve the properties of organic materials that are relatively weak to heat, or can impart the functions of organic molecules to inorganic compounds. Among them, organic-inorganic nanocomposites with a composite structure in the nanometer order are composed of molecules and nanometer-sized clusters and fine particles, and the molecular and quantum size effects present in the nanocomposite It is expected to exhibit new physical properties due to, and is a very promising substance as an optical functional material or sensor material.
Furthermore, if a layered structure can be introduced into these nanocomposites, new molecules can be intercalated between layers on the order of nanometers, making them very useful as catalyst supports, adsorbents or host materials for inclusion compounds. It is a promising substance.
[0003]
Heretofore, as a method for producing a layered material having zinc hydroxide as a basic skeleton, a method utilizing a reaction between amorphous zinc hydroxide and an organic oxychloride or an organic carboxylic acid is known (for example, Non-Patent Documents) 1).
Further, as a method for producing a layered substance having a basic skeleton of a double hydroxide containing zinc and a surfactant, a micellar organic anionic surfactant and an uncharged organic compound are provided between layers having a basic skeleton layer of a layered double hydroxide. A method of intercalating a substance has also been reported (for example, see Patent Document 1).
However, in the case of these production methods, a step of mixing and reacting a hydroxide such as zinc hydroxide or a layered double hydroxide, which is a basic skeleton of the layered substance, with an organic molecule such as a carboxylic acid or an anionic surfactant. Prior to this, a step of synthesizing these hydroxides is also required, which has a drawback that the operation becomes extremely complicated. Until now, it has not been possible to produce a layered organic-inorganic nanocomposite consisting only of zinc hydroxide and a surfactant.
[0004]
On the other hand, there is a report of a technique for performing laser ablation using a surfactant aqueous solution. However, in this case, all methods are methods for adjusting the size of the noble metal nano-particles or obtaining manganese nanowires, and are merely methods for preparing particles of a single metal (see Non-Patent Documents 2 and 3 and Patent Document 2).
[0005]
[Non-patent document 1]
Functional Materials, “Control of Layer Space and Morphology of Layered Structure by Reaction of Zinc Hydroxide and Organic Carboxylic Acid”, Vol. 12, No. 10, pp. 45-52, 2001 [Non-Patent Document 2]
"Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control", Mafune F, Kohno JY, Takeda Y, Kondow T, JOURNAL OF PHYSICAL CHEMISTRY B, 106 (31): 7575-7577 AUG 8 2002.
[Non-Patent Document 3]
"Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation", Mafune F, Kohno JY, Takeda Y, Kondow T, JOURNAL OF PHYSICAL CHEMISTRY B, 106 (34): 8555-8561 AUG 29 2002.
[Patent Document 1]
JP-A-6-48742 [Patent Document 2]
JP-A-2003-2651
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to use a very simple process, and a zinc hydroxide-surfactant composed only of a zinc hydroxide and a surfactant which has heretofore been difficult to produce. It is to provide a layered organic-inorganic nanocomposite and a method for producing the same.
[0007]
[Means for Solving the Problems]
After extensive research to achieve the object of the present invention, by applying strong energy to the metal zinc surface in an anionic surfactant aqueous solution, the zinc is released into the aqueous solution as atoms, ions or clusters. It has been found that a nanocomposite crystal of zinc hydroxide-organic layer can be obtained in a very simple process.
The present invention is based on this finding,
1. 1. An organic-inorganic nanocomposite having a structure in which zinc hydroxide and an organic layer are alternately stacked in a nanometer order. 2. The organic-inorganic nanocomposite as described in 1 above, wherein the organic layer is a surfactant. 3. The organic-inorganic nanocomposite according to the above item 2, wherein the organic layer is an anionic surfactant. 4. The organic-inorganic nanocomposite according to any one of the above items 1 to 3, wherein the single layer has a laminated structure of 1 nm to 6 nm. 5. The organic-inorganic nanocomposite according to any one of the above items 1 to 4, wherein the organic-inorganic nanocomposite has a structure in which organic anions are lamellarly arranged between layers of zinc hydroxide.
