JP2004282592A - Non-reciprocal circuit element - Google Patents

Non-reciprocal circuit element Download PDF

Info

Publication number
JP2004282592A
JP2004282592A JP2003073942A JP2003073942A JP2004282592A JP 2004282592 A JP2004282592 A JP 2004282592A JP 2003073942 A JP2003073942 A JP 2003073942A JP 2003073942 A JP2003073942 A JP 2003073942A JP 2004282592 A JP2004282592 A JP 2004282592A
Authority
JP
Japan
Prior art keywords
conductor
permanent magnet
terminal portion
center
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073942A
Other languages
Japanese (ja)
Inventor
Minoru Ueda
穣 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003073942A priority Critical patent/JP2004282592A/en
Publication of JP2004282592A publication Critical patent/JP2004282592A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an insertion loss characteristic and an isolation characteristic in a non-reciprocal circuit element. <P>SOLUTION: In the non-reciprocal circuit element, a magnetic assembly 2 is placed in piles on a permanent magnet 8. The magnetic assembly 2 is configured by winding first, second and third center conductors around a magnetic body. An input terminal portion 32 provided at an end of the first center conductor and an output terminal 42 provided at an end of the second center conductor are connected to an input terminal and an output terminal for external connection, respectively, and a resistive connection terminal portion 52 provided at an end of the third center conductor is connected to a termination resistor. The permanent magnet 8 is formed with a pair of thick plates 82 and a thin plate 81 placed in-between. A conductor region coupled to the input terminal portion 32 is placed opposite to one of the thick plates 82 while the conductor region coupled to the output terminal 42 is placed opposite to the other thick plate 82. The conductor region coupled to the resistive connection terminal portion 52 is place opposite to the thin plate 81. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、VHF、UHF、SHF等の無線周波数帯域の伝送回路に用いられるアイソレータ、サーキュレータ等の非可逆回路素子に関するものである。
【0002】
【従来の技術】
携帯電話機においては、図9に示す如く、送信回路の増幅器PAと送受信アンテナとの間にアイソレータを配備して、アンテナから増幅器PAに戻ってくる反射信号を吸収して増幅器PAを保護し、更には、増幅器PAの負荷インピーダンスを安定させて、アンテナのインピーダンス変動に拘わらず増幅器PAの安定動作を図ることが行なわれている(例えば非特許文献1参照)。
アイソレータは、信号の伝送方向には減衰量が極めて小さく、逆方向には減衰量が極めて大きい特性を有している。
【0003】
図8に示す如く、アイソレータ(1)は、磁性体金属からなるコ字状の上シールド板(11)と磁性体金属からなるコ字状の下シールド板(12)とを組み合わせて、磁気閉回路を形成し、該磁気閉回路内に、永久磁石(13)、磁性組立体(2)、及び樹脂フレーム(7)を配備して構成されている。
【0004】
磁性組立体(2)は、フェライトからなる直方体状の磁性体(21)と、該磁性体(21)の周囲に巻き付けられた3枚の中心導体(3)(4)(5)とから構成されている。これらの中心電極(3)(4)(5)は、絶縁シート(図示省略)を介して互いに重ねられると共に、磁性体(21)の上面にて所定の角度(例えば120度)で交差させて配置され、各中心電極(3)(4)(5)の一端に設けられた端子部(32)(42)(52)が外方へ突出する一方、各中心電極(3)(4)(5)の他端に設けられたアース部(図示省略)が、磁性体(21)の底面に接続されている。
【0005】
