JP2004281122A - Cylindrical alkaline battery - Google Patents

Cylindrical alkaline battery Download PDF

Info

Publication number
JP2004281122A
JP2004281122A JP2003068353A JP2003068353A JP2004281122A JP 2004281122 A JP2004281122 A JP 2004281122A JP 2003068353 A JP2003068353 A JP 2003068353A JP 2003068353 A JP2003068353 A JP 2003068353A JP 2004281122 A JP2004281122 A JP 2004281122A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode terminal
battery
boss portion
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003068353A
Other languages
Japanese (ja)
Other versions
JP4324396B2 (en
Inventor
Shusuke Tsuzuki
秀典 都築
Katsuhiro Yamashita
勝博 山下
Hirohiko Ota
廣彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2003068353A priority Critical patent/JP4324396B2/en
Publication of JP2004281122A publication Critical patent/JP2004281122A/en
Application granted granted Critical
Publication of JP4324396B2 publication Critical patent/JP4324396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently suppress a liquid leakage at a center boss portion of a resin-made gasket and enhance a liquid leakage resistance in a cylindrical alkaline battery having a structure in which a negative electrode current collector passes through the boss portion of the gasket. <P>SOLUTION: The battery is structured to make an uneven distribution state in which the stress operating between the center boss portion 34 of a gasket 33 and a negative electrode current collector 31 passing through the boss portion 34 becomes weak at the end portion on a power generation element 20 of the boss portion 34 and becomes stronger at an intermediate portion side which entered into a negative electrode terminal 32 side than at the end portion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は密閉構造を有する円筒型アルカリ電池に関し、とくに、正極端子を兼ねる金属製電池缶を樹脂製ガスケットを用いて封口するとともに、そのガスケットの中央ボス部を負極集電子が貫通する構造のものに適用して有効である。
【0002】
【従来の技術】
円筒型アルカリ電池としては、たとえばLR20(単1)やLR6(単3)などの型名で呼ばれているアルカリ乾電池が代表的であるが、その構成については、たとえば特開平11−86810や特開2000−3696などに記載されている。
【0003】
図4は従来の円筒型アルカリ電池(アルカリ乾電池)の構成例を示す。同図に示すアルカリ電池10’は、正極端子を兼ねる有底円筒状の金属製電池缶11にアルカリ電解液を含む発電要素20を収納するとともに、その電池缶11の開口部を負極端子32と樹脂製ガスケット33を用いて封口してある。発電要素20は、環状に成形固化された正極合剤21、アルカリ電解液が含浸されたセパレータ22、および負極ゲル23により構成され、負極ゲル23中には棒状の負極集電子31が挿入されている。
【0004】
上記発電要素20が収納された電池缶11の開口部は封口体30により封口される。封口体30は、負極集電子31、負極端子32、およびガスケット33をあらかじめ一体に組み合わせた集合部品であり、これを電池缶11の開口部に挿入した後、その開口部をかしめ加工することにより、その電池缶11を気密封止する封口構造が形成される。
【0005】
ガスケット33はポリプロピレン等の樹脂成形品であって、電池缶11の開口部と負極端子32の間に被挟圧状態で介在して上記開口部を気密封止する周縁パッキング部37と、上記負極端子32の裏側空間部と上記発電要素20の収納空間部の間を隔離する隔壁部36と、上記負極端子32の裏側面に立設された棒状負極集電子31が圧入状態で貫通する中央ボス部34’とが一体に形成されている。
【0006】