[0008]
Further, the present invention further provides:
6. A structure in which zinc hydroxide and an organic layer are alternately laminated on the order of nanometers by applying strong energy to the surface of metallic zinc in a surfactant aqueous solution and releasing zinc as atoms, ions, and clusters in the aqueous solution 6. A method for producing an organic-inorganic nanocomposite, A structure in which zinc hydroxide and an organic layer are alternately laminated on the order of nanometers by applying strong energy to the surface of metallic zinc in a surfactant aqueous solution and releasing zinc as atoms, ions or clusters in the aqueous solution 7. The method for producing an organic-inorganic nanocomposite according to any one of the above 2 to 5, wherein The method for producing an organic-inorganic nanocomposite according to the above item 6 or 7, wherein pulsed laser ablation is performed by applying condensing irradiation energy of a pulsed laser beam. 9. Applying a pulsed energy of 9.50 mJ / pulse or more. 9. The method for producing an organic-inorganic nanocomposite according to any one of the above items 6 to 8, wherein 10. The method for producing an organic-inorganic nanocomposite according to any one of the above items 6 to 9, wherein a laser light energy density of 1 J / cm 2 or more is applied to the surface of the metal zinc target. 11. The method for producing an organic-inorganic nanocomposite according to any one of the above items 6 to 9, wherein a laser light energy density of 2 J / cm 2 or more is applied to the surface of the metal zinc target. 12. The method for producing an organic-inorganic nanocomposite according to any one of the above items 6 to 11, wherein an alkyl sulfate is used as a surfactant. 13. The method for producing an organic-inorganic nanocomposite according to any one of the above items 6 to 11, wherein sodium dodecyl sulfate is used as a surfactant. 14. The method for producing an organic-inorganic nanocomposite according to any one of the above items 6 to 13, wherein the concentration of the surfactant in the aqueous solution is 0.0001 mol / L or more. 14. The method for producing an organic-inorganic nanocomposite according to any one of 6 to 13 above, wherein the concentration of the surfactant in the aqueous solution is 0.001 mol / L or more and a saturation concentration or less.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, the present invention applies strong energy to the surface of metallic zinc in an aqueous solution of an anionic surfactant to release zinc as an atom, an ion or a cluster in the aqueous solution, and the presence of an anionic surfactant and water. The reaction is performed under the following conditions to produce a zinc hydroxide-layered organic-inorganic nanocomposite crystal in a very simple process. When pulsed laser ablation is performed by applying energy according to the method, a zinc hydroxide-surfactant layered organic-inorganic nanocomposite crystal can be obtained with high efficiency.
In the practice of the present invention, pulsed laser ablation is particularly effective.However, as long as strong energy capable of releasing zinc as atoms, ions or clusters can be applied, for example, a method such as pulse discharge may be applied. it can.
[0010]
FIG. 1 shows a zinc hydroxide-surfactant layered organic-inorganic nanocomposite manufacturing apparatus (vertical cell system manufacturing apparatus 1-1 and horizontal cell system manufacturing apparatus 1-2). The laser is irradiated from the laser device 2 to the zinc metal plate target 7 loaded in the quartz glass cell 5 via the laser light reflecting mirror 3 and the condenser lens 4.
A zinc metal plate having a purity of 98% or more is used as the zinc metal plate target 7. The zinc metal plate target 7 is fixed to the bottom of the quartz glass cell 5 or to a shaft 10 on a table 9. A suitable amount of an aqueous solution of a surfactant, for example, an aqueous solution of an anionic surfactant is added to the quartz glass cell 5. Reference numeral 11 denotes a gear box, and reference numeral 12 denotes a target rotation driving motor.
Any usable surfactant can be used as long as there is no strong light absorption for the wavelength of the laser beam to be used. For example, alkyl sulfates: C n H 2n + 1 O 4 SNa (n = 10~18) such can be used.
[0011]
The concentration of the surfactant, for example, the concentration of the anionic surfactant may be 0.0001 mol / L or more, preferably 0.001 mol / L or more and the saturation concentration of the surfactant or less.
The laser beam wavelength of the laser device 2 that can be used only needs to have no strong absorption for the anionic surfactant to be used. For example, a fundamental wave (wavelength: 1064 nm) of a pulsed Nd: YAG laser, a second harmonic (wavelength) : 532 nm), the third harmonic (wavelength: 355 nm), and the like.
The energy of the laser beam may be energy at which the target zinc metal is released as atoms, ions or clusters in an aqueous solution.If a pulsed laser is used as the energy source, the zinc metal laser ablation phenomenon may occur. All you need is enough energy.
