JP2004281832A - Semiconductor manufacturing apparatus and method of carrying semiconductor substrate therein - Google Patents

Semiconductor manufacturing apparatus and method of carrying semiconductor substrate therein Download PDF

Info

Publication number
JP2004281832A
JP2004281832A JP2003072870A JP2003072870A JP2004281832A JP 2004281832 A JP2004281832 A JP 2004281832A JP 2003072870 A JP2003072870 A JP 2003072870A JP 2003072870 A JP2003072870 A JP 2003072870A JP 2004281832 A JP2004281832 A JP 2004281832A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
gas
chamber
manufacturing apparatus
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003072870A
Other languages
Japanese (ja)
Inventor
Atsushi Yamamoto
敦史 山本
Masunori Takamori
益教 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003072870A priority Critical patent/JP2004281832A/en
Publication of JP2004281832A publication Critical patent/JP2004281832A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of carrying a semiconductor substrate in a semiconductor manufacturing apparatus, which can restrain (reduce) sticking of foreign matters to the semiconductor substrate from the atmosphere of a treatment chamber, which performs a treatment such as film formation or etching to the semiconductor substrate during carriage of the semiconductor substrate into the semiconductor manufacturing apparatus; and to provide a semiconductor manufacturing apparatus. <P>SOLUTION: When a semiconductor substrate 30 is carried in/out between chambers 1, 2 and 3 in the semiconductor manufacturing apparatus, the semiconductor substrate 30 is carried in/out between the chambers 2 and 3 on the condition that the pressure in the treatment chamber 3 is lower than the pressure in the common carrying chamber 2. When the semiconductor substrate 30 is carried into the semiconductor manufacturing apparatus or the semiconductor substrate 30 is treated in the treatment chamber 3, sticking of the foreign matters can be reduced, and a processing malfunction or sudden increase of the foreign matters can be restrained. Processing stability is improved, and the high-quality semiconductor substrate 30 can be treated/manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置内での半導体基板の搬送方法、および半導体製造装置に関し、特に半導体基板上へ付着する異物の低減に係わるものである。
【0002】
【従来の技術】
従来、半導体基板に対し、例えば成膜、ドライエッチング、スパッタリング等の処理を施す半導体製造装置としては、1台の装置での処理能力向上、多様な膜を成膜可能にするため、同じ種類若しくは違う種類の処理が行える処理チャンバーを2個、若しくはそれ以上の処理チャンバーを結合させ、半導体基板を大気に暴露させること無く連続で処理できるようにしたマルチチャンバー方式が一般的である。この種の装置は、半導体基板を収容したカセットを搬送できるカセットロードロックと共通搬送チャンバーを介して、処理チャンバーに半導体基板を搬送可能にしている(たとえば、特許文献1参照。)。
【0003】
このようなマルチチャンバー方式の装置では、処理チャンバーからの残留ガスを共通搬送チャンバーに拡散し、共通搬送チャンバー内の腐食を防止するために、半導体基板を処理チャンバーに搬送する際、処理チャンバーと共通搬送チャンバーの圧力を、同一若しくは僅かに処理チャンバーの圧力が低くなるように設定している(たとえば、特許文献2参照。)。
【0004】
また、このような圧力設定を行うために、別な方法として、チャンバーにガスを供給し、そのガス供給量を制御することにより所望の圧力になるようにしている(たとえば、特許文献3参照。)。
【0005】
【特許文献1】
特開平3−19252号公報(第6−8頁、図1)
【0006】
【特許文献2】
特開平5−98434号公報(第2−4頁、図1−図2)
【0007】
【特許文献3】
特開平7−211761号公報(第3−6頁、図1−図2)
【0008】
【発明が解決しようとする課題】
上記した従来の半導体製造装置において、半導体基板加工後の異物については充分に管理・対策が施されているが、装置内での半導体基板搬送時の異物付着に対しては、装置のトラブル等の問題により大量発生しない限り実施されることが少なく、製品信頼性の面で問題である。処理チャンバーの状態について、プロセス時に処理チャンバー内の圧力を制御することは行われているが、搬送時は行われていないのが一般的である。また半導体基板の搬送時や半導体製造設備の待機時は、処理チャンバー内が一定圧力の真空状態に保持されていた。
【0009】
半導体基板上に付着する異物には、成膜やドライエッチ等のプロセス処理中に発生するもの、搬送中に処理チャンバー内や搬送室内雰囲気から付着するものがある。この内、搬送中に付着した異物は、プロセス処理によって異物検査装置で検出しにくくなることがあり、しばしば加工不良の原因となっていた。
【0010】
そこで本発明は、半導体製造装置内での半導体基板の搬送中に、半導体基板に対して成膜、エッチングなどの処理を行う処理チャンバーの雰囲気から半導体基板に付着する異物を抑制(低減)し得る半導体製造装置内での半導体基板搬送方法および半導体製造装置を提供することを目的としたものである。
【0011】
【課題を解決するための手段】