中央ボス部34’は外径がほぼ一様の円柱状であって、その円柱の軸心に沿ってほぼ一様な内径の挿通孔35が形成されている。負極集電子31は円形断面の直棒状であって、その上端は負極端子32の裏側面にスポット溶接等により接続・固定され、その下端は負極ゲル23中に挿入されている。上記挿通孔35の内径は上記集電子31の外径よりもやや小さく形成され、上記集電子31が上記ボス部34’を圧入状態で貫通するようになっている。この圧入状態の貫通により、その貫通部分でアルカリ電解液が這い上がって漏液するのを抑制している。
【0007】
【発明が解決しようとする課題】
上述したアルカリ電池ではアルカリ電解液の漏液阻止能力すなわち耐漏液性が問題となるが、その耐漏液性を阻害する要因の一つにガスケットのクラックがある。ガスケットは電気絶縁性で弾力性のあるポリプロピレン等の樹脂で構成されるが、アルカリ電解液に長時間接触する状況下では、その電解液の接触個所にクラックを生じて漏液を発生させることがある。
【0008】
従来においては、たとえば特開2000−3696に記載されているように、ガスケットを成形する際の樹脂注入ゲート部がアルカリ電解液に接触する配置となっていると、そのゲート部がアルカリ電解液に侵食されて上記クラックを生じやすいとされていた。ガスケットの場合、樹脂注入ゲート部は中央ボス部の端部に配置されるが、そのゲート部がアルカリ電解液に曝される発電要素側にあると、上記クラックが生じやすいということである。そこで、特開2000−3696では、上記樹脂注入ゲート部を、アルカリ電解液が存在する発電要素側ではなく、負極端子側に配置することを提案している。しかし、上記クラックは、必ずしも樹脂注入ゲート部だけに生じるものではなく、応力歪の存在下でアルカリ電解液に長時間曝されると、樹脂注入ゲート部でなくても、アルカリ電解液との接触個所にクラックが生じて漏液に至ることがある。
【0009】
図5は、従来のアルカリ電池に使用されているガスケット33の断面(切断面)形状とその中央ボス部34’に生じる応力の状態(矢印)を示す。ガスケット33の中央ボス部34’には挿通孔35が形成されていて、ここに負極集電子31が貫通している。この貫通は圧入状態で行われており、これにより、その中央ボス部34’と負極集電子31の間に常時応力が作用するようになっている。図中の矢印はその応力の方向と大きさを示す。矢印方向が応力の作用方向を示し、矢印の長さが応力の大きさを示す。中央ボス部34’の応力は上記挿通孔35に沿ってほぼ一様に分布している。この応力はガスケットの弾性歪によるが、この応力歪個所がアルカリ電解液に曝されると、上記樹脂注入ゲート部の有無にかかわらず、クラック(一種のストレスクラック)が生じて漏液を発生させる。
【0010】
上記ストレスクラックを生じさせないためにはボス部34’での応力歪を減じる必要がある。しかし、その応力歪を減じると、ボス部34’と集電子31間にアルカリ電解液の這い上がり(滲出)が起きやすくなって、耐漏液性が低下するという背反が生じる。
【0011】
この発明は以上のような問題を鑑みてなされたもので、その目的は、負極集電子が樹脂製ガスケットの中央ボス部を貫通する構造を有する円筒型アルカリ電池において、その中央ボス部でのアルカリ電解液の漏液を効果的に抑制して耐漏液性を高めることにある。
【0012】
【課題を解決するための手段】
本発明による手段は、正極端子を兼ねる有底円筒状の金属製電池缶にアルカリ電解液を含む発電要素が収納されるとともに、その電池缶の開口部が負極端子と樹脂製ガスケットにより封口され、上記ガスケットは、上記開口部と上記負極端子の間に被挟圧状態で介在して上記開口部を気密封止する周縁パッキング部と、上記負極端子の裏側空間部と上記発電要素の収納空間部の間を隔離する隔壁部と、上記負極端子の裏側面に立設された棒状負極集電子を圧入状態で貫通させる中央ボス部とが一体に形成された円筒型アルカリ電池において、上記中央ボス部と上記負極集電子間に作用する応力が、そのボス部の発電要素側端部でゼロまたは小さく、その端部よりも負極端子側に入り込んだ中間部で大きくなる不等分布状態をなすように構成したことを特徴とする。
【0013】
上記手段より、アルカリ電解液と応力によるストレスクラックと、ボス部と集電子間におけるアルカリ電解液の這い上がりを、共に効果的に抑制して耐漏液性を高めることができる。
【0014】
この場合、上記ボス部に負極集電子を貫通させる孔の内径が、発電要素側端部よりも負極端子側に入り込んだ中間部で小さくなるように形成することにより、上記応力の不等分布状態を形成することができる。また、上記ボス部の外形が負極端子側端と発電要素側端の中間で円弧状に拡大する形状とすることによっても、上記応力の不等分布状態を形成することができる。
【0015】
【発明の実施の形態】
図1は本発明による技術が適用された円筒型アルカリ電池(アルカリ乾電池)の一実施例を示す。同図に示すアルカリ電池10は、全体的な基本構成は前述した従来のものと同様であって、正極端子を兼ねる有底円筒状の金属製電池缶11にアルカリ電解液を含む発電要素20を収納するとともに、その電池缶11の開口部を負極端子32と樹脂製ガスケット33を用いて封口してある。
【0016】
電池缶11は、ニッケルメッキされた薄鋼鈑あるいはニッケル−鉄合金などの金属薄板をプレス加工により形成したものであって、正極端子を兼ねる。発電要素20は、正極合剤21、セパレータ22、および負極ゲル23により構成され、負極ゲル23中には棒状の負極集電子31が挿入されている。正極合剤21は、二酸化マンガン等を含む正極活物質を環状に成形固化したものであって、電池缶11内に圧入状態で装填されている。セパレータ22にはアルカリ電解液が含浸されている。負極ゲル23はゲル状亜鉛を用いて調整されたものであって、このゲル中に上記集電子31が挿入されている。
【0017】
発電要素20が収納された電池缶11の開口部は封口体30により封口される。封口体30は、負極集電子31、負極端子32、およびガスケット33をあらかじめ一体に組み合わせた集合部品であり、これを電池缶11の開口部に挿入した後、その開口部をかしめ加工することにより、その電池缶11を気密封止する封口構造が形成される。負極端子32は皿状にプレス加工された金属製であって、その皿の外底面が負極端子面(表側面)を形成する。