It is sufficient that the energy per pulse is 50 mJ / pulse or more. The energy density of the laser beam on the target surface may be 1 J / cm 2 or more, preferably 2 J / cm 2 .
[0012]
Next, actual experimental results will be described. FIG. 2 shows the preparation and analysis procedure. This aqueous solution was prepared using sodium dodecyl sulfate, which is a cationic surfactant, as a surfactant. In an aqueous solution, sodium dodecyl sulfate is ionized into sodium ions (Na + ) and dodecyl sulfate cations (C 12 H 25 OSO 3 ). The concentration of sodium dodecyl sulfate was changed in the range of 0.0001 mol / L to 0.1 mol / L.
A zinc plate having a purity of 99.9% (size: 20 mm × 20 mm, thickness: 5 mm) was mounted on the apparatus shown in FIG. 1, and a repetition frequency of 10 Hz was used as the third harmonic (wavelength: 355 nm) of a pulsed Nd: YAG laser. .
[0013]
After adjusting the position of the lens so that the laser beam spot size on the target has a diameter of 1.5 mm with a pulse energy of 100 mJ / pulse, the target is rotated in a sodium dodecyl sulfate aqueous solution via a target rotation driving motor. Irradiated with pulsed laser light for 1 hour.
As a result, zinc was released into the aqueous solution as atoms, ions, and clusters, and immediately reacted with the dodecyl sulfate cation in the presence of water to form a zinc hydroxide-surfactant layered organic-inorganic nanocomposite.
[0014]
The obtained solid was washed after centrifugation. Washing and centrifugation were repeated several times to recover a white solid product. The obtained solid product is dried at room temperature in dry air, and then subjected to X-ray diffraction analysis, structural analysis by transmission electron microscope observation and transmission electron diffraction, energy dispersive X-ray analysis, Fourier transform infrared absorption spectrum measurement and heat The zinc hydroxide-surfactant layered organic-inorganic nanocomposite was characterized by analysis and the like.
[0015]
FIG. 3 shows an X-ray diffraction pattern of the zinc hydroxide-surfactant layered organic-inorganic nanocomposite. A diffraction peak corresponding to the (00l) plane is observed, indicating that the product has a layered structure.
From the peak position of the diffraction peak, it was found that the layer interval was 26.52 °. The distance between the layers can be controlled by the type of anionic surfactant used.
[0016]
In general, an anionic surfactant consists of an ionized head group and a hydrophobic hydrocarbon chain bonded to the head group. The longer the hydrocarbon chain, the more zinc hydroxide-surfactant is obtained. The layer interval of the layered organic-inorganic nanocomposite tends to increase.
FIG. 4 shows a transmission electron micrograph and a transmission electron beam diffraction pattern of the zinc hydroxide-surfactant layered organic-inorganic nanocomposite. The product is an octagonal plate-like crystal, and the transmission electron beam diffraction pattern shows that the zinc hydroxide layer, which is the inorganic layer skeleton, has a β-Zn (OH) 3 structure having a hexagonal crystal structure.
[0017]
From the Fourier transform infrared absorption spectrum measurement shown in FIG. 5, it was found that the product clearly contained a hydroxyl group and water of hydration, and that a dodecyl sulfate group was inserted between the layers.
Energy dispersive X-ray analysis showed that the product did not contain sodium contained in the anionic surfactant at all and had a Zn to S ratio of 1: 0.35 and a Zn to C ratio of 1: 0.3. It turned out that it was 4.23.
The thermogravimetric measurement results shown in FIG. 5 also showed that the ratio of hydroxyl (OH) to H 2 O was 1: 0.13. From these results, the following formula shows the chemical formula of the zinc hydroxide-surfactant layered organic-inorganic nanocomposite formed by laser ablation of zinc in the aqueous solution of sodium dodecyl sulfate.
Zn (OH) 1.66 (C 12 H 25 SO 4 ) 0.34 · 0.22N 2 O
[0018]
Furthermore, when the length of the dodecyl sulfate anion molecule is calculated by molecular model simulation and the arrangement structure of the dodecyl sulfate anion in the layered organic-inorganic nanocomposite is analyzed, the arrangement structure of the dodecyl sulfate anion between the zinc hydroxide layers is: It is considered that a lamellar structure is formed between the zinc hydroxide layers as shown in FIG.