前述した目的を達成するために、本発明の請求項1記載の半導体製造装置内での半導体基板搬送方法は、半導体基板を処理する1ないし複数の処理チャンバーと、これらの処理チャンバーに半導体基板を搬出入可能にする共通搬送チャンバーと、この共通搬送チャンバーに接続されて外部との間で半導体基板を搬出入させるためのロードロックチャンバーを有し、これらのチャンバーに対応してそれぞれ、内部の圧力評価装置と、流量を制御されたガスをチャンバー内部に導入できるガス導入装置を設置した半導体製造装置内で、半導体基板を各チャンバー間で搬出入させる方法において、共通搬送チャンバーの圧力よりも処理チャンバーの圧力の方が低くなった時、当該チャンバー間で半導体基板の搬出入を行うことをことを特徴としたものである。
【0012】
したがって請求項1の発明によると、半導体基板を処理チャンバーに搬出入する際、処理チャンバーとその共通搬送チャンバーの圧力差をなくすことにより、圧力差によって生じる乱気流を抑制し、巻き上げ等による異物発生を防止できる。そしてチャンバー内へガスを導入することで、半導体基板上の異物除去と半導体基板上への付着を防止でき、しかも水分や外部微小リークによる不純物濃度を低減、高純度雰囲気を実現できる。また残留反応性ガスが存在する場合も、導入したガスにより希釈できるので、気中反応による異物生成を防止できる。さらに、処理チャンバーと共通搬送チャンバーの圧力をコントロールして、共通搬送チャンバーの圧力よりも処理チャンバーの圧力の方が低くなった時、当該チャンバー間で半導体基板の搬出入を行うことで、搬送による異物発生を抑制できる。これらにより、加工不良や突発的に発生する異物増加をなくすることができるとともに、処理再現性を改善することで、処理品質の向上を実現できる。
【0013】
また本発明の請求項2記載の半導体製造装置内での半導体基板搬送方法は、上記した請求項1記載の構成において、チャンバーに設置されたガス導入装置によって、共通搬送チャンバーと処理チャンバーのどちらか一方若しくは両方のチャンバーにガスを流し、共通搬送チャンバーの圧力より処理チャンバーの圧力の方が低くなった時、当該チャンバー間で半導体基板の搬出入を行うことを特徴としたものである。
【0014】
したがって請求項2の発明によると、共通搬送チャンバーと処理チャンバーとの少なくとも一方へガスを導入することで、半導体基板上の異物除去と半導体基板上への付着を防止できる。
【0015】
そして本発明の請求項3記載の半導体製造装置内での半導体基板搬送方法は、上記した請求項1または2記載の構成において、半導体基板を搬出入する処理チャンバーと共通搬送チャンバーとの差圧が4Pa以下で有ることを特徴としたものである。
【0016】
したがって請求項3の発明によると、差圧が4Pa以下になるように設定することによって、より異物付着の防止効果がある。
さらに本発明の請求項4記載の半導体製造装置内での半導体基板搬送方法は、上記した請求項2記載の構成において、ガス導入装置から流すガスが、窒素または不活性ガスの単体、若しくは窒素または不活性ガスを含む2種類以上の混合ガスで有ることを特徴としたものである。
【0017】
本発明の請求項5記載の半導体製造装置は、半導体製造装置が半導体基板に対し処理をしていない期間に、処理チャンバーに設置されたガス導入装置により所望の時間ガスを流し、その後真空引きを繰り返し行うサイクルパージを行うことを特徴としたものである。
【0018】
したがって請求項5の発明によると、半導体製造装置が半導体基板に対し処理をしていない状態である待機中にガスを導入して処理チャンバーを所望の圧力まで上昇させ、その後、ガスの供給を停止し所望の圧力まで真空引きを行うことを繰り返し行って、サイクルパージを実施することにより、処理チャンバー内の異物を常に排出することができて、異物の半導体基板上への付着を未然に防止できる。また、このサイクルパージの実施により、半導体基板の処理時と同等の処理雰囲気を常に保つことが可能で、半導体基板の安定した処理再現性が得られ、処理品質の向上を同じに実現できる。さらに、このサイクルパージを行うことで、ダミー処理なしで生産できるようになるため、時間ロスの削減による処理能力向上や特殊ガスの使用量削減によるコスト削減が実現可能となる。
【0019】
また本発明の請求項6記載の半導体製造装置は、上記した請求項5記載の構成において、ガス導入装置から流すガスが、窒素または不活性ガスの単体、若しくは窒素または不活性ガスを含む2種類以上の混合ガスで有ることを特徴としたものである。
【0020】
【発明の実施の形態】
以下に、本発明の実施の形態を、並行平板プラズマCVD成膜装置を用いた状態として、図に基づいて説明する。
【0021】
図1において、半導体製造装置は、ロードロックチャンバー1と、このロードロックチャンバー1に接続される共通搬送チャンバー2と、この共通搬送チャンバー2に接続される1ないし複数の処理チャンバー3とに分かれている。そして、ロードロックチャンバー1と共通搬送チャンバー2との接続部に第1ゲート7が設けられるとともに、共通搬送チャンバー2と処理チャンバー3との接続部に第2ゲート8が設けられている。
【0022】
前記ロードロックチャンバー1は、外部との間で半導体基板30を搬出入させることによって、この半導体基板30を真空雰囲気に導入するもので、半導体基板格納部16が設けられている。また共通搬送チャンバー2は、ロードロックチャンバー1と処理チャンバー3との間で半導体基板30の受け渡し(搬出入)を行うもので、搬送アーム17などが設けられている。そして処理チャンバー3は半導体基板30の処理を行うもので、上部電極18や下部電極19が設けられている。
【0023】
各チャンバー1〜3には、それぞれ圧力測定器(内部の圧力評価装置の一例)4〜6が接続されている。各圧力測定器4〜6からの各圧力検出出力4A〜6Aは差分検出器10に入れられ、この差分検出器10において、ロードロックチャンバー1の圧力検出出力4Aと共通搬送チャンバー2の圧力検出出力5Aとが比較されるとともに、共通搬送チャンバー2の圧力検出出力5Aと処理チャンバー3の圧力検出出力6Aとが比較されるように構成されている。そして、差分検出器10からの出力をゲート開閉装置9に入力して、両ゲート7,8の開閉を各別に行うように構成している。
【0024】
各チャンバー1〜3には、それぞれガス導入管13〜15が接続されている。これらガス導入管13〜15には、それぞれ流量制御装置21〜23が取り付けてあり、以てガス導入管13〜15と流量制御装置21〜23とにより、ガスを流量制御した状態で各チャンバー1〜3の内部に導入できるガス導入装置の一例を構成している。なお、各チャンバー1〜3には排気部1a〜3aが形成されている(図4参照。)。前記処理チャンバー3に対応して整合器11と高周波電源12とが設けられ、これらはプラズマを発生させる際に利用するものである。
【0025】
前記第1ゲート7は、従来の装置構成では搬送時以外の時に閉じているが、実施の形態では、開閉による無駄と異物発生を防ぐため、一旦開放した後は常に開放状態としている。また第2ゲート8は、処理チャンバー3内で特殊ガスを用いるので、半導体基板30の搬送時以外は閉とした。前記ガス導入管13〜15からのガス導入は、搬送時の不活性ガス導入であるが、処理レシピ内のステップを編集することで実施した。
【0026】
また装置待機時の不活性ガスによるサイクルパージは、実施の方法では処理後にマニュアル操作にて行っている。システムに組み込むことで自動化が可能となる。その構成(フロー)は図2に示すように、処理完了判定後にサイクルパージ動作に移行し、処理中は基本処理サイクルを繰り返し実行するようなものである。なお実施の形態ではガスとして窒素を用いた。
【0027】
ロードロックチャンバー1内の半導体基板格納部16に半導体基板30が導入されると、ロードロックチャンバー1内は排気部1aを介して真空引きされる。このロードロックチャンバー1内の圧力と、共通搬送チャンバー2内の圧力とが所望の圧力に到達した時(以下、この圧力値をPtransとする。)、差分検出器10からゲート開閉装置9に信号がおくられて、図1に示すように第1ゲート7が開く。この第1ゲート7は開放したままとした。これは、第1ゲート7が繰り返し開閉することによるパーツの疲労や擦れによる異物発生等を防ぐためである。
【0028】
そして、ロードロックチャンバー1内の半導体基板30を、搬送アーム17を介して処理チャンバー3内に搬送する時、処理チャンバー3内の圧力は、この処理チャンバー3内の残留ガスを排出するため真空方向へ移行していくが、この処理チャンバー3内の圧力が共通搬送チャンバー2内の或る制御された圧力Ptransに到達した時、差分検出器10からゲート開閉装置9に信号が送られて第2ゲート8が開く。