【0018】
ガスケット33はポリプロピレン等の樹脂成形品であって、電池缶11の開口部と負極端子32の間に被挟圧状態で介在して上記開口部を気密封止する周縁パッキング部37と、上記負極端子32の裏側空間部と上記発電要素20の収納空間部の間を隔離する隔壁部36と、上記負極端子32の裏側面に立設された棒状負極集電子31を圧入状態で貫通させる中央ボス部34とが一体に形成されている。
【0019】
なお、図示を省略するが、負極端子32の裏側空間部はガス抜き小孔により外部と同気圧に連通するようになっている。これとともに、ガスケット33の一部に防爆用の薄肉部が形成され、電池缶11の内圧が異常上昇したときに、その薄肉部が破断することにより、電池の破裂を防止するようになっている。
【0020】
図2は、上記ガスケット33の断面(切断面)形状とその中央ボス部34に生じる応力の状態(矢印)を示す。ガスケット33の中央ボス部34には挿通孔35が形成されていて、ここに負極集電子31が貫通している。この貫通は圧入状態で行われており、これにより、その中央ボス部34と負極集電子31の間に常時応力が作用するようになっている。図中の矢印はその応力の方向と大きさを示す。矢印方向が応力の作用方向を示し、矢印の長さが応力の大きさを示す。
【0021】
ここで、同図に示すガスケット33は、上記ボス部34の外形が負極端子32側端と発電要素20側端の間で円弧状に拡大する形状となっている。また、上記ボス部34に負極集電子31を貫通させる挿通孔35の内径が、発電要素20側端部よりも負極端子32側に入り込んだ中間部で小さくなるように形成されている。つまり、孔35の両端開口部で内径が最大となる一方、その中間(中心部)で内径が最小となるように形成されている。これにより、中央ボス部34と負極集電子31間に作用する応力は、そのボス部34の発電要素20側端部で小さく、その端部よりも負極端子32側に入り込んだ中間部で大きくなる不等分布状態で作用するようなっている。
【0022】
上述した構成によれば、上記ボス部34の下端部(発電要素20側端部)はアルカリ電解液に接触するが、その接触部分に分布する応力歪が小さいため、アルカリ電解液の接触と応力によるストレスクラックが生じにくい状態となっている。一方、アルカリ電解液との接触部分から離れた中間部分(中央部)では、アルカリ電解液の這い上がりを抑制するのに必要かつ十分な応力が作用している。これにより、アルカリ電解液と応力によるストレスクラックと、ボス部34と集電子31間におけるアルカリ電解液の這い上がりを、共に効果的に抑制することができる。
【0023】
図3は、本発明に用いて有効なガスケット33の他の実施例を示す。上述した漏液抑制効果を得るためのガスケット構造は、たとえば同図の(a)〜(d)にそれぞれ示すような断面(切断面)構造であってもよい。いずれの構造も、中央ボス部34と負極集電子31間に作用する応力が、そのボス部34の発電要素20側端部で小さく、その端部よりも負極端子32側に入り込んだ中間部で大きくなる不等分布状態をなすことができ、これにより、中央ボス部34でのアルカリ電解液の漏液を効果的に抑制して耐漏液性を高めることができる。
【0024】
上述したガスケット33は金型による樹脂成形により作製されるが、その成形に際しての樹脂注入ゲート部は、上述した本発明の構成においては、中央ボス部34の発電要素20側端部に配置してもとくに支障の無いことが確認された。 以下、上述した実施例のアルカリ電池を実際に試作して行った試験結果を示す。
【0025】
<試験1.>
==クラック発生試験==
LR20型アルカリ乾電池を本発明と従来の各構成でそれぞれ試作し、90℃の恒温槽に30日間保存した後、電池を分解してガスケットのボス部におけるストレスクラックの発生状況を観察した。
【0026】
<試験2.>
負極端子の無い電池を作製し、負極集電子における常温でのアルカリ電解液の這い上がり露出日数(アルカリ電解液が負極端子側に這い上がってきた日数)を調べた。集電子は本発明と従来のどちらも2.0mm径のものを使用した。
【0027】
次の表1は、上記試験1と2の結果を示す。なお、表1において、従来例1〜3は図5に示すような断面(切断面)構造のボス部を有するガスケットを、従来例4は図6に示すような断面(切断面)構造のボス部を有するガスケットを使用した。また、本発明1は図3(a)に示すような断面(切断面)構造のボス部を有するガスケットを、本発明2,3はそれぞれ図3(b)と図2に示すような断面(切断面)構造のボス部を有するガスケットを使用した。
【0028】
【表1】

Figure 2004281122
【0029】
上記表1からもあきらかなように、本発明では、アルカリ電解液と応力によるストレスクラックと、ボス部34と集電子31間におけるアルカリ電解液の這い上がりを、共に効果的に抑制することができる。
【0030】
以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、中央ボス部と負極集電子間に作用する応力が、そのボス部の発電要素側端部でゼロまたは小さく、その端部よりも負極端子側に入り込んだ中間部で大きくなるような不等分布状態は、集電子の外径を不等分布させることによっても可能である。
【0031】
【発明の効果】
本発明によれば、負極集電子が樹脂製ガスケットの中央ボス部を貫通する構造を有する円筒型アルカリ電池において、その中央ボス部でのアルカリ電解液の漏液を効果的に抑制して耐漏液性を高めることができる。
【図面の簡単な説明】
【図1】本発明による円筒型アルカリ電池の一実施例を示す断面図である。
【図2】本発明の電池で使用されるガスケットとそのボス部での応力作用状態を示す断面図である。
【図3】本発明の電池で使用するガスケットの他の実施態様を例示する断面図である。
【図4】従来の円筒型アルカリ電池の構成を示す断面図である。
【図5】従来の電池で使用されていたガスケットとそのボス部での応力作用状態を示す断面図である。
【図6】従来のアルカリ電池で使用されていたガスケットとそのボス部での応力作用状態を示す断面図である。
【符号の説明】
