JP2004281816A - Mixed thermoelectric material - Google Patents

Mixed thermoelectric material Download PDF

Info

Publication number
JP2004281816A
JP2004281816A JP2003072545A JP2003072545A JP2004281816A JP 2004281816 A JP2004281816 A JP 2004281816A JP 2003072545 A JP2003072545 A JP 2003072545A JP 2003072545 A JP2003072545 A JP 2003072545A JP 2004281816 A JP2004281816 A JP 2004281816A
Authority
JP
Japan
Prior art keywords
fesi2
thermoelectric
thermoelectric material
mixed
crsi2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072545A
Other languages
Japanese (ja)
Inventor
Norio Yamaguchi
典男 山口
Osamu Ohashi
修 大橋
Ayumi Ibe
歩 伊部
Takuya Makino
牧野拓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA TLO KK
Niigata TLO Corp
Original Assignee
NIIGATA TLO KK
Niigata TLO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA TLO KK, Niigata TLO Corp filed Critical NIIGATA TLO KK
Priority to JP2003072545A priority Critical patent/JP2004281816A/en
Publication of JP2004281816A publication Critical patent/JP2004281816A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the thermal properties of an FeSi2 thermoelectric material, particularly to reduce its heat conductivity. <P>SOLUTION: FeSi2 is mixed with CrSi2 which has properties similar to that of FeSi2, to compose a mixed thermoelectric material. The heat conductivity of the mixed thermoelectric material is reduced by utilizing a heat scattering effect accompanying the heat transfer between different phases. In addition, since the mixed thermoelectric material contains CrSi2 showing superior thermoelectric capability over a material having no thermoelectric capability, such as ceramic particles as a mixing phase, the thermoelectric characteristics of the mixed thermoelectric material is improved further. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、熱的物性の向上を狙った混合熱電材料の作製に関するものである。
【0002】
【従来の技術】
今日、人口の増加と経済の発展に伴う地球規模の環境異変が拡大し、エネルギーの有効利用と地球環境の保全が大きな国際問題となっている。これまで大量の熱源を化石燃料の燃焼とウランの核分裂に依存し、大部分の熱源を確保してきた。そのためCO2排出量の削減と核廃棄物処理が問題となってきた。今後はこれらの問題を軽減するために、エネルギーの効率化を高め、廃熱の発生を抑制し、多種多様の分散未利用熱を電力へと変換できるシステムが必要とされている。