【0029】
このとき処理チャンバー3と共通搬送チャンバー2とは圧力の差がなく、第2ゲート8が開く時に処理チャンバー3と共通搬送チャンバー2との間に気流が発生しないので、巻き上げや吹込みによる異物が半導体基板30上へ付着することを防止できる。処理チャンバー3内と共通搬送チャンバー2内に0.16マイクロメートル以上の異物が存在する状態で、各処理チャンバー3内の圧力を変化させた結果、図3に示すように、圧力の差がゼロ近辺で異物の発生、つまり半導体基板30上への異物付着防止効果があり、一方の圧力が大きい圧力差のある状態では異物が付着した。
【0030】
上述したように、第1ゲート7の開放時に圧力差のない状態としたが、同様の理由により異物付着防止の効果が得られている。しかし、この圧力差が無い状態では、処理チャンバー3から共通搬送チャンバー2へと残留ガスが流れて、共通搬送チャンバー2の内部を腐食させ、半導体基板30に対しクロスコンタミネーションや異物原因になる可能性があり、これを回避する必要がある。
【0031】
すなわち図4に示すように、共通搬送チャンバー2に比べ処理チャンバー3側の圧力が低い場合、差圧(圧力差)により共通搬送チャンバー2側から処理チャンバー3側に吹き込む風Wが発生する。このとき、処理チャンバー3内に存在する異物が、巻き上げX1、落下X2、飛散X3することになって、処理チャンバー3内にある半導体基板30上に付着X4する。また、処理チャンバー3内の残留ガスと、処理チャンバー3内に吹き込んだ風Wに含まれる酸素とが反応Yして異物を生成し、この異物が処理チャンバー3内にある半導体基板30上へ付着X4する場合もある。
【0032】
逆に共通搬送チャンバー2側の圧力が低い場合、図5に示すように、処理チャンバー3側から共通搬送チャンバー2側へ吹き込む風Wが発生し、共通搬送チャンバー2内の異物が巻き上げX1、落下X2することになって、共通搬送チャンバー2内にある半導体基板30上に付着X4する。この時の異物付着数は、前記処理チャンバー3内の圧力が低い場合より少なかった。これは半導体基板30の位置によるものであり、前記処理チャンバー3内の圧力が低い場合、半導体基板30は処理チャンバー3内の第2ゲート8からの距離が近く、差圧により発生する風Wの影響を受けやすい、つまり異物付着が起こりやすい位置にあった。
【0033】
一方の共通搬送チャンバー2内の圧力が低い場合、半導体基板30は第2ゲート8からの距離が遠く、差圧により発生する風Wの影響を受けにくい位置、すなわち異物付着の起こりにくい位置にあった。これらのことから、搬送開始時に半導体基板30は、開閉する第2ゲート8よりも遠い位置にある方がよいとわかる。
【0034】
第2ゲート8の開閉時、つまり搬送アーム17によって半導体基板30を共通搬送チャンバー2から処理チャンバー3へ搬出入する時、各チャンバー1〜3の内部に不活性ガス(ガスの一例)Gを流した状態で、共通搬送チャンバー2側と処理チャンバー3側の圧力を変化させた場合について、各チャンバー1〜3内の不活性ガスGの流量に差を設けた。ここでロードロックチャンバー1と共通搬送チャンバー2に流す不活性ガスGの流量は同じにしている。
【0035】
その結果、図3に示すように、共通搬送チャンバー2側と処理チャンバー3側が同一流量設定のとき異物増加数が最も少なく、半導体基板30上への異物付着を防止できた。さらに、差圧が13Pa以下になるように設定すると、より異物付着の防止効果がある。この場合、図6に示すように、各チャンバー1〜3内の異物Xは、排気部1a〜3aを介して常に系外に排出されており、半導体基板30側へ異物Xが侵入しようとしても、半導体基板30の基板面内から基板外方向へ不活性ガスGの流れがあるために侵入できず、異物Xの付着を防止できる。なお、流量に差をつけた場合は、層流が崩れるために気流の乱れが生じ、同一流量の場合に比べ異物付着数が多い現象が起こった。
【0036】
また不活性ガスGを各チャンバー1〜3に流す効果として、水分や外部微小リークによる不純物濃度の低減、高純度雰囲気を実現できることである。残留反応性ガスについても希釈あるいは系外へ排出されるので、外部微小リークにより侵入した酸素との反応による異物生成を防止できる。
【0037】
図7は、半導体製造装置が半導体基板30に対し処理をしていない期間(所謂待機状態)に、処理チャンバー3に設置されたガス導入装置により所望の時間ガスを流し、その後に真空引きを繰り返し行うサイクルパージを導入した場合と、サイクルパージがない場合との比較説明図である。
【0038】
サイクルパージがない場合、最初の数枚に異物が多く、膜厚変動が激しいプロセスにサイクルパージを適用した。サイクルパージ導入後、異物は大幅に減少し、膜厚についても初期変動のない安定な処理が可能とわかる。従来は装置待機から処理をはじめる際、ダミー処理を先行で追加し、安定領域で生産できるようにしていた。このサイクルパージを行うことでダミー処理なしで生産できるようになるため、時間ロスの削減による処理能力向上や特殊ガスの使用量削減によるコスト削減を実現可能となる。
【0039】
以上の異物付着防止効果のある項目、すなわち圧力差なしでのゲート開閉、搬送時の不活性ガスの導入、装置待機時のサイクルパージ、を組み合わせることにより、搬送による異物付着がなく、安定した品質で半導体基板を処理・製造することができる。
【0040】
上記した実施の形態では、ガス導入装置から流すガスとして不活性ガスGの単体が採用されているが、これは窒素の単体、若しくは窒素または不活性ガスを含む2種類以上の混合ガスなどであってもよい。
【0041】
上記した実施の形態では、共通搬送チャンバー2と処理チャンバー3の両方に不活性ガス(ガス)Gを流しているが、これは共通搬送チャンバー2と処理チャンバー3のどちらか一方に不活性ガス(ガス)Gを流す方式であってもよい。
【0042】
【発明の効果】
上記した本発明によると、半導体装置内での半導体基板の搬送時、若しくは処理チャンバー内での半導体基板の処理時に異物付着を低減でき、加工不良や突発的に発生する異物増加を抑えることを可能にできる。また処理安定性も向上し、品質の良い半導体基板を処理・製造することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示し、半導体製造装置の基本構成図
【図2】同半導体製造装置におけるサイクル自動化のフロー説明図
【図3】同半導体製造装置における圧力差と異物増加数の関係説明図
【図4】同半導体製造装置における処理チャンバー側の圧力が低い場合の説明図
【図5】同半導体製造装置における共通搬送チャンバー側の圧力が低い場合の説明図
【図6】同半導体製造装置における各チャンバー内にガスを流した場合の説明図
【図7】同半導体製造装置におけるサイクルパージによる代表的な特性値改善の説明図
【符号の説明】
1 ロードロックチャンバー
2 共通搬送チャンバー
3 処理チャンバー
4 圧力測定器(圧力評価装置)
5 圧力測定器(圧力評価装置)
6 圧力測定器(圧力評価装置)
7 第1ゲート
8 第2ゲート
9 ゲート開閉装置
10 差分検出器
11 整合器
12 高周波電源
13 ガス導入管
14 ガス導入管
15 ガス導入管
16 半導体基板格納部
17 搬送アーム
18 上部電極
19 下部電極
21 流量制御装置
22 流量制御装置
23 流量制御装置
30 半導体基板
W 風
X 異物
X1 巻き上げ
X2 落下
X3 飛散
X4 付着
Y 反応
G 不活性ガス(ガス)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for transporting a semiconductor substrate in a semiconductor manufacturing apparatus and a semiconductor manufacturing apparatus, and more particularly to a method for reducing foreign substances adhering on a semiconductor substrate.