図7の如く、樹脂フレーム(7)には、磁性組立体(2)が収容されると共に、該磁性組立体(2)を包囲して配置された3つの整合用コンデンサ(6)(61)(62)と1つの終端抵抗(63)とが収容され、前記中心電極(3)(4)(5)の端子部(32)(42)(52)が該整合用コンデンサ(6)(61)(62)にそれぞれ接続されている。又、第1中心導体(3)の端部に設けられた入力端子部(32)と第2中心導体(4)の端部に設けられた出力端子部(42)が、樹脂フレーム(7)に配備された外部接続用の入力端子(71)及び出力端子(72)にそれぞれ接続され、第3の中心導体(5)の端部に設けられた抵抗接続端子部(52)が終端抵抗(63)に接続されている(図10参照)。
【0006】
樹脂フレーム(7)には、磁性組立体(2)の収容空間と各整合用コンデンサ(6)(61)(62)の収容空間とを仕切る仕切り壁(73)(74)(75)が形成されており、これによって、組立工程の半田リフローの際に磁性組立体(2)と整合用コンデンサ(6)(61)(62)とが互いに接触することを防止している。
【0007】
【特許文献1】
特許第3303871号公報
【特許文献2】
特開平10−41707号公報
【非特許文献1】
雑誌「電子材料」1999年4月号第96頁〜第98頁
【0008】
【発明が解決しようとする課題】
上述のアイソレータにおいて、中心電極(3)(4)(5)の交差角度は、アイソレータの特性を左右する重要な要素であり、アイソレーション特性は交差角度が120度のときに最も良好となり、インサーションロス(挿入損失)は交差角度が鈍角になるほど良好となる。
即ち、図3及び図4に示す様に、交差角度120度に対応した高周波磁界の回転角を得るフェライトに印加される直流バイアス磁界では、磁性体損失μ″が大きくなり、インサーションロスが増大することになる。ここで、高周波磁界の回転角はμ′とμ′との差で決定され、磁界が強いほど回転角は小さく、磁界が弱いほど回転角は大きくなる。また交差角度120度での動作点におけるμ″とμ″との差が磁性体損失分となる。
【0009】
図5に示す如く交差角度θ1及びθ2はそれぞれ回転角の補角をなし、交差角度θ1及びθ2に対してインサーションロスIL(dB)とアイソレーションISO(dB)は図6の如く変化する。
ここで、交差角度θ1が120度よりも大きくなると、交差角度θ2が120度よりも小さくなるために、インサーションロスILが低減する磁界では、アイソレーションISOが低下し、インサーションロス特性とアイソレーション特性の両方を同時に改善することが出来ない問題があった。
【0010】
そこで本発明の目的は、インサーションロス特性とアイソレーション特性の両方を同時に改善することが出来る非可逆回路素子を提供することである。
【0011】
【課題を解決する為の手段】
本発明に係る非可逆回路素子においては、磁気シールドされた空間の内部に永久磁石(8)が配置され、該永久磁石(8)に重ねて磁性組立体(2)が配備されている。
磁性組立体(2)は、磁性体(21)と、該磁性体(21)に所定の交差角度で巻き付けられた第1乃至第3の中心導体(3)(4)(5)とを具えており、中心導体(3)(4)(5)の端部が3つの整合用コンデンサ(6)(61)(62)にそれぞれ接続されると共に、第1中心導体(3)の端部に設けられた入力端子部(32)と第2中心導体(4)の端部に設けられた出力端子部(42)が、外部接続用の入力端子(71)及び出力端子(72)にそれぞれ接続され、第3の中心導体(5)の端部に設けられた抵抗接続端子部(52)が終端抵抗(63)に接続されている。
又、永久磁石(8)は、第1中心導体(3)の入力端子部(32)側の導体領域と第2中心導体(4)の出力端子部(42)側の導体領域に強い磁界を及ぼす一方、第3中心導体(5)の抵抗接続端子部(52)側の導体領域に弱い磁界を及ぼす磁界分布を有している。
【0012】
本発明に係る非可逆回路素子においては、入力端子(71)から第1中心導体(3)の入力端子部(32)に信号が入力されると、該信号は、第1中心導体(3)の入力端子部(32)側の導体領域を伝わった後、永久磁石(8)からの磁界が作用する磁性体(21)の特性によってマイクロ波の進行方向が約60度回転し、その後は第2中心導体(4)の出力端子部(42)側の導体領域を伝わって、出力端子部(42)から出力端子(72)に出力される。
この信号の流れにおいて、信号は、第1中心導体(3)の入力端子部(32)側の導体領域を伝わる過程と、第2中心導体(4)の出力端子部(42)側の導体領域を伝わる過程で、2度に亘って永久磁石(8)からの強い磁界を受けるので、これによって回転角が小さくなり(図4参照)、よって交差角度が大きくなって、インサーションロスは減少することになる(図6参照)。
【0013】
逆に、出力端子(72)から第2中心導体(4)の出力端子部(42)に入力された信号は、第2中心導体(4)の出力端子部(42)側の導体領域を伝わった後、同様にマイクロ波の進行方向が約60度回転し、その後は第3中心導体(5)の抵抗接続端子部(52)側の導体領域を伝わって、抵抗接続端子部(52)から終端抵抗(63)へ出力され、該終端抵抗(63)によって吸収されることになる。
この信号の流れにおいて、信号は、第2中心導体(4)の出力端子部(42)側の導体領域を伝わる過程で永久磁石(8)から強い磁界を受けるものの、第3中心導体(5)の抵抗接続端子部(52)側の導体領域を伝わる過程では、永久磁石(8)から弱い磁界を受けるので、平均的な磁界は弱くなり、これによって回転角が大きくなり(図4参照)、よって交差角度が小さくなって、アイソレーションは増大することになる(図6参照)。
【0014】
具体的構成において、永久磁石(8)及び磁性組立体(2)はそれぞれ直方体状に形成され、永久磁石(8)は、薄板部(81)の両側に左右一対の厚板部(82)(82)を形成してなり、第1中心導体(3)の入力端子部(32)は永久磁石(8)の一方の厚板部(82)の近傍位置に配置され、第2中心導体(4)の出力端子部(42)は永久磁石(8)の他方の厚板部(82)の近傍位置に配置され、第3中心導体(5)の抵抗接続端子部(52)は永久磁石(8)の薄板部(81)の近傍位置に配置されている。
【0015】
該具体的構成においては、永久磁石(8)の片面に1本の溝を凹設するだけで薄板部(81)と厚板部(82)(82)を形成することが出来、該厚板部(82)(82)によって、第1中心導体(3)の入力端子部(32)側の導体領域と第2中心導体(4)の出力端子部(42)側の導体領域に強い磁界を及ぼすことが出来ると共に、該薄板部(81)によって、第3中心導体(5)の抵抗接続端子部(52)側の導体領域に弱い磁界を及ぼすことが出来る。