【0003】
このような問題の解決策として、近年、熱源を選ばず材料に温度勾配を与えるだけで直接電力を得ることが出来る、熱電材料が注目されている。熱電材料による熱電変換の応用は、民生機器から宇宙開発までの広い分野に及んでいる。現在、熱電発電は宇宙、僻地、海底などの独立電源として、又熱電冷却・加熱は半導体製造工程の機器や光通信用レーザーの精密恒温制御として不可欠な存在になっている。
【0004】
熱電材料とはゼーベック効果やペルチェ効果を用いて、熱エネルギーと電気エネルギーを直接変換できる材料のことである。しかも排出ガスも無くクリーンに変換できる。エネルギー変換部には、火力発電や冷暖房機のように機械的稼動要素は全く無いので、騒音や振動も無く、メンテナンスも必要ない。これらに使用される材料は熱伝導率が低く、電気抵抗率が低い材料(縮退半導体材料)である。
【0005】
熱電材料の性能評価はゼーベック係数α、熱伝導率κ、電気抵抗率ρで定義される。熱電性能指数Zは次のように表される。
Z=α2/κρ
Zが大きいほど優れた熱電材料である。
【0006】
熱電材料に関する応用開発はBi2Te3系化合物による冷却・加熱に関するものがほとんどで、その多様性は世界的に高い評価を誇っている。しかしBiやTeは人体や環境に有害な金属である。近年の地球環境問題のクローズアップに伴い、環境に優しい材料が要求されてきている。熱電材料FeSi2、CrSi2は原料がFe、Cr、Siであり、資源的にも豊富であり、人体や環境にも優しく、安価であるという特徴が挙げられる。このようなことから、次世代の熱電材料として期待されている。
【0007】
【発明が解決しようとする課題】Fe−Si合金は、金属相であるα相、ε相と半導体相であるβ相の3種類があり、熱電材料として用いるのはβ相である。
【0008】
環境に優しい熱電材料として有望なFeSi2は、ゼーベック係数αは高いが、熱伝導率κが大きく結果的に熱電性能指数Zが小さくなってしまうことが問題となっている。そのため熱的特性を解決するため多くの研究が行われている。熱伝導率の低下法としては、▲1▼固溶による結晶格子の歪み、▲2▼結晶粒の微細化、▲3▼異相間の熱移動時に伴う熱の散乱効果を利用する方法がある。
【0009】
組織の混合による熱電材料の開発はよく試みられている。複合熱電材料として特開平11−323402号がある。これはFeSi2熱電材料中にセラミックス粒子などを微細に分散させる方法である。セラミックス粒子は熱電特性を有しないが、全体的には熱的特性の改善がはかられている。本願は上記引用例と狙いと構成が異なるものである。
【0010】
【課題を解決するための手段】
本発明は、異相間での熱の移動時に伴う熱の散乱効果の利用において、セラミックス粒子よりも熱電特性が向上することが明らかである熱電材料CrSi2を混合して異相として用いることにより熱的物性を改善する。CrSi2は、FeSi2とお互いに合金化せず、組織的にFeSi2とCrSi2の混在する組織となる。
【0011】
【発明の実施の形態】
発明の実施の手順(秤量、アーク溶解、粉砕・分級、パルス通電焼結、熱処理)を図1に示す。
【0012】
供試材はFe(純度99.9%、東邦亜鉛株式会社製)、Cr(純度99.3%、日本電工株式会社)、Si(純度99.5%、日本電工株式会社)を用いた。Fe、Cr及びSiはそれぞれ10〜20mm程度に粉砕した。これら原材料FeとSiでFeSi2を、CrとSiでCrSi2の化学組成量論になるように電子天秤で秤量した。なお、アーク溶解時にはSiの方が蒸発し易く、減少する。そこで、アーク溶解後、目的の組成となるように、FeSi2では、Fe:Si=1:2.06で、CrSi2では、Cr:Si=1:2.01となるように秤量した。
【0013】
秤量した試料はアーク溶解炉(大亜真空株式会社製)で溶解した。アーク溶解はアルゴンガス雰囲気中(減圧)にて、試料溶解用水冷電極から放電し、水冷銅鋳型上の試料に通電し、そのジュール熱で溶解する手法である。試料を入れる水冷銅鋳型の大きさは直径40mm、深さ15mmである。溶解室内を圧力3×10−3Paに排気し、溶解室内の圧力を0.07MPaになるまでアルゴンガスを満たした。
引き続き、アーク放電を発生させて、試料を溶解した。均一な試料を得るために、溶解した試料の裏表をひっくり返し3回溶解を繰り返した。そして直径40mm、厚さ20mm、質量約90gのボタン型の試料を得た。
【0014】