[0002]
[Prior art]
Conventionally, as a semiconductor manufacturing apparatus that performs processing such as film formation, dry etching, sputtering, etc. on a semiconductor substrate, the same type or the same type is used in order to improve the processing capability of one apparatus and to form various films. A multi-chamber system is generally used in which two or more processing chambers capable of performing different types of processing are connected to each other so that the semiconductor substrate can be continuously processed without exposing the semiconductor substrate to the atmosphere. This type of apparatus enables a semiconductor substrate to be transferred to a processing chamber via a cassette load lock capable of transferring a cassette containing semiconductor substrates and a common transfer chamber (for example, see Patent Document 1).
[0003]
In such a multi-chamber system, the residual gas from the processing chamber is diffused into the common transfer chamber, and in order to prevent corrosion in the common transfer chamber, the semiconductor substrate is transferred to the processing chamber when the semiconductor substrate is transferred to the processing chamber. The pressure in the transfer chamber is set to be equal or slightly lower in the processing chamber (for example, see Patent Document 2).
[0004]
In order to set such pressure, as another method, a gas is supplied to a chamber and a desired pressure is obtained by controlling the gas supply amount (for example, see Patent Document 3). ).
[0005]
[Patent Document 1]
JP-A-3-19252 (page 6-8, FIG. 1)
[0006]
[Patent Document 2]
JP-A-5-98434 (pages 2-4, FIGS. 1-2)
[0007]
[Patent Document 3]
JP-A-7-211761 (pages 3-6, FIGS. 1-2)
[0008]
[Problems to be solved by the invention]
In the above-described conventional semiconductor manufacturing apparatus, foreign substances after processing of the semiconductor substrate are sufficiently controlled and countermeasures are taken. This is rarely performed unless a large number of problems occur, which is a problem in terms of product reliability. Regarding the state of the processing chamber, it is common to control the pressure in the processing chamber at the time of processing, but not at the time of transport. Further, during the transfer of the semiconductor substrate and the standby of the semiconductor manufacturing equipment, the inside of the processing chamber is kept in a vacuum state at a constant pressure.
[0009]
The foreign substances adhering to the semiconductor substrate include those generated during a process such as film formation and dry etching, and those adhering from the atmosphere in a processing chamber or a transfer chamber during transfer. Of these, foreign matter adhering during transportation may be difficult to be detected by a foreign matter inspection device due to process processing, and often causes processing defects.
[0010]
Therefore, the present invention can suppress (reduce) foreign substances adhering to a semiconductor substrate from the atmosphere of a processing chamber in which processing such as film formation and etching is performed on the semiconductor substrate during transport of the semiconductor substrate in the semiconductor manufacturing apparatus. It is an object of the present invention to provide a method of transporting a semiconductor substrate in a semiconductor manufacturing apparatus and a semiconductor manufacturing apparatus.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for transporting a semiconductor substrate in a semiconductor manufacturing apparatus according to claim 1 of the present invention includes a method for transporting a semiconductor substrate, one or more processing chambers, and It has a common transfer chamber that allows loading and unloading, and a load lock chamber that is connected to the common transfer chamber and allows loading and unloading of the semiconductor substrate between the outside and the outside. In a semiconductor manufacturing apparatus equipped with an evaluation device and a gas introduction device capable of introducing a gas whose flow rate is controlled into the chamber, a method of loading and unloading a semiconductor substrate between the chambers in a method of transporting a semiconductor substrate between the chambers in a processing chamber that is higher than the pressure of a common transfer chamber. When the pressure becomes lower, the semiconductor substrate is carried in and out between the chambers. It is.
[0012]
Therefore, according to the first aspect of the present invention, when a semiconductor substrate is carried into and out of the processing chamber, turbulence caused by the pressure difference is suppressed by eliminating the pressure difference between the processing chamber and the common transfer chamber, and foreign matter generation due to winding up or the like is prevented. Can be prevented. By introducing a gas into the chamber, foreign substances on the semiconductor substrate can be removed and adhesion to the semiconductor substrate can be prevented, and furthermore, the impurity concentration due to moisture and external minute leakage can be reduced, and a high-purity atmosphere can be realized. In addition, even when a residual reactive gas is present, it can be diluted with the introduced gas, so that generation of foreign substances due to aerial reaction can be prevented. Further, by controlling the pressures of the processing chamber and the common transfer chamber, when the pressure of the processing chamber becomes lower than the pressure of the common transfer chamber, the semiconductor substrate is carried in and out between the chambers, so that the transfer is performed. The generation of foreign matter can be suppressed. As a result, it is possible to eliminate processing defects and a sudden increase in foreign substances, and to improve processing quality by improving processing reproducibility.