【0016】
【発明の効果】
本発明に係る非可逆回路素子によれば、信号を通過させるべき信号の流れに対してはインサーションロスを低減させる一方、信号の通過を阻止すべき信号の流れに対してはアイソレーションを増大させることが出来るので、インサーションロス特性とアイソレーション特性の両方を同時に改善することが出来る。
【0017】
【発明の実施の形態】
以下、本発明をアイソレータに実施した形態につき、図面に沿って具体的に説明する。
本発明に係るアイソレータは、図8に示す従来のアイソレータ(1)と同様に、磁性体金属からなるコ字状の上シールド板(11)と磁性体金属からなるコ字状の下シールド板(12)とを組み合わせて、磁気閉回路を形成し、該磁気閉回路内に、永久磁石(13)、磁性組立体(2)、及び樹脂フレーム(7)を配備している点で同一構造を有しているが、後述の如く永久磁石の形状が従来と異なっている。
【0018】
又、磁性組立体(2)は、フェライトからなる直方体状の磁性体(21)と、該磁性体(21)の周囲に巻き付けられた3枚の中心導体(3)(4)(5)とから構成されている。これらの中心電極(3)(4)(5)は、絶縁シート(図示省略)を介して互いに重ねられると共に、磁性体(21)の上面にて所定の角度(例えば120度)で交差させて配置され、各中心電極(3)(4)(5)の一端に設けられた端子部(32)(42)(52)が外方へ突出する一方、各中心電極(3)(4)(5)の他端に設けられたアース部(図示省略)が、磁性体(21)の底面に接続されている。
【0019】
図7の如く、樹脂フレーム(7)には、磁性組立体(2)が収容されると共に、該磁性組立体(2)を包囲して配置された3つの整合用コンデンサ(6)(61)(62)と1つの終端抵抗(63)とが収容され、前記中心電極(3)(4)(5)の端子部(32)(42)(52)が該整合用コンデンサ(6)(61)(62)にそれぞれ接続されている。又、第1中心導体(3)の端部に設けられた入力端子部(32)と第2中心導体(4)の端部に設けられた出力端子部(42)が、樹脂フレーム(7)に配備された外部接続用の入力端子(71)及び出力端子(72)にそれぞれ接続され、第3の中心導体(5)の端部に設けられた抵抗接続端子部(52)が終端抵抗(63)に接続されている(図10参照)。
【0020】
本発明に係るアイソレータにおいては、図1及び図2に示す如く、永久磁石(8)が、薄板部(81)の両側に一対の厚板部(82)(82)を形成して構成されており、例えば全体の厚さが0.6mmに形成されている。
ここで、永久磁石(8)の厚板部(82)(82)は、磁性組立体(2)を構成する第1中心導体(3)の入力端子部(32)側の導体領域と第2中心導体(4)の出力端子部(42)側の導体領域に対応し、永久磁石(8)の薄板部(81)は、第3中心導体(5)の抵抗接続端子部(52)側の導体領域に対応している。
【0021】
上記アイソレータにおいては、第1中心導体(3)の入力端子部(32)に信号が入力されると、該信号S1は、図2中に矢印で示す様に、第1中心導体(3)の入力端子部(32)側の導体領域A1を伝わった後、永久磁石(8)からの磁界を受けてマイクロ波の進行方向が約60度回転し、その後は第2中心導体(4)の出力端子部(42)側の導体領域A2を伝わって、出力端子部(42)から出力される。
【0022】
この信号の流れにおいて、信号S1は、第1中心導体(3)の入力端子部(32)側の導体領域A1を伝わる過程と、第2中心導体(4)の出力端子部(42)側の導体領域A2を伝わる過程で、2度に亘って永久磁石(8)の厚板部(82)(82)からの強い磁界を受けるので、これによって図4の如く回転角が小さくなり、よって交差角度が大きくなって、図6の如くインサーションロスILは減少することになる。
【0023】
逆に、アンテナから第2中心導体(4)の出力端子部(42)に信号が入力されたとき、該信号S2は、図2中に矢印で示す様に第2中心導体(4)の出力端子部(42)側の導体領域A2を伝わった後、永久磁石(8)から磁界を受けてマイクロ波の進行方向が約60度回転し、その後は第3中心導体(5)の抵抗接続端子部(52)側の導体領域を伝わって、抵抗接続端子部(52)から前記終端抵抗(63)へ出力され、該終端抵抗(63)によって吸収されることになる。
【0024】
この信号の流れにおいて、信号S2は、第2中心導体(4)の出力端子部(42)側の導体領域A2を伝わる過程で永久磁石(8)の厚板部(82)から強い磁界を受けるものの、第3中心導体(5)の抵抗接続端子部(52)側の導体領域を伝わる過程では、永久磁石(8)の薄板部(81)から弱い磁界を受けるので、平均的な磁界は弱くなり、これによって図4の如く回転角が大きくなり、よって交差角度が小さくなって、図6の如くアイソレーションISOは増大することになる。
【0025】
従って、本発明に係るアイソレータによれば、信号を通過させるべき信号の流れに対してはインサーションロスを低減させる一方、信号の通過を阻止すべき信号の流れに対してはアイソレーションを増大させることが出来、インサーションロス特性とアイソレーション特性の両方を同時に改善することが出来る。
又、永久磁石(8)の片面に1本の溝を凹設するだけで薄板部(81)と厚板部(82)(82)を形成することが出来るので、製造コストの増大を招くことはない。
【図面の簡単な説明】
【図1】本発明に係るアイソレータを構成する永久磁石の斜視図である。
【図2】磁性組立体における信号の流れを説明する図である。
【図3】磁性組立体の特性を示すグラフである。
【図4】図3のB部を拡大して示すグラフである。
【図5】回転角と交差角度の関係を説明する図である。
【図6】回転角とインサーションロス及びアイソレーションの関係を示すグラフである。
【図7】従来のアイソレータの構成を示す平面図である。
【図8】従来のアイソレータの分解斜視図である。
【図9】携帯電話機の送受信部の構成を示すブロック図である。
【図10】アイソレータの電気的構成を表わす等価回路図である。
【符号の説明】
(1) アイソレータ
(2) 磁性組立体
(21) 磁性体
(3) 中心導体
(32) 入力端子部
(4) 中心導体
(42) 出力端子部
(5) 中心導体
(52) 抵抗接続端子部
(6) 整合用コンデンサ
(61) 整合用コンデンサ