10 アルカリ電池(本発明)
10’ アルカリ電池(従来)
11 電池缶
20 発電要素
21 正極合剤
22 セパレータ
23 負極ゲル
30 封口体
31 集電子
32 負極端子
33 ガスケット
34 中央ボス部(本発明)
34’ 中央ボス部(従来)
35 挿通孔
36 隔壁部
37 周縁パッキング部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cylindrical alkaline battery having a sealed structure, in particular, a structure in which a metal battery can also serving as a positive electrode terminal is sealed using a resin gasket, and a negative electrode current collector passes through a central boss portion of the gasket. It is effective to apply to
[0002]
[Prior art]
As a cylindrical alkaline battery, for example, an alkaline dry battery called by a model name such as LR20 (single) or LR6 (single) is typical. The configuration thereof is described in, for example, Japanese Patent Application Laid-Open No. H11-86810. No. 2000-3696.
[0003]
FIG. 4 shows a configuration example of a conventional cylindrical alkaline battery (alkaline dry battery). An alkaline battery 10 'shown in FIG. 1 has a bottomed cylindrical metal battery can 11 also serving as a positive electrode terminal, in which a power generating element 20 containing an alkaline electrolyte is accommodated, and an opening of the battery can 11 is formed as a negative electrode terminal 32. It is sealed using a resin gasket 33. The power generation element 20 is composed of a positive electrode mixture 21 formed into an annular shape and solidified, a separator 22 impregnated with an alkaline electrolyte, and a negative electrode gel 23. A rod-shaped negative electrode current collector 31 is inserted into the negative electrode gel 23. I have.
[0004]
The opening of the battery can 11 in which the power generating element 20 is stored is sealed by a sealing body 30. The sealing body 30 is a collective component in which the negative electrode current collector 31, the negative electrode terminal 32, and the gasket 33 are integrally combined in advance. After inserting this into the opening of the battery can 11, the opening is caulked. Thus, a sealing structure for hermetically sealing the battery can 11 is formed.
[0005]
The gasket 33 is a resin molded product such as polypropylene. The gasket 33 is interposed between the opening of the battery can 11 and the negative electrode terminal 32 in a pressed state and hermetically seals the opening. A partition wall portion 36 for isolating between a back space portion of the terminal 32 and a storage space portion of the power generation element 20, and a central boss through which a bar-shaped negative electrode current collector 31 erected on a back side surface of the negative electrode terminal 32 penetrates in a press-fit state. The part 34 'is integrally formed.