[0013]
According to a second aspect of the present invention, there is provided a method for transporting a semiconductor substrate in a semiconductor manufacturing apparatus according to the first aspect of the present invention, wherein one of a common transport chamber and a processing chamber is provided depending on a gas introduction device installed in the chamber. Gas is supplied to one or both chambers, and when the pressure in the processing chamber is lower than the pressure in the common transfer chamber, the semiconductor substrate is carried in and out between the chambers.
[0014]
Therefore, according to the second aspect of the present invention, by introducing a gas into at least one of the common transfer chamber and the processing chamber, it is possible to prevent foreign substances from being removed from the semiconductor substrate and prevent adhesion to the semiconductor substrate.
[0015]
According to a third aspect of the present invention, there is provided a method for transporting a semiconductor substrate in a semiconductor manufacturing apparatus according to the first or second aspect, wherein the pressure difference between the processing chamber for loading / unloading the semiconductor substrate and the common transport chamber is reduced. It is characterized by being less than 4 Pa.
[0016]
Therefore, according to the third aspect of the invention, by setting the differential pressure to be equal to or less than 4 Pa, the effect of preventing foreign matter from adhering can be obtained.
According to a fourth aspect of the present invention, there is provided a method for transporting a semiconductor substrate in a semiconductor manufacturing apparatus, wherein the gas flowing from the gas introduction device is nitrogen or an inert gas alone, or nitrogen or an inert gas. It is characterized by being a mixed gas of two or more types including an inert gas.
[0017]
In the semiconductor manufacturing apparatus according to claim 5 of the present invention, during a period in which the semiconductor manufacturing apparatus is not processing a semiconductor substrate, a gas is supplied for a desired time by a gas introduction device installed in a processing chamber, and then the vacuum is evacuated. It is characterized in that cycle purge is performed repeatedly.
[0018]
Therefore, according to the fifth aspect of the present invention, the gas is introduced during the standby state in which the semiconductor manufacturing apparatus is not processing the semiconductor substrate to raise the processing chamber to a desired pressure, and then the supply of the gas is stopped. By repeatedly performing evacuation to a desired pressure and performing cycle purging, foreign substances in the processing chamber can be constantly discharged, and the foreign substances can be prevented from adhering to the semiconductor substrate. . Further, by performing the cycle purge, it is possible to always maintain a processing atmosphere equivalent to that during processing of the semiconductor substrate, to obtain stable processing reproducibility of the semiconductor substrate, and to achieve the same improvement in processing quality. Furthermore, by performing this cycle purging, production can be performed without a dummy process, so that it is possible to improve processing capacity by reducing time loss and reduce costs by reducing the amount of special gas used.
[0019]
According to a sixth aspect of the present invention, there is provided the semiconductor manufacturing apparatus according to the fifth aspect, wherein the gas flowing from the gas introduction device is nitrogen or an inert gas alone or two types including nitrogen or an inert gas. The mixed gas described above is characterized.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, using a parallel plate plasma CVD film forming apparatus.
[0021]
In FIG. 1, the semiconductor manufacturing apparatus is divided into a load lock chamber 1, a common transfer chamber 2 connected to the load lock chamber 1, and one or a plurality of processing chambers 3 connected to the common transfer chamber 2. I have. A first gate 7 is provided at a connection between the load lock chamber 1 and the common transfer chamber 2, and a second gate 8 is provided at a connection between the common transfer chamber 2 and the processing chamber 3.
[0022]
The load lock chamber 1 introduces the semiconductor substrate 30 into a vacuum atmosphere by carrying the semiconductor substrate 30 in and out of the load lock chamber 1. The semiconductor substrate storage unit 16 is provided in the load lock chamber 1. The common transfer chamber 2 transfers (loads in and out) the semiconductor substrate 30 between the load lock chamber 1 and the processing chamber 3, and is provided with a transfer arm 17 and the like. The processing chamber 3 is for processing the semiconductor substrate 30, and is provided with an upper electrode 18 and a lower electrode 19.
[0023]
Pressure measuring devices (one example of an internal pressure evaluation device) 4 to 6 are connected to the chambers 1 to 3, respectively. Each of the pressure detection outputs 4A to 6A from each of the pressure measuring devices 4 to 6 is input to the difference detector 10, and in this difference detector 10, the pressure detection output 4A of the load lock chamber 1 and the pressure detection output of the common transfer chamber 2 are output. 5A and the pressure detection output 5A of the common transfer chamber 2 and the pressure detection output 6A of the processing chamber 3 are compared. Then, an output from the difference detector 10 is input to a gate opening / closing device 9 to open and close both gates 7 and 8 separately.
[0024]
Gas introduction pipes 13 to 15 are connected to the chambers 1 to 3, respectively. Flow control devices 21 to 23 are attached to these gas introduction pipes 13 to 15, respectively. Thus, each of the chambers 1 is controlled in a state where the gas is controlled by the gas introduction pipes 13 to 15 and the flow control devices 21 to 23. 1 to 3 constitute an example of a gas introduction device that can be introduced into the inside of the apparatus. Exhaust sections 1a to 3a are formed in each of the chambers 1 to 3 (see FIG. 4). A matching unit 11 and a high-frequency power supply 12 are provided corresponding to the processing chamber 3, and are used when generating plasma.
[0025]
The first gate 7 is closed at times other than the time of transport in the conventional apparatus configuration, but in the embodiment, it is always in an open state once opened in order to prevent waste and generation of foreign matter due to opening and closing. Since the second gate 8 uses a special gas in the processing chamber 3, the second gate 8 is closed except when the semiconductor substrate 30 is transferred. The introduction of the gas from the gas introduction pipes 13 to 15 is the introduction of an inert gas at the time of transportation, and was performed by editing the steps in the processing recipe.
[0026]
Further, the cycle purging with the inert gas during the standby time of the apparatus is performed manually after the treatment in the method of the embodiment. Automation becomes possible by incorporating it into the system. As shown in FIG. 2, the configuration (flow) is such that the process shifts to the cycle purge operation after the completion of the processing, and the basic processing cycle is repeatedly executed during the processing. In the embodiment, nitrogen is used as a gas.
[0027]
When the semiconductor substrate 30 is introduced into the semiconductor substrate storage section 16 in the load lock chamber 1, the inside of the load lock chamber 1 is evacuated through the exhaust section 1a. When the pressure in the load lock chamber 1 and the pressure in the common transfer chamber 2 reach desired pressures (hereinafter, this pressure value is referred to as Ptrans), a signal is sent from the difference detector 10 to the gate opening / closing device 9. And the first gate 7 opens as shown in FIG. This first gate 7 was left open. This is to prevent the generation of foreign matter due to the fatigue and rubbing of parts due to the repeated opening and closing of the first gate 7.