次に、アーク溶解で得られたFeSi2とCrSi2をアルミナ製乳棒・乳鉢を用いて粉砕した。材料の混合を防ぐため、FeSi2とCrSi2ではそれぞれ違う乳棒・乳鉢を用いた。粉砕した試料を、ステンレス製のふるいで63μm以下に分級し、分級した試料をアルミナ製容器に(外径90mm、内径70mm、深さ80mm)にアルミナ製ボール(直径15mm)20個とともに入れ、48時間粉砕した。回転数は70rpm/minである。この場合も同様に材料の混合を防ぐため、FeSi2とCrSi2ではそれぞれ違うボールミルを用いた。
【0015】
次に、X CrSi2−(1−X) FeSi2の混合組織で、混合割合X(mol%)の値を0.1、0.20、0.30、0.40、0.50と変化させ、混合した粉末を焼結した。
【0016】
焼結装置として、パルス通電焼結装置(イズミテック株式会社製)を使用した。焼結装置の焼結室内には上下に電極がついている。その電極間に粉末を充填したカーボンパンチとカーボンダイスをはさみ、装置内を真空に排気して上下から加圧する。これは電極からパルス状の電流を流すことで加熱し、その内部に入っている試料を焼結する装置である。外径45mm、内径20mm、高さ50mmの円筒型のカーボンダイス内に試料粉末を23g充填した。粉末を充填した焼結型をパルス通電焼結装置の上下の電極間にカーボン製のスペーサーを介して設置した。その後焼結型の上下から50MPaの圧力を加え、焼結装置内を10Paに真空排気し、パルス通電焼結を開始した。昇温速度は600℃までは100℃/min、600℃から各焼結温度(1000℃、1100℃)までは40℃/minで昇温し、焼結温度で15min保持し、その後通電を停止して冷却した。
【0017】
アーク溶解した試料FeSi2は金属相Fe2Si5(α相)とFeSi(ε相)で構成されている。この材料を用いた焼結体もアーク溶解時と同じように金属相Fe2Si5(α相)とFeSi(ε相)で構成されている。
熱電材料として用いるためには半導体相であるFeSi2 (β相)に変態させる必要がある。FeSi2とCrSi2の混合焼結体のβ化熱処理は、熱処理温度840℃で行った。熱伝導率測定には静的比較法を用いた。
【0018】
図2に、CrSi2とFeSi2の混合組織の組成像を示す。組成像ではCrSi2は薄い灰色、FeSi2 (β相)が濃い灰色で観察される。(A)はX=0.2、(B)はX=0.5の結果である。各相の相割合は目的とした割合に一致した。またCrSi2中へのFeの固溶量、及びFeSi2とへのCrの固溶量もわずかで、CrSi2とFeSi2の混合組織が得られている。
【0019】
CrSi2とFeSi2 は、使用時にはp型半導体、n型半導体として使用される。p型半導体と使用する際には、CrSi2とFeSi2にAlが0〜数%添加される。n型半導体として使用する際には、Coを0〜数%添加される。
【0020】
また、混合組織を作製する際に、パルス通電焼結装置を使用したが、従来のホットプレス、熱間等方圧プレスなども当然使用できることは言うまでもない。
【0021】
また、粉末を作製する際には、ボールミル等を用いて行ない、粉末をもっと微細にすれば、β化熱処理も短時間に終了することが可能となる。
【0022】
【実施例】
表1は実施例と比較例を一覧表にしてまとめを示したものである。ここで相対密度の定義は、CrSi2(4.982g/cm3)およびFeSi2(4.944g/cm3)の密度を各組成で平均した値を、100%としたときの相対的な値である。つまり、実施例1の場合、4.982×0.1+4.944×0.9=4.948 g/cm3を密度100%と定義する。したがって実施例1の96%とは気孔が4%あることを意味している。
【0023】
(実施例1)X=0.1の混合組織、つまり10mol% CrSi2と90mol%FeSi2混合組織の結果である。焼結後の各々の密度は96%である。熱伝導率は、14.86W/Kmであり、FeSi2と比較して23%熱伝導率が低下し改善された。
(実施例2)X=0.2の混合組織、つまり20mol% CrSi2と80mol%FeSi2混合組織の結果である。焼結後の密度は96%である。熱伝導率は、13.90W/Kmであり、FeSi2と比較して28%熱伝導率が低下し改善された。
(実施例3)X=0.3における結果であり、熱伝導率が27%改善された。
(実施例4)X=0.4における結果であり、熱伝導率が25%改善された。
(実施例5)X=0.5における結果であり、熱伝導率が23%改善された。
(比較例1)X=0、つまり100mol%FeSi2の組織の結果で、熱伝導率は19.30W/Kmで、熱伝導率は、単相であるため大きい。
(比較例2)X=0.8における結果であり、改善率は19%と低い。
(比較例3)X=0.9における結果であり、改善率は19%と低い。