Further, the length of the octadecyl sulfate cation (C 18 H 37 OSO 3 ) is calculated by molecular model simulation, and the layer interval of the obtained layered organic-inorganic nanocomposite is estimated to be up to 6 nm depending on the inclination of the cation molecule. It was observed that zinc hydroxide-surfactant layered organic-inorganic nanocomposites were also present.
As described above, when pulsed laser light is condensed and irradiated on the surface of metallic zinc in an aqueous solution of anionic surfactant to release zinc as atoms, ions, and clusters in the aqueous solution, organic anions are formed between the layers of zinc hydroxide. A zinc hydroxide-surfactant layered organic-inorganic nanocomposite crystal having a structure inserted with a lamellar arrangement can be obtained by a very simple process.
[0019]
【The invention's effect】
According to the present invention, zinc hydroxide and an organic layer are alternately laminated in the order of nanometers by applying strong energy to the metal zinc surface in a surfactant aqueous solution to release zinc as atoms, ions or clusters in the aqueous solution. Hydroxide-surfactant layered organic-inorganic nanocomposite consisting only of zinc hydroxide and surfactant, which has been considered to be difficult to produce in a very simple process, which forms a structured structure And an excellent effect of being able to provide a production method thereof.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of an apparatus for producing a zinc hydroxide-surfactant layered organic-inorganic nanocomposite.
FIG. 2 is a diagram showing the steps of preparing and analyzing a zinc hydroxide-surfactant layered organic-inorganic nanocomposite.
FIG. 3 is a view showing an X-ray diffraction pattern of a zinc hydroxide-surfactant layered organic-inorganic nanocomposite.
FIG. 4 shows a transmission electron micrograph and a transmission electron diffraction pattern of a zinc hydroxide-surfactant layered organic-inorganic nanocomposite.
FIG. 5 is a diagram showing a Fourier transform infrared absorption spectrum of a zinc hydroxide-surfactant layered organic-inorganic nanocomposite.
FIG. 6 is a schematic diagram in which a dodecyl sulfate anion forms a lamellar structure between zinc hydroxide layers.
[Explanation of symbols]
1-1 Vertical type cell type manufacturing apparatus 1-2 Horizontal type cell type manufacturing apparatus 2 Laser apparatus 3 Laser beam reflecting mirror 4 Condensing lens 5 Quartz glass cell 6 Laser beam 7 Zinc metal plate target 8 Surfactant aqueous solution 9 units 10 axis 11 Gearbox 12 Target rotation drive motor

Claims (15)

水酸化亜鉛と有機層とがナノメートルオーダーで交互に積層した構造を備えていることを特徴とする有機−無機ナノ複合体。An organic-inorganic nanocomposite having a structure in which zinc hydroxide and an organic layer are alternately stacked on the order of nanometers. 有機層が界面活性剤であることを特徴とする請求項1記載の有機−無機ナノ複合体。The organic-inorganic nanocomposite according to claim 1, wherein the organic layer is a surfactant. 有機層がアニオン性界面活性剤であることを特徴とする請求項2記載の有機−無機ナノ複合体。The organic-inorganic nanocomposite according to claim 2, wherein the organic layer is an anionic surfactant. 単層が1nm〜6nmである積層構造を備えていることを特徴とする請求項1〜3のそれぞれに記載の有機−無機ナノ複合体。The organic-inorganic nanocomposite according to any one of claims 1 to 3, wherein the monolayer has a laminated structure of 1 nm to 6 nm. 