[0028]
When the semiconductor substrate 30 in the load lock chamber 1 is transferred into the processing chamber 3 via the transfer arm 17, the pressure in the processing chamber 3 changes in a vacuum direction to discharge the residual gas in the processing chamber 3. When the pressure in the processing chamber 3 reaches a certain controlled pressure Ptrans in the common transfer chamber 2, a signal is sent from the difference detector 10 to the gate opening / closing device 9 and the second Gate 8 opens.
[0029]
At this time, there is no pressure difference between the processing chamber 3 and the common transfer chamber 2, and no air flow is generated between the processing chamber 3 and the common transfer chamber 2 when the second gate 8 is opened. Adhesion on the semiconductor substrate 30 can be prevented. As a result of changing the pressure in each of the processing chambers 3 in a state where there is a foreign substance of 0.16 μm or more in the processing chamber 3 and the common transfer chamber 2, as shown in FIG. There is an effect of preventing foreign matter from being generated in the vicinity, that is, an effect of preventing foreign matter from adhering to the semiconductor substrate 30, and foreign matter has adhered in a state where there is a large pressure difference.
[0030]
As described above, there is no pressure difference when the first gate 7 is opened. However, for the same reason, the effect of preventing foreign matter adhesion is obtained. However, in a state where there is no pressure difference, residual gas flows from the processing chamber 3 to the common transfer chamber 2 and corrodes the inside of the common transfer chamber 2, which may cause cross contamination or foreign matter on the semiconductor substrate 30. It is necessary to avoid this.
[0031]
That is, as shown in FIG. 4, when the pressure on the processing chamber 3 side is lower than that on the common transfer chamber 2, a wind W blowing from the common transfer chamber 2 side to the processing chamber 3 side is generated due to the differential pressure (pressure difference). At this time, the foreign matter existing in the processing chamber 3 is wound up X1, dropped X2, and scattered X3, and adheres to the semiconductor substrate 30 in the processing chamber 3 X4. Further, the residual gas in the processing chamber 3 and the oxygen contained in the wind W blown into the processing chamber 3 react with each other to generate foreign matter, and the foreign matter adheres to the semiconductor substrate 30 in the processing chamber 3. X4 may be applied.
[0032]
Conversely, when the pressure on the common transfer chamber 2 side is low, as shown in FIG. 5, a wind W is blown from the processing chamber 3 side to the common transfer chamber 2 side, and foreign matter in the common transfer chamber 2 is lifted up X1 and dropped. As a result of X2, X4 adheres to the semiconductor substrate 30 in the common transfer chamber 2. At this time, the number of adhered foreign substances was smaller than when the pressure in the processing chamber 3 was low. This is due to the position of the semiconductor substrate 30. When the pressure in the processing chamber 3 is low, the distance of the semiconductor substrate 30 from the second gate 8 in the processing chamber 3 is short, and the wind W generated by the differential pressure is small. It was in a position that was easily affected, that is, where foreign matter adhesion was likely to occur.
[0033]
When the pressure in one common transfer chamber 2 is low, the semiconductor substrate 30 is located at a position far from the second gate 8 and hardly affected by the wind W generated by the differential pressure, that is, at a position where foreign matter is unlikely to adhere. Was. From these facts, it is understood that it is better that the semiconductor substrate 30 is located farther than the second gate 8 that opens and closes at the start of the transfer.
[0034]
When the second gate 8 is opened and closed, that is, when the semiconductor substrate 30 is carried in and out of the processing chamber 3 by the transfer arm 17 from the common transfer chamber 2, an inert gas (an example of a gas) G flows into each of the chambers 1 to 3. In this case, when the pressures on the common transfer chamber 2 side and the processing chamber 3 side were changed, a difference was provided in the flow rate of the inert gas G in each of the chambers 1 to 3. Here, the flow rates of the inert gas G flowing into the load lock chamber 1 and the common transfer chamber 2 are the same.
[0035]
As a result, as shown in FIG. 3, when the common transfer chamber 2 side and the processing chamber 3 side were set to the same flow rate, the number of foreign substances increased was the smallest, and foreign substance attachment on the semiconductor substrate 30 could be prevented. Further, when the differential pressure is set to be 13 Pa or less, there is a further effect of preventing foreign matter from adhering. In this case, as shown in FIG. 6, the foreign matter X in each of the chambers 1 to 3 is constantly exhausted out of the system via the exhaust units 1 a to 3 a, and even if the foreign matter X tries to enter the semiconductor substrate 30 side. Since the inert gas G flows from the inside of the substrate surface of the semiconductor substrate 30 to the outside of the substrate, the inert gas G cannot enter and the adhesion of the foreign matter X can be prevented. When the flow rates were different, the laminar flow collapsed, resulting in a turbulence in the airflow, and a phenomenon in which the number of adhered foreign substances was larger than in the case of the same flow rate.
[0036]
The effect of flowing the inert gas G into each of the chambers 1 to 3 is that the impurity concentration can be reduced due to moisture and external minute leakage, and a high-purity atmosphere can be realized. Since the residual reactive gas is also diluted or discharged out of the system, it is possible to prevent the generation of foreign substances due to the reaction with oxygen that has entered due to external minute leaks.
[0037]
FIG. 7 shows a state in which the semiconductor manufacturing apparatus is not processing the semiconductor substrate 30 (a so-called standby state), in which a gas is supplied for a desired time by a gas introducing device installed in the processing chamber 3, and then the evacuation is repeated. FIG. 4 is a diagram illustrating a comparison between a case where a cycle purge is performed and a case where no cycle purge is performed.
[0038]
When there was no cycle purge, the first few sheets had a large amount of foreign matter, and the cycle purge was applied to a process in which the film thickness varied greatly. After the introduction of the cycle purge, the amount of foreign substances is greatly reduced, and it is understood that stable processing without initial fluctuation in the film thickness is possible. Conventionally, when processing is started from the standby state of the apparatus, dummy processing is added in advance, so that production can be performed in a stable region. By performing this cycle purging, production can be performed without dummy processing, so that it is possible to improve processing capacity by reducing time loss and reduce costs by reducing the amount of special gas used.
[0039]
By combining the above items with the foreign matter adhesion preventing effect, that is, opening and closing the gate without pressure difference, introduction of inert gas during transportation, and cycle purge during standby of the device, stable quality without foreign matter adhesion due to transportation Can process and manufacture a semiconductor substrate.