【表1】

Figure 2004281816
【発明の効果】
本発明によれば、FeSi2に10〜50mol%のCrSi2を混合することにより、約28%の熱伝導率の低減が可能となり、Fe−Si系熱電材料の熱電特性の改善が図れた。
【図面の簡単な説明】
【図1】試料作製手順
【図2】CrSi2とFeSi2の混合組織の組成像. (A)はX=0.2, (B)はX=0.5[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a mixed thermoelectric material for improving thermal properties.
[0002]
[Prior art]
Today, global environmental incidents due to population growth and economic development are expanding, and effective use of energy and preservation of the global environment have become major international issues. Until now, a large amount of heat sources depended on fossil fuel combustion and uranium fission, and most of them have been secured. Therefore, reduction of CO2 emission and disposal of nuclear waste have become problems. In the future, in order to reduce these problems, there is a need for a system that can increase energy efficiency, suppress the generation of waste heat, and convert a wide variety of distributed unused heat into electric power.
[0003]
As a solution to such a problem, in recent years, a thermoelectric material, which can directly obtain electric power by giving a temperature gradient to a material regardless of a heat source, has attracted attention. Applications of thermoelectric conversion using thermoelectric materials have been applied to a wide range of fields from consumer electronics to space development. At present, thermoelectric power generation is indispensable as an independent power source in space, remote areas, the sea floor, etc., and thermoelectric cooling / heating is indispensable as precision constant temperature control of equipment in semiconductor manufacturing processes and lasers for optical communication.
[0004]
A thermoelectric material is a material that can directly convert heat energy and electric energy using the Seebeck effect or the Peltier effect. In addition, it can be converted to clean without exhaust gas. Since the energy conversion unit has no mechanical operating elements such as thermal power generation and air conditioners, there is no noise or vibration, and no maintenance is required. The materials used for these materials have low thermal conductivity and low electrical resistivity (degenerate semiconductor materials).
[0005]
Performance evaluation of a thermoelectric material is defined by a Seebeck coefficient α, a thermal conductivity κ, and an electric resistivity ρ. The thermoelectric figure of merit Z is expressed as follows.
Z = α2 / κρ
The larger the Z, the better the thermoelectric material.
[0006]
Most of the applied developments related to thermoelectric materials relate to cooling and heating using Bi2Te3 compounds, and their diversity is highly valued worldwide. However, Bi and Te are harmful metals for the human body and the environment. With the close-up of global environmental issues in recent years, environmentally friendly materials have been required. The thermoelectric materials FeSi2 and CrSi2 are characterized in that the raw materials are Fe, Cr and Si, are abundant in resources, are friendly to the human body and the environment, and are inexpensive. For these reasons, it is expected as a next-generation thermoelectric material.
[0007]
There are three types of Fe-Si alloys, an α phase which is a metal phase, an ε phase, and a β phase which is a semiconductor phase. The β phase is used as a thermoelectric material.
[0008]
FeSi2, which is promising as an environmentally friendly thermoelectric material, has a problem that the Seebeck coefficient α is high, but the thermal conductivity κ is large and the thermoelectric figure of merit Z is reduced as a result. Therefore, much research has been done to solve the thermal properties. Methods for lowering the thermal conductivity include (1) distortion of the crystal lattice due to solid solution, (2) miniaturization of crystal grains, and (3) a method utilizing a heat scattering effect accompanying heat transfer between different phases.
[0009]