(62) 整合用コンデンサ
(63) 終端抵抗
(8) 永久磁石
(81) 薄板部
(82) 厚板部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to non-reciprocal circuit devices such as isolators and circulators used for transmission circuits in a radio frequency band such as VHF, UHF, and SHF.
[0002]
[Prior art]
In a mobile phone, as shown in FIG. 9, an isolator is provided between an amplifier PA of a transmission circuit and a transmission / reception antenna to absorb a reflected signal returning from the antenna to the amplifier PA to protect the amplifier PA. Discloses a technique for stabilizing the load impedance of the amplifier PA and stabilizing the operation of the amplifier PA irrespective of variations in the impedance of the antenna (for example, see Non-Patent Document 1).
The isolator has such a characteristic that the amount of attenuation is extremely small in the signal transmission direction and the amount of attenuation is extremely large in the reverse direction.
[0003]
As shown in FIG. 8, the isolator (1) is composed of a U-shaped upper shield plate (11) made of a magnetic metal and a U-shaped lower shield plate (12) made of a magnetic metal, and is magnetically closed. A circuit is formed, and a permanent magnet (13), a magnetic assembly (2), and a resin frame (7) are provided in the magnetic closed circuit.
[0004]
The magnetic assembly (2) includes a rectangular parallelepiped magnetic body (21) made of ferrite, and three center conductors (3), (4), and (5) wound around the magnetic body (21). Have been. These center electrodes (3), (4), and (5) are overlapped with each other via an insulating sheet (not shown), and intersect at a predetermined angle (for example, 120 degrees) on the upper surface of the magnetic body (21). The terminal portions (32), (42), (52) provided at one end of each of the center electrodes (3), (4), (5) protrude outward, while the respective center electrodes (3), (4), ( An earth portion (not shown) provided at the other end of 5) is connected to the bottom surface of the magnetic body (21).
[0005]
As shown in FIG. 7, a magnetic assembly (2) is accommodated in a resin frame (7), and three matching capacitors (6) (61) arranged so as to surround the magnetic assembly (2). (62) and one terminating resistor (63) are accommodated therein, and the terminal portions (32), (42), (52) of the center electrodes (3), (4), (5) are connected to the matching capacitors (6), (61). ) (62). The input terminal portion (32) provided at the end of the first center conductor (3) and the output terminal portion (42) provided at the end of the second center conductor (4) are formed of a resin frame (7). Are connected to an input terminal (71) and an output terminal (72) for external connection provided at the end of the third central conductor (5), respectively. 63) (see FIG. 10).