[0006]
The central boss portion 34 'has a columnar shape with a substantially uniform outer diameter, and an insertion hole 35 with a substantially uniform inner diameter is formed along the axis of the cylinder. The negative electrode current collector 31 is a straight rod having a circular cross section. The upper end is connected and fixed to the back side surface of the negative electrode terminal 32 by spot welding or the like, and the lower end is inserted into the negative electrode gel 23. The inner diameter of the insertion hole 35 is formed to be slightly smaller than the outer diameter of the current collector 31, so that the current collector 31 penetrates the boss 34 'in a press-fit state. This penetration in the press-fitted state prevents the alkaline electrolyte from creeping up and leaking at the penetrated portion.
[0007]
[Problems to be solved by the invention]
In the above-described alkaline battery, the ability of the alkaline battery to prevent leakage of the alkaline electrolyte, that is, leakage resistance is a problem. One of the factors inhibiting the leakage resistance is a crack in the gasket. The gasket is made of an electrically insulating and elastic resin such as polypropylene.However, if the gasket is in contact with an alkaline electrolyte for a long time, cracks may occur at the contact points of the electrolyte and cause leakage. is there.
[0008]
Conventionally, as described in Japanese Patent Application Laid-Open No. 2000-3696, for example, when a resin injection gate portion for forming a gasket is arranged to be in contact with an alkaline electrolyte, the gate portion is in contact with the alkaline electrolyte. It was said that the erosion was likely to cause the cracks. In the case of a gasket, the resin injection gate portion is disposed at the end of the central boss portion. However, if the gate portion is on the side of the power generation element exposed to the alkaline electrolyte, the crack is likely to occur. Therefore, Japanese Patent Application Laid-Open No. 2000-3696 proposes disposing the resin injection gate on the negative electrode terminal side, not on the power generation element side where the alkaline electrolyte is present. However, the crack does not necessarily occur only in the resin injection gate portion, and when exposed to the alkaline electrolyte for a long time in the presence of stress strain, contact with the alkali electrolyte does not occur even in the resin injection gate portion. Cracks may occur in some places, leading to liquid leakage.
[0009]
FIG. 5 shows the cross section (cut surface) shape of the gasket 33 used in the conventional alkaline battery and the state of stress (arrow) generated in the central boss portion 34 '. An insertion hole 35 is formed in the central boss 34 ′ of the gasket 33, and the negative electrode current collector 31 penetrates therethrough. This penetration is performed in a press-fit state, whereby a stress always acts between the central boss portion 34 ′ and the negative electrode current collector 31. The arrows in the figure indicate the direction and magnitude of the stress. The direction of the arrow indicates the direction in which the stress acts, and the length of the arrow indicates the magnitude of the stress. The stress of the central boss portion 34 'is distributed almost uniformly along the insertion hole 35. This stress is caused by the elastic strain of the gasket. When the stress strain portion is exposed to the alkaline electrolyte, cracks (a kind of stress crack) are generated regardless of the presence or absence of the resin injection gate portion, thereby causing liquid leakage. .
[0010]
In order to prevent the above-mentioned stress crack from occurring, it is necessary to reduce the stress strain at the boss portion 34 '. However, when the stress strain is reduced, the alkaline electrolyte is likely to crawl (bleed) between the boss portion 34 'and the current collector 31, and contradicting to a decrease in the leakage resistance.
[0011]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a cylindrical alkaline battery having a structure in which a negative electrode current collector penetrates a central boss of a resin gasket. An object of the present invention is to effectively suppress leakage of an electrolytic solution and increase leakage resistance.
[0012]
[Means for Solving the Problems]
Means according to the present invention is that a power generating element containing an alkaline electrolyte is accommodated in a bottomed cylindrical metal battery can also serving as a positive electrode terminal, and the opening of the battery can is sealed with a negative electrode terminal and a resin gasket, The gasket is provided between the opening and the negative electrode terminal in a pressed state to seal the opening tightly, a peripheral packing portion, a back space of the negative electrode terminal, and a storage space for the power generation element. In the cylindrical alkaline battery, a partition wall portion for isolating between the two and a central boss portion integrally formed with a bar-shaped negative electrode current collector standing on the back side surface of the negative electrode terminal for press-fitting therethrough are integrally formed. So that the stress acting between the negative electrode current collector and the boss portion is zero or smaller at the end of the power generation element side of the boss portion, and becomes larger at the intermediate portion that enters the negative electrode terminal side than the end portion so as to form an uneven distribution state. Make up It is characterized in.
[0013]
By the above means, the stress crack due to the alkaline electrolyte and the stress, and the rise of the alkaline electrolyte between the boss portion and the current collector can both be effectively suppressed, and the leakage resistance can be increased.