The development of thermoelectric materials by mixing tissues has been well attempted. As a composite thermoelectric material, there is JP-A-11-323402. This is a method in which ceramic particles and the like are finely dispersed in the FeSi2 thermoelectric material. Ceramic particles do not have thermoelectric properties, but are generally improved in thermal properties. This application is different from the above cited example in the purpose and configuration.
[0010]
[Means for Solving the Problems]
In the present invention, in utilizing the heat scattering effect accompanying the transfer of heat between different phases, it is apparent that the thermoelectric material CrSi2, which is evidently improved in thermoelectric properties as compared with ceramic particles, is used as a different phase by mixing the thermoelectric material CrSi2. To improve. CrSi2 does not alloy with FeSi2, and has a structure in which FeSi2 and CrSi2 are mixed systematically.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the procedure for practicing the invention (weighing, arc melting, pulverization / classification, pulse current sintering, heat treatment).
[0012]
The test materials used were Fe (purity 99.9%, manufactured by Toho Zinc Co., Ltd.), Cr (purity 99.3%, Nippon Denko Corporation), and Si (purity 99.5%, Nippon Denko Corporation). Fe, Cr and Si were each ground to about 10 to 20 mm. These raw materials Fe and Si were weighed on an electronic balance so that the chemical composition stoichiometry of FeSi2 and Cr and Si was CrSi2. During arc melting, Si evaporates more easily and decreases. Then, after the arc melting, Fe: Si = 1: 2.06 for CrSi2 and Cr: Si = 1: 2.01 for CrSi2 were weighed so as to obtain a desired composition.
[0013]
The weighed sample was melted in an arc melting furnace (manufactured by Daia Vacuum Co., Ltd.). Arc melting is a technique in which an electric discharge is applied to a sample on a water-cooled copper mold from a water-cooled electrode for sample dissolution in an argon gas atmosphere (reduced pressure), and the sample is melted by Joule heat. The size of the water-cooled copper mold into which the sample is placed is 40 mm in diameter and 15 mm in depth. The melting chamber was evacuated to a pressure of 3 × 10 −3 Pa, and filled with argon gas until the pressure in the melting chamber reached 0.07 MPa.
Subsequently, an arc discharge was generated to dissolve the sample. In order to obtain a uniform sample, the dissolved sample was turned upside down and the dissolution was repeated three times. Then, a button-shaped sample having a diameter of 40 mm, a thickness of 20 mm, and a mass of about 90 g was obtained.
[0014]
Next, FeSi2 and CrSi2 obtained by arc melting were ground using an alumina pestle and mortar. To prevent mixing of materials, different pestles / mortars were used for FeSi2 and CrSi2. The pulverized sample was classified to 63 μm or less with a stainless sieve, and the classified sample was put into an alumina container (outer diameter 90 mm, inner diameter 70 mm, depth 80 mm) together with 20 alumina balls (diameter 15 mm). Crushed for hours. The rotation speed is 70 rpm / min. Also in this case, different ball mills were used for FeSi2 and CrSi2, respectively, in order to prevent mixing of materials.
[0015]
Next, in the mixed structure of XCrSi2- (1-X) FeSi2, the value of the mixing ratio X (mol%) was changed to 0.1, 0.20, 0.30, 0.40, 0.50, The mixed powder was sintered.
[0016]
As the sintering device, a pulse current sintering device (manufactured by Izumi Tech Co., Ltd.) was used. Upper and lower electrodes are provided in the sintering chamber of the sintering apparatus. A carbon punch and a carbon die filled with powder are sandwiched between the electrodes, and the inside of the apparatus is evacuated to vacuum and pressurized from above and below. This is an apparatus that heats by passing a pulsed current from an electrode and sinters a sample contained therein. 23 g of the sample powder was filled in a cylindrical carbon die having an outer diameter of 45 mm, an inner diameter of 20 mm, and a height of 50 mm. The sintering mold filled with the powder was placed between upper and lower electrodes of a pulse current sintering device via a carbon spacer. Thereafter, a pressure of 50 MPa was applied from above and below the sintering mold, the inside of the sintering apparatus was evacuated to 10 Pa, and pulse current sintering was started. The rate of temperature rise is 100 ° C./min up to 600 ° C., and the temperature is raised at a rate of 40 ° C./min from 600 ° C. to each sintering temperature (1000 ° C., 1100 ° C.). And cooled.