[0006]
Partition walls (73), (74), (75) are formed in the resin frame (7) to separate the accommodating space of the magnetic assembly (2) and the accommodating spaces of the matching capacitors (6), (61), (62). This prevents the magnetic assembly (2) and the matching capacitors (6) (61) (62) from coming into contact with each other during solder reflow in the assembly process.
[0007]
[Patent Document 1]
Japanese Patent No. 3303831 [Patent Document 2]
JP-A-10-41707 [Non-Patent Document 1]
Magazine "Electronic Materials" April 1999, pp. 96-98
[Problems to be solved by the invention]
In the above-described isolator, the crossing angle of the center electrodes (3), (4), and (5) is an important factor influencing the characteristics of the isolator. The isolation characteristics are best when the crossing angle is 120 degrees. The insertion loss becomes better as the intersection angle becomes obtuse.
That is, as shown in FIGS. 3 and 4, in a DC bias magnetic field applied to a ferrite that obtains a rotation angle of a high-frequency magnetic field corresponding to a crossing angle of 120 degrees, the magnetic material loss μ + ″ increases, and the insertion loss decreases. will increase here, the rotation angle of the high-frequency magnetic field 'and μ -' μ +.. is determined by the difference between the rotation angle as the magnetic field is strong is small, the rotation angle as the magnetic field is weak increases also intersect angle 120 degrees "and mu -" mu + at the operating point of the difference between the is magnetic loss.
[0009]
As shown in FIG. 5, the intersection angles θ1 and θ2 form complementary angles of the rotation angle, and the insertion loss IL (dB) and the isolation ISO (dB) change as shown in FIG. 6 with respect to the intersection angles θ1 and θ2.
Here, if the crossing angle θ1 becomes larger than 120 degrees, the crossing angle θ2 becomes smaller than 120 degrees. Therefore, in a magnetic field in which the insertion loss IL decreases, the isolation ISO decreases, and the insertion loss characteristic and the isolation loss are reduced. There is a problem that it is not possible to improve both of the characterization characteristics at the same time.
[0010]
Accordingly, an object of the present invention is to provide a non-reciprocal circuit device capable of simultaneously improving both the insertion loss characteristics and the isolation characteristics.
[0011]
[Means for solving the problem]
In the non-reciprocal circuit device according to the present invention, the permanent magnet (8) is disposed inside the magnetically shielded space, and the magnetic assembly (2) is provided so as to overlap the permanent magnet (8).
The magnetic assembly (2) includes a magnetic body (21) and first to third center conductors (3), (4), and (5) wound around the magnetic body (21) at a predetermined crossing angle. The ends of the center conductors (3), (4), (5) are connected to three matching capacitors (6), (61), (62), respectively, and are connected to the ends of the first center conductor (3). The provided input terminal portion (32) and the output terminal portion (42) provided at the end of the second center conductor (4) are connected to the input terminal (71) and the output terminal (72) for external connection, respectively. The resistance connection terminal (52) provided at the end of the third center conductor (5) is connected to the terminating resistor (63).
The permanent magnet (8) applies a strong magnetic field to the conductor region of the first center conductor (3) on the input terminal portion (32) side and the conductor region of the second center conductor (4) on the output terminal portion (42) side. On the other hand, the third central conductor (5) has a magnetic field distribution that applies a weak magnetic field to the conductor region on the resistance connection terminal (52) side.
[0012]
In the non-reciprocal circuit device according to the present invention, when a signal is input from the input terminal (71) to the input terminal portion (32) of the first central conductor (3), the signal is transmitted to the first central conductor (3). After transmitting through the conductor region on the side of the input terminal section (32), the traveling direction of the microwave is rotated by about 60 degrees due to the characteristics of the magnetic body (21) on which the magnetic field from the permanent magnet (8) acts. The output is transmitted from the output terminal portion (42) to the output terminal (72) through the conductor region on the output terminal portion (42) side of the two center conductors (4).
In this signal flow, the signal travels through the conductor area on the input terminal portion (32) side of the first central conductor (3) and the conductor area on the output terminal portion (42) side of the second central conductor (4). In the process of transmitting the magnetic field, a strong magnetic field from the permanent magnet (8) is received twice, so that the rotation angle is reduced (see FIG. 4), so that the intersection angle is increased and the insertion loss is reduced. (See FIG. 6).
[0013]
Conversely, a signal input from the output terminal (72) to the output terminal portion (42) of the second center conductor (4) travels through the conductor region on the output terminal portion (42) side of the second center conductor (4). After that, similarly, the traveling direction of the microwave is rotated by about 60 degrees, and thereafter, the microwave travels through the conductor region on the resistance connection terminal portion (52) side of the third center conductor (5), and from the resistance connection terminal portion (52). It is output to the terminating resistor (63) and absorbed by the terminating resistor (63).