水酸化亜鉛の層間に有機アニオンがラメラ配列した構造を備えていることを特徴とする請求項1〜4のいずれかに記載の有機−無機ナノ複合体。The organic-inorganic nanocomposite according to any one of claims 1 to 4, having a structure in which organic anions are lamella arranged between layers of zinc hydroxide. 界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して亜鉛を水溶液中に原子、イオン、クラスターとして放出させることにより水酸化亜鉛と有機層とがナノメートルオーダーで交互に積層した構造を形成することを特徴とする有機−無機ナノ複合体の製造方法。A structure in which zinc hydroxide and organic layers are alternately laminated in the order of nanometers by applying strong energy to the surface of metallic zinc in a surfactant aqueous solution and releasing zinc as atoms, ions, and clusters in the aqueous solution A method for producing an organic-inorganic nanocomposite, comprising: 界面活性剤水溶液中で金属亜鉛表面に強いエネルギーを印加して亜鉛を水溶液中に原子、イオン又はクラスターとして放出させることにより水酸化亜鉛と有機層とがナノメートルオーダーで交互に積層した構造を形成することを特徴とする請求項2〜5のいずれかに記載の有機−無機ナノ複合体の製造方法。A structure in which zinc hydroxide and organic layers are alternately laminated on the order of nanometers by applying strong energy to the metal zinc surface in a surfactant aqueous solution and releasing zinc as atoms, ions or clusters in the aqueous solution The method for producing an organic-inorganic nanocomposite according to any one of claims 2 to 5, wherein パルスレーザー光の集光照射エネルギーを印加してパルスレーザーアブレーションを行うことを特徴とする請求項6又は7記載の有機−無機ナノ複合体の製造方法。The method for producing an organic-inorganic nanocomposite according to claim 6 or 7, wherein pulsed laser ablation is performed by applying condensing irradiation energy of pulsed laser light. 50mJ/pulse以上のパルスエネルギーを印加することを特徴とする請求項6〜8のいずれかに記載の有機−無機ナノ複合体の製造方法。The method for producing an organic-inorganic nanocomposite according to any one of claims 6 to 8, wherein a pulse energy of 50 mJ / pulse or more is applied. 金属亜鉛ターゲット表面に1J/cm以上のレーザー光エネルギー密度を付与することを特徴とする請求項6〜9のいずれかに記載の有機−無機ナノ複合体の製造方法。Organic according to any one of claims 6-9, characterized in that impart 1 J / cm 2 or more laser light energy density metallic zinc target surface - method of producing an inorganic nanocomposite. 金属亜鉛ターゲット表面に2J/cm以上のレーザー光エネルギー密度を付与することを特徴とする請求項6〜9のいずれかに記載の有機−無機ナノ複合体の製造方法。The method for producing an organic-inorganic nanocomposite according to any one of claims 6 to 9, wherein a laser light energy density of 2 J / cm2 or more is applied to the surface of the metal zinc target. 界面活性剤としてアルキル硫酸エステル類を用いることを特徴とする請求項6〜11のいずれかに記載の有機−無機ナノ複合体の製造方法。The method for producing an organic-inorganic nanocomposite according to any one of claims 6 to 11, wherein an alkyl sulfate is used as the surfactant. 界面活性剤としてドデシル硫酸ナトリウムを用いることを特徴とする請求項6〜11のいずれかに記載の有機−無機ナノ複合体の製造方法。The method for producing an organic-inorganic nanocomposite according to any one of claims 6 to 11, wherein sodium dodecyl sulfate is used as a surfactant. 水溶液中の界面活性剤の濃度を0.0001mol/L以上とすることを特徴とする請求項6〜13のいずれかに記載の有機−無機ナノ複合体の製造方法。The method for producing an organic-inorganic nanocomposite according to any one of claims 6 to 13, wherein the concentration of the surfactant in the aqueous solution is 0.0001 mol / L or more. 水溶液中の界面活性剤の濃度を0.001mol/L以上飽和濃度以下とすることを特徴とする請求項6〜13のいずれかに記載の有機−無機ナノ複合体の製造方法。The method for producing an organic-inorganic nanocomposite according to any one of claims 6 to 13, wherein the concentration of the surfactant in the aqueous solution is 0.001 mol / L or more and a saturation concentration or less.