[0014]
In this case, by forming the inner diameter of the hole through which the negative electrode current collector penetrates through the boss portion so as to be smaller at the intermediate portion that enters the negative electrode terminal side than at the power generation element side end portion, the stress is not uniformly distributed. Can be formed. In addition, the unequal distribution of the stress can also be formed by forming the outer shape of the boss portion into a shape that expands in an arc shape between the end of the negative electrode terminal and the end of the power generation element.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of a cylindrical alkaline battery (alkaline dry battery) to which the technology according to the present invention is applied. The alkaline battery 10 shown in FIG. 1 has an overall basic configuration similar to that of the conventional battery described above, and includes a power generating element 20 containing an alkaline electrolyte in a bottomed cylindrical metal battery can 11 also serving as a positive electrode terminal. While being stored, the opening of the battery can 11 is sealed with a negative electrode terminal 32 and a resin gasket 33.
[0016]
The battery can 11 is formed by pressing a thin metal plate such as a nickel-plated thin steel plate or a nickel-iron alloy, and also serves as a positive electrode terminal. The power generating element 20 includes a positive electrode mixture 21, a separator 22, and a negative electrode gel 23, and a bar-shaped negative electrode current collector 31 is inserted into the negative electrode gel 23. The positive electrode mixture 21 is obtained by molding and solidifying a positive electrode active material containing manganese dioxide or the like in a ring shape, and is loaded into the battery can 11 in a press-fit state. The separator 22 is impregnated with an alkaline electrolyte. The negative electrode gel 23 is prepared by using gel zinc, and the current collector 31 is inserted into the gel.
[0017]
The opening of the battery can 11 in which the power generation element 20 is stored is closed by a sealing body 30. The sealing body 30 is a collective component in which the negative electrode current collector 31, the negative electrode terminal 32, and the gasket 33 are integrally combined in advance. After inserting this into the opening of the battery can 11, the opening is caulked. Thus, a sealing structure for hermetically sealing the battery can 11 is formed. The negative electrode terminal 32 is made of metal pressed into a dish shape, and the outer bottom surface of the dish forms a negative electrode terminal surface (front side surface).
[0018]
The gasket 33 is a resin molded product such as polypropylene. The gasket 33 is interposed between the opening of the battery can 11 and the negative electrode terminal 32 in a pressed state and hermetically seals the opening. A partition 36 for isolating the back side space of the terminal 32 from the storage space for the power generating element 20, and a central boss through which the bar-shaped negative electrode current collector 31 erected on the back side of the negative electrode terminal 32 penetrates in a press-fit state. The part 34 is formed integrally.
[0019]
Although not shown, the space on the back side of the negative electrode terminal 32 communicates with the outside at the same pressure by a gas vent hole. At the same time, a thin portion for explosion proof is formed in a part of the gasket 33, and when the internal pressure of the battery can 11 rises abnormally, the thin portion is broken to prevent the battery from bursting. .
[0020]
FIG. 2 shows a cross-sectional (cut surface) shape of the gasket 33 and a state of stress (arrow) generated in the central boss portion 34 thereof. An insertion hole 35 is formed in the central boss portion 34 of the gasket 33, and the negative electrode current collector 31 penetrates therethrough. This penetration is performed in a press-fit state, so that a stress always acts between the central boss portion 34 and the negative electrode current collector 31. The arrows in the figure indicate the direction and magnitude of the stress. The direction of the arrow indicates the direction in which the stress acts, and the length of the arrow indicates the magnitude of the stress.
[0021]
Here, the gasket 33 shown in the figure has a shape in which the outer shape of the boss portion 34 expands in an arc shape between the end on the negative electrode terminal 32 side and the end on the power generation element 20 side. Further, the inner diameter of the insertion hole 35 through which the negative electrode current collector 31 penetrates through the boss portion 34 is formed to be smaller at the intermediate portion that enters the negative electrode terminal 32 side than the end portion on the power generation element 20 side. In other words, the hole 35 is formed such that the inner diameter becomes maximum at the opening portions at both ends, and the inner diameter becomes minimum at the middle (center portion). As a result, the stress acting between the central boss portion 34 and the negative electrode current collector 31 is small at the end of the boss portion 34 on the power generation element 20 side, and is large at the intermediate portion that enters the negative electrode terminal 32 side from the end portion. It works in an uneven distribution state.
[0022]
According to the above-described configuration, the lower end portion (the end portion on the power generation element 20 side) of the boss portion 34 comes into contact with the alkaline electrolyte. Stress cracks are less likely to occur. On the other hand, in an intermediate portion (central portion) distant from the contact portion with the alkaline electrolyte, a necessary and sufficient stress acts to suppress the creeping of the alkaline electrolyte. Thereby, it is possible to effectively suppress both the stress crack due to the alkaline electrolyte and the stress and the rise of the alkaline electrolyte between the boss portion 34 and the current collector 31.