In this signal flow, although the signal receives a strong magnetic field from the permanent magnet (8) in the process of transmitting through the conductor region on the output terminal portion (42) side of the second central conductor (4), the third central conductor (5) In the process of transmitting through the conductor region on the side of the resistance connection terminal portion (52), a weak magnetic field is received from the permanent magnet (8), so that the average magnetic field is weakened, thereby increasing the rotation angle (see FIG. 4). Therefore, the intersection angle becomes smaller, and the isolation increases (see FIG. 6).
[0014]
In a specific configuration, the permanent magnet (8) and the magnetic assembly (2) are each formed in the shape of a rectangular parallelepiped, and the permanent magnet (8) has a pair of left and right thick plate portions (82) on both sides of the thin plate portion (81). 82), the input terminal portion (32) of the first center conductor (3) is arranged in the vicinity of one thick plate portion (82) of the permanent magnet (8), and the second center conductor (4) is formed. ) Is located near the other thick plate portion (82) of the permanent magnet (8), and the resistance connection terminal portion (52) of the third central conductor (5) is connected to the permanent magnet (8). ) Is disposed near the thin plate portion (81).
[0015]
In this specific configuration, the thin plate portion (81) and the thick plate portions (82) (82) can be formed only by recessing one groove on one side of the permanent magnet (8). A strong magnetic field is applied to the conductor region of the first central conductor (3) on the input terminal portion (32) side and the conductor region of the second central conductor (4) on the output terminal portion (42) side by the portions (82) and (82). The thin plate portion (81) can apply a weak magnetic field to the conductor region of the third central conductor (5) on the side of the resistance connection terminal (52).
[0016]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the non-reciprocal circuit element which concerns on this invention, while reducing the insertion loss with respect to the flow of the signal which should let a signal pass, increasing the isolation with respect to the flow of the signal which should block the passage of a signal Therefore, both the insertion loss characteristic and the isolation characteristic can be simultaneously improved.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention applied to an isolator will be specifically described with reference to the drawings.
Similar to the conventional isolator (1) shown in FIG. 8, the isolator according to the present invention includes a U-shaped upper shield plate (11) made of a magnetic metal and a U-shaped lower shield plate (11) made of a magnetic metal. 12) are combined to form a magnetically closed circuit, and the same structure is provided in that a permanent magnet (13), a magnetic assembly (2), and a resin frame (7) are provided in the magnetically closed circuit. However, as described later, the shape of the permanent magnet is different from the conventional one.
[0018]
The magnetic assembly (2) includes a rectangular parallelepiped magnetic body (21) made of ferrite, and three center conductors (3), (4), and (5) wound around the magnetic body (21). It is composed of These center electrodes (3), (4), and (5) are overlapped with each other via an insulating sheet (not shown), and intersect at a predetermined angle (for example, 120 degrees) on the upper surface of the magnetic body (21). The terminal portions (32), (42), (52) provided at one end of each of the center electrodes (3), (4), (5) protrude outward, while the respective center electrodes (3), (4), ( An earth portion (not shown) provided at the other end of 5) is connected to the bottom surface of the magnetic body (21).
[0019]
As shown in FIG. 7, a magnetic assembly (2) is accommodated in a resin frame (7), and three matching capacitors (6) (61) arranged so as to surround the magnetic assembly (2). (62) and one terminating resistor (63) are accommodated therein, and the terminal portions (32), (42), (52) of the center electrodes (3), (4), (5) are connected to the matching capacitors (6), (61). ) (62). The input terminal portion (32) provided at the end of the first center conductor (3) and the output terminal portion (42) provided at the end of the second center conductor (4) are formed of a resin frame (7). Are connected to an input terminal (71) and an output terminal (72) for external connection provided at the end of the third central conductor (5), respectively. 63) (see FIG. 10).
[0020]
In the isolator according to the present invention, as shown in FIGS. 1 and 2, the permanent magnet (8) is formed by forming a pair of thick plates (82) and (82) on both sides of the thin plate (81). For example, the entire thickness is formed to be 0.6 mm.
Here, the thick plate portions (82) and (82) of the permanent magnet (8) are connected to the conductor region on the input terminal portion (32) side of the first center conductor (3) constituting the magnetic assembly (2) and the second conductor. The thin plate portion (81) of the permanent magnet (8) corresponds to the conductor region on the output terminal portion (42) side of the center conductor (4), and is connected to the resistance connection terminal portion (52) side of the third center conductor (5). It corresponds to the conductor area.