[0040]
In the above-described embodiment, the inert gas G alone is employed as the gas flowing from the gas introduction device, but this may be nitrogen alone or a mixed gas of two or more types containing nitrogen or an inert gas. You may.
[0041]
In the above-described embodiment, the inert gas (gas) G is supplied to both the common transfer chamber 2 and the processing chamber 3. However, the inert gas (gas) G is supplied to either the common transfer chamber 2 or the processing chamber 3. Gas) G may be used.
[0042]
【The invention's effect】
According to the present invention described above, it is possible to reduce the adhesion of foreign substances during the transfer of a semiconductor substrate in a semiconductor device or the processing of a semiconductor substrate in a processing chamber, and it is possible to suppress processing defects and an increase in sudden foreign substances. Can be. In addition, processing stability is improved, and a high-quality semiconductor substrate can be processed and manufactured.
[Brief description of the drawings]
FIG. 1 shows an example of an embodiment of the present invention, and is a basic configuration diagram of a semiconductor manufacturing apparatus. FIG. 2 is an explanatory diagram of a flow of cycle automation in the semiconductor manufacturing apparatus. FIG. FIG. 4 is an explanatory diagram when the pressure on the processing chamber side in the semiconductor manufacturing apparatus is low. FIG. 5 is an explanatory view when the pressure on the common transfer chamber side in the semiconductor manufacturing apparatus is low. FIG. 7 is an explanatory view when gas is flowed into each chamber in the semiconductor manufacturing apparatus. FIG. 7 is an explanatory view of typical characteristic value improvement by cycle purge in the semiconductor manufacturing apparatus.
1 Load lock chamber 2 Common transfer chamber 3 Processing chamber 4 Pressure measuring device (pressure evaluation device)
5 Pressure measuring device (pressure evaluation device)
6. Pressure measuring device (pressure evaluation device)
7 First gate 8 Second gate 9 Gate opening / closing device 10 Difference detector 11 Matching device 12 High frequency power supply 13 Gas introduction tube 14 Gas introduction tube 15 Gas introduction tube 16 Semiconductor substrate storage unit 17 Transfer arm 18 Upper electrode 19 Lower electrode 21 Flow rate Control device 22 Flow control device 23 Flow control device 30 Semiconductor substrate W Wind X Foreign matter X1 Winding X2 Falling X3 Scattering X4 Attachment Y Reaction G Inert gas (gas)

Claims (6)

半導体基板を処理する1ないし複数の処理チャンバーと、これらの処理チャンバーに半導体基板を搬出入可能にする共通搬送チャンバーと、この共通搬送チャンバーに接続されて外部との間で半導体基板を搬出入させるためのロードロックチャンバーを有し、これらのチャンバーに対応してそれぞれ、内部の圧力評価装置と、流量を制御されたガスをチャンバー内部に導入できるガス導入装置を設置した半導体製造装置内で、半導体基板を各チャンバー間で搬出入させる方法において、共通搬送チャンバーの圧力よりも処理チャンバーの圧力の方が低くなった時、当該チャンバー間で半導体基板の搬出入を行うことを特徴とする半導体製造装置内での半導体基板搬送方法。One or more processing chambers for processing a semiconductor substrate, a common transfer chamber capable of loading and unloading the semiconductor substrate into and out of these processing chambers, and a semiconductor substrate connected to the common transfer chamber for loading and unloading the semiconductor substrate from outside. In a semiconductor manufacturing apparatus having a load lock chamber for installing a pressure estimating device inside and a gas introducing device capable of introducing a gas whose flow rate is controlled into the chamber corresponding to these chambers, In the method for transferring a substrate between the chambers, when the pressure in the processing chamber is lower than the pressure in the common transfer chamber, the semiconductor substrate is transferred between the chambers. Semiconductor substrate transport method 請求項1に記載の半導体製造装置内での半導体基板搬送方法であって、チャンバーに設置されたガス導入装置によって、共通搬送チャンバーと処理チャンバーのどちらか一方若しくは両方のチャンバーにガスを流し、共通搬送チャンバーの圧力より処理チャンバーの圧力の方が低くなった時、当該チャンバー間で半導体基板の搬出入を行うことを特徴とする半導体製造装置内での半導体基板搬送方法。2. The method for transferring a semiconductor substrate in a semiconductor manufacturing apparatus according to claim 1, wherein a gas is introduced into one or both of the common transfer chamber and the processing chamber by a gas introducing device installed in the chamber, and A method for transferring a semiconductor substrate in a semiconductor manufacturing apparatus, comprising: loading and unloading a semiconductor substrate between the processing chamber when the pressure in the processing chamber becomes lower than the pressure in the transfer chamber. 請求項1または2に記載の半導体製造装置内での半導体基板搬送方法であって、半導体基板を搬出入する処理チャンバーと共通搬送チャンバーとの差圧が4Pa以下で有ることを特徴とする半導体製造装置内での半導体基板搬送方法。3. The method for transferring a semiconductor substrate in a semiconductor manufacturing apparatus according to claim 1, wherein a differential pressure between a processing chamber for loading / unloading the semiconductor substrate and a common transfer chamber is 4 Pa or less. A method for transporting a semiconductor substrate in an apparatus. 請求項2に記載の半導体製造装置内での半導体基板搬送方法であって、ガス導入装置から流すガスが、窒素または不活性ガスの単体、若しくは窒素または不活性ガスを含む2種類以上の混合ガスで有ることを特徴とする半導体製造装置内での半導体基板搬送方法。3. The method for transporting a semiconductor substrate in a semiconductor manufacturing apparatus according to claim 2, wherein the gas introduced from the gas introduction device is nitrogen or an inert gas alone, or a mixed gas of two or more containing nitrogen or an inert gas. A method for transporting a semiconductor substrate in a semiconductor manufacturing apparatus, the method comprising: 半導体製造装置が半導体基板に対し処理をしていない期間に、処理チャンバーに設置されたガス導入装置により所望の時間ガスを流し、その後真空引きを繰り返し行うサイクルパージを行うことを特徴とした半導体製造装置。A semiconductor manufacturing apparatus characterized in that during a period in which a semiconductor manufacturing apparatus is not processing a semiconductor substrate, a gas is introduced for a desired time by a gas introducing device installed in a processing chamber, and then a cycle purge is performed in which vacuuming is repeatedly performed. apparatus. 請求項5に記載の半導体製造装置であって、ガス導入装置から流すガスが、窒素または不活性ガスの単体、若しくは窒素または不活性ガスを含む2種類以上の混合ガスで有ることを特徴とする半導体製造装置。6. The semiconductor manufacturing apparatus according to claim 5, wherein the gas flowing from the gas introduction device is a simple substance of nitrogen or an inert gas, or a mixed gas of two or more kinds including nitrogen or an inert gas. Semiconductor manufacturing equipment.