[0017]
The arc-melted sample FeSi2 is composed of a metal phase Fe2Si5 (α phase) and FeSi (ε phase). A sintered body using this material is also composed of a metal phase Fe2Si5 (α phase) and FeSi (ε phase), as in the case of arc melting.
In order to use it as a thermoelectric material, it is necessary to transform into FeSi2 (β phase) which is a semiconductor phase. The β heat treatment of the mixed sintered body of FeSi 2 and CrSi 2 was performed at a heat treatment temperature of 840 ° C. A static comparison method was used for measuring the thermal conductivity.
[0018]
FIG. 2 shows a composition image of a mixed structure of CrSi2 and FeSi2. In the composition image, CrSi2 is observed as light gray, and FeSi2 (β phase) is observed as dark gray. (A) shows the result when X = 0.2, and (B) shows the result when X = 0.5. The phase ratio of each phase matched the target ratio. Further, the amount of solid solution of Fe in CrSi2 and the amount of solid solution of Cr in FeSi2 are also small, and a mixed structure of CrSi2 and FeSi2 is obtained.
[0019]
CrSi2 and FeSi2 are used as a p-type semiconductor and an n-type semiconductor when used. When used with a p-type semiconductor, 0 to several percent of Al is added to CrSi2 and FeSi2. When used as an n-type semiconductor, 0 to several percent of Co is added.
[0020]
In addition, a pulse current sintering apparatus was used for producing a mixed structure, but it goes without saying that a conventional hot press, hot isostatic press, or the like can be used.
[0021]
When the powder is produced using a ball mill or the like, and the powder is made finer, the β heat treatment can be completed in a short time.
[0022]
【Example】
Table 1 shows a summary of Examples and Comparative Examples. Here, the definition of the relative density is a relative value when a value obtained by averaging the densities of CrSi2 (4.982 g / cm3) and FeSi2 (4.944 g / cm3) for each composition is defined as 100%. That is, in the case of Example 1, 4.982 × 0.1 + 4.944 × 0.9 = 4.948 g / cm 3 is defined as a density of 100%. Therefore, 96% in Example 1 means that the pores are 4%.
[0023]
(Example 1) This is a result of a mixed structure of X = 0.1, that is, a mixed structure of 10 mol% CrSi 2 and 90 mol% FeSi 2. Each density after sintering is 96%. The thermal conductivity was 14.86 W / Km, which was 23% lower than that of FeSi 2 and improved.
(Example 2) This is a result of a mixed structure of X = 0.2, that is, a mixed structure of 20 mol% CrSi2 and 80 mol% FeSi2. The density after sintering is 96%. The thermal conductivity was 13.90 W / Km, which was 28% lower than that of FeSi 2 and improved.
(Example 3) The result at X = 0.3, in which the thermal conductivity was improved by 27%.
(Example 4) The result at X = 0.4, in which the thermal conductivity was improved by 25%.
(Example 5) The result at X = 0.5, in which the thermal conductivity was improved by 23%.
(Comparative Example 1) X = 0, that is, as a result of the structure of 100 mol% FeSi2, the thermal conductivity is 19.30 W / Km, and the thermal conductivity is large because it is a single phase.
(Comparative Example 2) This is the result at X = 0.8, and the improvement rate is as low as 19%.
(Comparative Example 3) The result at X = 0.9, where the improvement rate is as low as 19%.
Table [Table 1]
Figure 2004281816
【The invention's effect】
According to the present invention, by mixing 10-50 mol% of CrSi 2 with FeSi 2, the thermal conductivity can be reduced by about 28%, and the thermoelectric properties of the Fe—Si thermoelectric material can be improved.
[Brief description of the drawings]
FIG. 1 is a sample preparation procedure. FIG. 2 is a composition image of a mixed structure of CrSi2 and FeSi2. (A) X = 0.2, (B) X = 0.5