[0021]
In the above isolator, when a signal is input to the input terminal portion (32) of the first center conductor (3), the signal S1 is applied to the first center conductor (3) as shown by an arrow in FIG. After propagating through the conductor region A1 on the input terminal portion (32) side, the traveling direction of the microwave is rotated by about 60 degrees by receiving a magnetic field from the permanent magnet (8), and thereafter the output of the second central conductor (4) The signal is transmitted from the conductor area A2 on the terminal (42) side and is output from the output terminal (42).
[0022]
In this signal flow, the signal S1 propagates through the conductor region A1 on the input terminal portion (32) side of the first central conductor (3) and the signal S1 on the output terminal portion (42) side of the second central conductor (4). In the process of traveling through the conductor region A2, a strong magnetic field is applied twice from the thick plates (82) and (82) of the permanent magnet (8), thereby reducing the rotation angle as shown in FIG. As the angle increases, the insertion loss IL decreases as shown in FIG.
[0023]
Conversely, when a signal is input from the antenna to the output terminal (42) of the second center conductor (4), the signal S2 is output from the second center conductor (4) as indicated by the arrow in FIG. After traveling through the conductor area A2 on the terminal part (42) side, the traveling direction of the microwave is rotated by about 60 degrees by receiving a magnetic field from the permanent magnet (8), and thereafter, the resistance connection terminal of the third central conductor (5) The signal is transmitted from the resistance connection terminal portion (52) to the terminating resistor (63) through the conductor region on the part (52) side, and is absorbed by the terminating resistor (63).
[0024]
In this signal flow, the signal S2 receives a strong magnetic field from the thick plate portion (82) of the permanent magnet (8) in the process of transmitting through the conductor region A2 on the output terminal portion (42) side of the second central conductor (4). However, since the weak magnetic field is received from the thin plate portion (81) of the permanent magnet (8) in the process of transmitting through the conductor region of the third center conductor (5) on the resistance connection terminal portion (52) side, the average magnetic field is weak. As a result, the rotation angle increases as shown in FIG. 4 and the intersection angle decreases, and the isolation ISO increases as shown in FIG.
[0025]
Therefore, according to the isolator of the present invention, the insertion loss is reduced with respect to the flow of a signal through which a signal is to be passed, while the isolation is increased with respect to the flow of a signal through which a signal is to be blocked. As a result, both the insertion loss characteristic and the isolation characteristic can be simultaneously improved.
Further, the thin plate portion (81) and the thick plate portions (82) (82) can be formed only by recessing one groove on one surface of the permanent magnet (8), thereby increasing the manufacturing cost. There is no.
[Brief description of the drawings]
FIG. 1 is a perspective view of a permanent magnet constituting an isolator according to the present invention.
FIG. 2 is a diagram for explaining a signal flow in the magnetic assembly.
FIG. 3 is a graph showing characteristics of the magnetic assembly.
FIG. 4 is an enlarged graph showing a portion B in FIG. 3;
FIG. 5 is a diagram illustrating a relationship between a rotation angle and an intersection angle.
FIG. 6 is a graph showing a relationship between a rotation angle and insertion loss and isolation.
FIG. 7 is a plan view showing a configuration of a conventional isolator.
FIG. 8 is an exploded perspective view of a conventional isolator.
FIG. 9 is a block diagram illustrating a configuration of a transmission / reception unit of the mobile phone.
FIG. 10 is an equivalent circuit diagram illustrating an electrical configuration of the isolator.
[Explanation of symbols]
(1) Isolator (2) Magnetic assembly (21) Magnetic body (3) Center conductor (32) Input terminal (4) Center conductor (42) Output terminal (5) Center conductor (52) Resistance connection terminal ( 6) Matching capacitor (61) Matching capacitor (62) Matching capacitor (63) Terminating resistor (8) Permanent magnet (81) Thin plate part (82) Thick plate part

Claims (2)