JP2003072870A 2003-03-18 2003-03-18 Semiconductor manufacturing apparatus and method of carrying semiconductor substrate therein Withdrawn JP2004281832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072870A JP2004281832A (en) 2003-03-18 2003-03-18 Semiconductor manufacturing apparatus and method of carrying semiconductor substrate therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072870A JP2004281832A (en) 2003-03-18 2003-03-18 Semiconductor manufacturing apparatus and method of carrying semiconductor substrate therein

Publications (1)

Publication Number Publication Date
JP2004281832A true JP2004281832A (en) 2004-10-07

Family

ID=33288897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072870A Withdrawn JP2004281832A (en) 2003-03-18 2003-03-18 Semiconductor manufacturing apparatus and method of carrying semiconductor substrate therein

Country Status (1)

Country Link
JP (1) JP2004281832A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093799A1 (en) * 2004-03-29 2005-10-06 Hitachi Kokusai Electric Inc. Process for producing semiconductor device and substrate treating apparatus
JP2006161061A (en) * 2004-12-02 2006-06-22 Sony Corp Thin film deposition method, and semi-conductor device manufacturing method
JP2007095825A (en) * 2005-09-27 2007-04-12 Mitsubishi Heavy Ind Ltd Vacuum treatment device and its impurity monitoring method
JP2008226891A (en) * 2007-03-08 2008-09-25 Hitachi High-Technologies Corp Plasma processing method
US7488691B2 (en) 2006-07-19 2009-02-10 Nec Electronics Corporation Method of fabricating semiconductor device
JP2010067992A (en) * 2003-06-02 2010-03-25 Tokyo Electron Ltd Substrate processing apparatus and substrate transfer method
WO2017175408A1 (en) * 2016-04-08 2017-10-12 株式会社日立国際電気 Substrate processing device, method for producing semiconductor devices, and program
JP2020053476A (en) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 Vacuum processing apparatus and control method of the vacuum processing apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067992A (en) * 2003-06-02 2010-03-25 Tokyo Electron Ltd Substrate processing apparatus and substrate transfer method
JP2012074737A (en) * 2004-03-29 2012-04-12 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device and for processing substrate, and substrate processing apparatus
US8227030B2 (en) 2004-03-29 2012-07-24 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and apparatus for processing substrate
WO2005093799A1 (en) * 2004-03-29 2005-10-06 Hitachi Kokusai Electric Inc. Process for producing semiconductor device and substrate treating apparatus
US7556839B2 (en) 2004-03-29 2009-07-07 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and apparatus for processing substrate
US8221835B2 (en) 2004-03-29 2012-07-17 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and apparatus for processing substrate
JP2006161061A (en) * 2004-12-02 2006-06-22 Sony Corp Thin film deposition method, and semi-conductor device manufacturing method
JP2007095825A (en) * 2005-09-27 2007-04-12 Mitsubishi Heavy Ind Ltd Vacuum treatment device and its impurity monitoring method
US7488691B2 (en) 2006-07-19 2009-02-10 Nec Electronics Corporation Method of fabricating semiconductor device
KR100893911B1 (en) * 2007-03-08 2009-04-21 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing method
US7909933B2 (en) 2007-03-08 2011-03-22 Hitachi High-Technologies Corporation Plasma processing method
JP2008226891A (en) * 2007-03-08 2008-09-25 Hitachi High-Technologies Corp Plasma processing method
US8277563B2 (en) 2007-03-08 2012-10-02 Hitachi High-Technologies Corporation Plasma processing method
WO2017175408A1 (en) * 2016-04-08 2017-10-12 株式会社日立国際電気 Substrate processing device, method for producing semiconductor devices, and program
CN108885968A (en) * 2016-04-08 2018-11-23 株式会社国际电气 The manufacturing method and program of substrate processing device, semiconductor devices
JPWO2017175408A1 (en) * 2016-04-08 2019-01-24 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, and program
US10998210B2 (en) 2016-04-08 2021-05-04 Kokusai Electric Corporation Substrate processing apparatus
CN108885968B (en) * 2016-04-08 2023-12-01 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, and program
JP2020053476A (en) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 Vacuum processing apparatus and control method of the vacuum processing apparatus
JP7149144B2 (en) 2018-09-25 2022-10-06 東京エレクトロン株式会社 VACUUM PROCESSING APPARATUS AND CONTROL METHOD OF VACUUM PROCESSING APPARATUS

Similar Documents

Publication Publication Date Title
TWI682155B (en) Air leakage judgment method, substrate processing device and memory medium
JP4985031B2 (en) Vacuum processing apparatus, operating method of vacuum processing apparatus, and storage medium
JP6907518B2 (en) Vacuum processing equipment and operation method of the vacuum processing equipment.
JPH11186363A (en) Semiconductor manufacturing device
WO2012077547A1 (en) Load lock device
JPH05275519A (en) Multi-chamber type substrate treating device
US20170004984A1 (en) Substrate transfer apparatus and substrate transfer method
US9443748B2 (en) Substrate processing apparatus, program for controlling the same, and method for fabricating semiconductor device
JP2006310561A (en) Vacuum processing device and method therefor
US8029874B2 (en) Plasma processing apparatus and method for venting the same to atmosphere
JP2004281832A (en) Semiconductor manufacturing apparatus and method of carrying semiconductor substrate therein
JP2005150124A (en) Semiconductor manufacturing device
US20040018650A1 (en) Substrate processing apparatus
JP4414869B2 (en) Vacuum processing equipment
JP3153323B2 (en) Apparatus and method for restoring normal pressure in an airtight chamber
TWI763381B (en) Detection method of plasma processing device
JP2013236033A (en) Vacuum processing device and sample conveying method
JP3517076B2 (en) Semiconductor manufacturing apparatus, internal pressure adjusting method thereof, and semiconductor device manufacturing method
JP2000306838A (en) Treatment method and apparatus for semiconductor substrate
JPS631035A (en) Method and apparatus for reduced pressure processing
JP2001070781A (en) Vacuum treatment device
WO2013099178A1 (en) Load lock device and vacuum treatment chamber equipped with same
JPH085545Y2 (en) Semiconductor manufacturing equipment
KR20060114574A (en) Load lock chamber of semiconductor fabricating device
US20100119351A1 (en) Method and system for venting load lock chamber to a desired pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050803

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081212