JP2003076266A 2003-03-19 2003-03-19 Organic-inorganic nanocomposite and method for producing the same Expired - Lifetime JP4106432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076266A JP4106432B2 (en) 2003-03-19 2003-03-19 Organic-inorganic nanocomposite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076266A JP4106432B2 (en) 2003-03-19 2003-03-19 Organic-inorganic nanocomposite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004283924A true JP2004283924A (en) 2004-10-14
JP4106432B2 JP4106432B2 (en) 2008-06-25

Family

ID=33291365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076266A Expired - Lifetime JP4106432B2 (en) 2003-03-19 2003-03-19 Organic-inorganic nanocomposite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4106432B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188336A (en) * 2011-03-14 2012-10-04 Chiba Inst Of Technology Method for generating zinc oxide crystal and zinc oxide crystal
JP2013245139A (en) * 2012-05-28 2013-12-09 Chiba Inst Of Technology Method for producing zinc oxide crystal
JP2017124973A (en) * 2017-03-29 2017-07-20 学校法人千葉工業大学 Zinc oxide crystal production method
JP2018052786A (en) * 2016-09-30 2018-04-05 花王株式会社 Metallic oxide production process
KR20190034747A (en) * 2017-09-25 2019-04-03 한국에너지기술연구원 Manufacturing system of metal nanoparticles using multi laser ablation
KR20190034748A (en) * 2017-09-25 2019-04-03 한국에너지기술연구원 Manufacturing system of metal nanoparticles using laser ablation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188336A (en) * 2011-03-14 2012-10-04 Chiba Inst Of Technology Method for generating zinc oxide crystal and zinc oxide crystal
JP2013245139A (en) * 2012-05-28 2013-12-09 Chiba Inst Of Technology Method for producing zinc oxide crystal
JP2018052786A (en) * 2016-09-30 2018-04-05 花王株式会社 Metallic oxide production process
JP2017124973A (en) * 2017-03-29 2017-07-20 学校法人千葉工業大学 Zinc oxide crystal production method
KR20190034747A (en) * 2017-09-25 2019-04-03 한국에너지기술연구원 Manufacturing system of metal nanoparticles using multi laser ablation
KR20190034748A (en) * 2017-09-25 2019-04-03 한국에너지기술연구원 Manufacturing system of metal nanoparticles using laser ablation
KR101982934B1 (en) 2017-09-25 2019-05-27 한국에너지기술연구원 Manufacturing system of metal nanoparticles using laser ablation
KR101982933B1 (en) 2017-09-25 2019-08-28 한국에너지기술연구원 Manufacturing system of metal nanoparticles using multi laser ablation

Also Published As

Publication number Publication date
JP4106432B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
Wang et al. CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres
Qin et al. Template‐free fabrication of Bi2O3 and (BiO) 2CO3 nanotubes and their application in water treatment
Huang et al. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide
He et al. Hydrothermal preparation of boehmite nanorods by selective adsorption of sulfate
Liu et al. Micro-and nanocubes of carbon with C8-like and blue luminescence
Mi et al. Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures
Alavi et al. Syntheses of BaCO3 nanostructures by ultrasonic method
Wang et al. Apple pectin-mediated green synthesis of hollow double-caged peanut-like ZnO hierarchical superstructures and photocatalytic applications
Liang et al. Self-assembled 3D flower-like α-Fe2O3 microstructures and their superior capability for heavy metal ion removal
Jiang et al. Potassium niobate nanostructures: controllable morphology, growth mechanism, and photocatalytic activity
Wen et al. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications
Tripathi et al. Synthesis of hollow nanotubes of Zn2SiO4 or SiO2: mechanistic understanding and uranium adsorption behavior
Yang et al. Controlled synthesis of hierarchical flower-like Sb2WO6 microspheres: photocatalytic and superhydrophobic property
JP4843779B2 (en) Method for producing zinc oxide nanoparticles for ultraviolet light emitters
Bayat et al. Optical and magnetic properties of zinc vanadates: synthetic design of colloidal Zn 3 V 2 O 7 (OH) 2 (H 2 O) 2, ZnV 2 O 4 and Zn 3 V 2 O 8 nanostructures
Tavakoli et al. A facile synthesis of CuI-graphene nanocomposite by glucose as a green capping agent and reductant
Wang et al. Yolk–shell ZnWO 4 microspheres: one-pot synthesis, characterization and photocatalytic properties
Mousavi-Kamazani et al. One-step ultrasonic production of novel worm-like Bi 7 (PO 4) O 9 photocatalyst for efficient degradation of ciprofloxacin antibiotic under simulated solar light
Zou et al. A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance
JP4106432B2 (en) Organic-inorganic nanocomposite and method for producing the same
Zhu et al. Facile hydrothermal synthesis of hierarchical porous priceite (Ca 4 B 10 O 19· 7H 2 O) microspheres as high-efficiency adsorbents for heavy metal ions removal
Nakagawa et al. Template effect of phosphate surfactant on formation of hydroxyapatite nanostructures with various shapes
Wang et al. Needle-like calcium carbonate assisted self-assembly of mesostructured hollow silica nanotubes
Chang et al. Synthesis of lignosulfonate-assisted flower-like titanate nanostructures and their excellent performance for heavy metal removal
Shahi et al. Investigation of morphologies, photoluminescence and photocatalytic properties of ZnO nanostructures fabricated using different basic ionic liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

R150 Certificate of patent or registration of utility model

Ref document number: 4106432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term