磁気シールドされた空間の内部に永久磁石(8)が配置され、該永久磁石(8)に重ねて磁性組立体(2)が配備され、該磁性組立体(2)は、磁性体(21)と、該磁性体(21)に所定の交差角度で巻き付けられた第1乃至第3の中心導体(3)(4)(5)とを具え、該中心導体(3)(4)(5)の端部が3つの整合用コンデンサ(6)(61)(62)にそれぞれ接続されると共に、第1中心導体(3)の端部に設けられた入力端子部(32)と第2中心導体(4)の端部に設けられた出力端子部(42)が、外部接続用の入力端子(71)及び出力端子(72)にそれぞれ接続され、第3の中心導体(5)の端部に設けられた抵抗接続端子部(52)が終端抵抗(63)に接続されている非可逆回路素子において、永久磁石(8)は、第1中心導体(3)の入力端子部(32)側の導体領域と第2中心導体(4)の出力端子部(42)側の導体領域に強い磁界を及ぼす一方、第3中心導体(5)の抵抗接続端子部(52)側の導体領域に弱い磁界を及ぼす磁界分布を有していることを特徴とする非可逆回路素子。A permanent magnet (8) is disposed inside the magnetically shielded space, and a magnetic assembly (2) is provided so as to overlap the permanent magnet (8). And first to third center conductors (3), (4), (5) wound around the magnetic body (21) at a predetermined crossing angle, and the center conductors (3), (4), (5) are provided. Are connected to the three matching capacitors (6), (61) and (62), respectively, and the input terminal (32) and the second center conductor provided at the ends of the first center conductor (3). The output terminal (42) provided at the end of (4) is connected to the input terminal (71) and the output terminal (72) for external connection, respectively, and is connected to the end of the third central conductor (5). In the non-reciprocal circuit device in which the provided resistance connection terminal portion (52) is connected to the terminating resistor (63), the permanent magnet (8 Applies a strong magnetic field to the conductor region of the first central conductor (3) on the input terminal portion (32) side and the conductor region of the second central conductor (4) on the output terminal portion (42) side, while causing the third central conductor (5) A non-reciprocal circuit device having a magnetic field distribution for applying a weak magnetic field to the conductor region on the side of the resistance connection terminal (52). 永久磁石(8)及び磁性組立体(2)はそれぞれ直方体状に形成され、永久磁石(8)は、薄板部(81)の両側に左右一対の厚板部(82)(82)を形成してなり、第1中心導体(3)の入力端子部(32)は永久磁石(8)の一方の厚板部(82)の近傍位置に配置され、第2中心導体(4)の出力端子部(42)は永久磁石(8)の他方の厚板部(82)の近傍位置に配置され、第3中心導体(5)の抵抗接続端子部(52)は永久磁石(8)の薄板部(81)の近傍位置に配置されている請求項1に記載の非可逆回路素子。The permanent magnet (8) and the magnetic assembly (2) are each formed in a rectangular parallelepiped shape, and the permanent magnet (8) forms a pair of left and right thick plate portions (82) (82) on both sides of the thin plate portion (81). The input terminal portion (32) of the first center conductor (3) is disposed in the vicinity of one thick plate portion (82) of the permanent magnet (8), and the output terminal portion of the second center conductor (4). (42) is disposed near the other thick plate portion (82) of the permanent magnet (8), and the resistance connection terminal portion (52) of the third center conductor (5) is connected to the thin plate portion (52) of the permanent magnet (8). The non-reciprocal circuit device according to claim 1, wherein the non-reciprocal circuit device is arranged at a position near (81).
JP2003073942A 2003-03-18 2003-03-18 Non-reciprocal circuit element Pending JP2004282592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073942A JP2004282592A (en) 2003-03-18 2003-03-18 Non-reciprocal circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073942A JP2004282592A (en) 2003-03-18 2003-03-18 Non-reciprocal circuit element

Publications (1)

Publication Number Publication Date
JP2004282592A true JP2004282592A (en) 2004-10-07

Family

ID=33289715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073942A Pending JP2004282592A (en) 2003-03-18 2003-03-18 Non-reciprocal circuit element

Country Status (1)

Country Link
JP (1) JP2004282592A (en)

Similar Documents

Publication Publication Date Title
US9620838B2 (en) Non-reciprocal circuit device
JP3384367B2 (en) Non-reciprocal circuit device and communication device
US6642831B2 (en) Nonreciprocal circuit device and communication device using same
JP4345254B2 (en) Non-reciprocal circuit device and communication device
JP2004282592A (en) Non-reciprocal circuit element
JPH09102704A (en) Irreversible circuit element
JP3395748B2 (en) Non-reciprocal circuit device and communication device
US6876267B2 (en) Nonreciprocal circuit device
JP3665776B2 (en) Non-reciprocal circuit device and communication device using the same
JP4811578B2 (en) Non-reciprocal circuit device and communication device
JP4110688B2 (en) Non-reciprocal circuit device and communication device
JP2019134337A (en) Non-reciprocal circuit device and high-frequency front-end circuit module
US20180026323A1 (en) Non-reciprocal circuit device, high-frequency circuit, and communication device
KR100431145B1 (en) Nonreciprocal Circuit Device and Communication Apparatus Incorporating the same
JP3891437B2 (en) Three-terminal pair irreversible element and communication device using the same
JP3683220B2 (en) Non-reciprocal circuit element
JPH1197911A (en) Concentrated constant type non-reciprocal circuit element
US20040066248A1 (en) Miniature non-reciprocal circuit element with little variation in input impedance and communication apparatus
JPH1079607A (en) Non-reciprocal circuit element
JPH09270607A (en) Irreversible circuit element
JP2001358504A (en) Non-reciprocal circuit element and communication apparatus
JPH1079606A (en) Non-reciprocal circuit element
JPH06164211A (en) Irreversible circuit element
JP2004350036A (en) Irreversible circuit element and communication device
JP2004350131A (en) Non-reversible circuit element and communication device using it