[0023]
FIG. 3 shows another embodiment of a gasket 33 useful for the present invention. The gasket structure for obtaining the above-described liquid leakage suppressing effect may be, for example, a cross-section (cut surface) structure shown in each of FIGS. In either structure, the stress acting between the central boss portion 34 and the negative electrode current collector 31 is small at the end of the boss portion 34 on the power generation element 20 side, and at the intermediate portion that enters the negative electrode terminal 32 side from the end portion. An unequal distribution state can be achieved, whereby the leakage of the alkaline electrolyte at the central boss portion 34 can be effectively suppressed, and the leakage resistance can be increased.
[0024]
The above-described gasket 33 is manufactured by resin molding using a mold. In the configuration of the present invention described above, the resin injection gate portion at the time of the molding is disposed at the end of the central boss portion 34 on the power generation element 20 side. It was confirmed that there was no particular problem. Hereinafter, the test results obtained by actually producing the alkaline batteries of the above-described examples are shown.
[0025]
<Test 1. >
== Crack generation test ==
LR20-type alkaline dry batteries were manufactured as prototypes according to the present invention and the conventional configuration, respectively, stored in a 90 ° C. constant temperature bath for 30 days, and then disassembled to observe the occurrence of stress cracks in the boss of the gasket.
[0026]
<Test 2. >
A battery having no negative electrode terminal was fabricated, and the number of days of exposure of the alkaline electrolyte at the negative electrode current collector at room temperature (the number of days the alkaline electrolyte crawled to the negative electrode side) was examined. The current collector used herein had a diameter of 2.0 mm in both the present invention and the conventional one.
[0027]
Table 1 below shows the results of Tests 1 and 2 above. In Table 1, Conventional Examples 1 to 3 are gaskets having a boss having a cross-sectional (cut surface) structure as shown in FIG. 5, and Conventional Example 4 is a boss having a cross-sectional (cut surface) structure as shown in FIG. A gasket having a portion was used. In addition, the present invention 1 is a gasket having a boss having a cross-sectional (cut surface) structure as shown in FIG. 3A, and the present inventions 2 and 3 are cross-sectional views as shown in FIGS. A gasket having a boss portion having a (cut surface) structure was used.
[0028]
[Table 1]
Figure 2004281122
[0029]
As is apparent from Table 1 above, in the present invention, both the stress crack due to the alkaline electrolyte and the stress and the rise of the alkaline electrolyte between the boss portion 34 and the current collector 31 can be effectively suppressed. .
[0030]
As described above, the present invention has been described based on the typical embodiments, but the present invention can have various aspects other than the above. For example, the stress acting between the central boss and the negative electrode current collector is zero or smaller at the end of the boss on the power generating element side, and is larger at the intermediate part that enters the negative electrode terminal side than the end. The distribution state can also be achieved by making the outer diameter of the current collector uneven.
[0031]
【The invention's effect】
According to the present invention, in a cylindrical alkaline battery having a structure in which a negative electrode current collector penetrates a central boss portion of a resin gasket, leakage of an alkaline electrolyte at the central boss portion is effectively suppressed to prevent leakage. Can be enhanced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of a cylindrical alkaline battery according to the present invention.
FIG. 2 is a cross-sectional view showing a gasket used in the battery of the present invention and a stress acting state at a boss thereof.
FIG. 3 is a cross-sectional view illustrating another embodiment of the gasket used in the battery of the present invention.
FIG. 4 is a cross-sectional view showing a configuration of a conventional cylindrical alkaline battery.
FIG. 5 is a cross-sectional view showing a gasket used in a conventional battery and a stress acting state at a boss thereof.
FIG. 6 is a cross-sectional view showing a gasket used in a conventional alkaline battery and a stress acting state at a boss thereof.