Claims (1)

FeSi2系熱電材料の熱伝導率を低下させるため、FeSi2と冶金的に反応しないCrSi2をFeSi2に10〜50mol%の範囲で添加して成る混在熱電材料。A mixed thermoelectric material in which CrSi2, which does not react metallurgically with FeSi2, is added to FeSi2 in a range of 10 to 50 mol% in order to reduce the thermal conductivity of the FeSi2-based thermoelectric material.
JP2003072545A 2003-03-17 2003-03-17 Mixed thermoelectric material Pending JP2004281816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072545A JP2004281816A (en) 2003-03-17 2003-03-17 Mixed thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072545A JP2004281816A (en) 2003-03-17 2003-03-17 Mixed thermoelectric material

Publications (1)

Publication Number Publication Date
JP2004281816A true JP2004281816A (en) 2004-10-07

Family

ID=33288717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072545A Pending JP2004281816A (en) 2003-03-17 2003-03-17 Mixed thermoelectric material

Country Status (1)

Country Link
JP (1) JP2004281816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521648A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Self-organized thermoelectric material
CN113292077A (en) * 2021-05-14 2021-08-24 九江学院 Tantalum-doped CrSi2Method for preparing thermoelectric material
RU2803976C1 (en) * 2022-12-12 2023-09-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Method of production of a thin-film thermoelectric converter based on chromium disilicide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521648A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Self-organized thermoelectric material
CN113292077A (en) * 2021-05-14 2021-08-24 九江学院 Tantalum-doped CrSi2Method for preparing thermoelectric material
RU2803976C1 (en) * 2022-12-12 2023-09-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Method of production of a thin-film thermoelectric converter based on chromium disilicide

Similar Documents

Publication Publication Date Title
RU2364643C2 (en) Method of obtaining thermoelectric semiconductor alloy, module of thermoelectric treansformation and thermoelectric device for electric energy generation
JP4291842B2 (en) Compound thermoelectric material and method for producing the same
EP1523048A2 (en) Thermoelectric material and thermoelectric module using the thermoelectric material
CN102931335B (en) A kind of Graphene is combined thermoelectric material of cobalt stibide based skutterudite and preparation method thereof
JP2011029566A (en) Method for fabrication of high performance densified nanocrystalline bulk thermoelectric material using high pressure sintering technique
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP4374578B2 (en) Thermoelectric material and manufacturing method thereof
JP2018523294A (en) Compound semiconductor thermoelectric material and manufacturing method thereof
JP2013219308A (en) Bismuth-tellurium based thermoelectric material
JP2013149651A (en) Thermoelectric material manufacturing method
JP2011054850A (en) Thermoelectric material and manufacturing method thereof
JPWO2020067111A1 (en) A thermoelectric conversion material, a thermoelectric conversion module using the thermoelectric conversion material, and a method for manufacturing the thermoelectric conversion material.
JP6082663B2 (en) Thermoelectric conversion material and method for producing the same
JP2004281816A (en) Mixed thermoelectric material
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP2012256759A (en) Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material
JP6560061B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
CN101307393A (en) Process for preparing silicon-germanium-based thermoelectric material by liquid quenching cooperated with spark plasma sintering
CN108198934A (en) A kind of composite thermoelectric material and preparation method thereof
JP4123388B2 (en) Zinc antimony compound sintered compact
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
JP2013073960A (en) Magnesium silicide, thermoelectric conversion material, sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
WO2013108661A1 (en) Thermoelectric material
JP6155141B2 (en) Thermoelectric conversion material and method for producing the same
JP3564541B2 (en) Sintered zinc antimony compound and method for producing the same