[Explanation of symbols]
10. Alkaline battery (the present invention)
10 'alkaline battery (conventional)
Reference Signs List 11 battery can 20 power generating element 21 positive electrode mixture 22 separator 23 negative electrode gel 30 sealing body 31 current collector 32 negative electrode terminal 33 gasket 34 central boss (the present invention)
34 'center boss (conventional)
35 insertion hole 36 partition 37 peripheral packing

Claims (3)

正極端子を兼ねる有底円筒状の金属製電池缶にアルカリ電解液を含む発電要素が収納されるとともに、その電池缶の開口部が負極端子と樹脂製ガスケットにより封口され、上記ガスケットは、上記開口部と上記負極端子の間に被挟圧状態で介在して上記開口部を気密封止する周縁パッキング部と、上記負極端子の裏側空間部と上記発電要素の収納空間部の間を隔離する隔壁部と、上記負極端子の裏側面に立設された棒状負極集電子を圧入状態で貫通させる中央ボス部とが一体に形成された円筒型アルカリ電池において、上記中央ボス部と上記負極集電子間に作用する応力が、そのボス部の発電要素側端部でゼロまたは小さく、その端部よりも負極端子側に入り込んだ中間部で大きくなる不等分布状態をなすように構成したことを特徴とする円筒型アルカリ電池。A power generating element containing an alkaline electrolyte is accommodated in a bottomed cylindrical metal battery can also serving as a positive electrode terminal, and an opening of the battery can is sealed with a negative electrode terminal and a resin gasket. A peripheral packing portion interposed in a pressure-pressed state between the portion and the negative electrode terminal to hermetically seal the opening, and a partition wall for separating a space behind the negative electrode terminal and a space for accommodating the power generating element. And a central boss portion integrally formed with a central boss portion through which a rod-shaped negative electrode current collector erected on the back side surface of the negative electrode terminal is pressed in, in a cylindrical alkaline battery, wherein between the central boss portion and the negative electrode current collector The stress acting on the boss is zero or smaller at the end of the power generation element side of the boss portion, and it is configured to form an unequal distribution state in which the middle portion enters the negative electrode terminal side more than the end portion. Circle Type alkaline batteries. 請求項1において、上記負極集電子が貫通するボス部の孔の内径が、発電要素側端部よりも負極端子側に入り込んだ中間部で小さくなるように形成することにより、上記応力の不等分布状態を形成したことを特徴とする円筒型アルカリ電池。2. The unevenness of the stress according to claim 1, wherein an inner diameter of a hole of the boss through which the negative electrode current collector penetrates is formed so as to be smaller at an intermediate portion that enters the negative electrode terminal side than at a power generating element side end. A cylindrical alkaline battery in which a distribution state is formed. 請求項1または2において、上記ボス部の外形が負極端子側端と発電要素側端の中間で円弧状に拡大する形状となっていることを特徴とする円筒型アルカリ電池。3. The cylindrical alkaline battery according to claim 1, wherein the outer shape of the boss portion is shaped to expand in an arc shape between the negative terminal side end and the power generating element side end.
JP2003068353A 2003-03-13 2003-03-13 Cylindrical alkaline battery Expired - Lifetime JP4324396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068353A JP4324396B2 (en) 2003-03-13 2003-03-13 Cylindrical alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068353A JP4324396B2 (en) 2003-03-13 2003-03-13 Cylindrical alkaline battery

Publications (2)

Publication Number Publication Date
JP2004281122A true JP2004281122A (en) 2004-10-07
JP4324396B2 JP4324396B2 (en) 2009-09-02

Family

ID=33285717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068353A Expired - Lifetime JP4324396B2 (en) 2003-03-13 2003-03-13 Cylindrical alkaline battery

Country Status (1)

Country Link
JP (1) JP4324396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421066A (en) * 2020-11-18 2021-02-26 常州市江南电池有限公司 Production process of environment-friendly alkaline battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021273919A1 (en) 2020-05-22 2022-10-06 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421066A (en) * 2020-11-18 2021-02-26 常州市江南电池有限公司 Production process of environment-friendly alkaline battery
CN112421066B (en) * 2020-11-18 2023-08-15 常州市江南电池有限公司 Environment-friendly alkaline battery production process

Also Published As

Publication number Publication date
JP4324396B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4399213B2 (en) Alkaline batteries and their sealing gaskets
JPH08502625A (en) Current collector assembly for electrochemical cell
JP2006216411A (en) Sealed battery
JPH09153351A (en) Sealed battery
JP2014120389A (en) Power storage device
JP5001497B2 (en) Current collector seal assembly for electrochemical cells
JP4507159B2 (en) Sealed battery
JP2003272574A (en) Sealed battery
JP4339923B1 (en) Sealed battery
CN113013526A (en) Battery cover plate, battery and preparation method of battery
JP2004281122A (en) Cylindrical alkaline battery
JP2000357495A (en) Battery
JP2000208130A (en) Sealed battery
JP2012094249A (en) Sealed battery
JP2015176655A (en) Cylindrical battery and method of manufacturing the same
JP2014130726A (en) Power storage element manufacturing method
JP6045830B2 (en) Flat battery
JP7187205B2 (en) cylindrical battery
JP2008117577A (en) Alkaline dry cell and its manufacturing method
JP2001076701A (en) Tubular alkaline battery
JPH08124544A (en) Cylindrical alkaline battery
JP2020087781A (en) Power storage device
KR830008410A (en) Axis battery
JP2008103222A (en) Alkaline dry cell
JP2010080184A (en) Battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4324396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term