JP2004280881A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2004280881A
JP2004280881A JP2003067148A JP2003067148A JP2004280881A JP 2004280881 A JP2004280881 A JP 2004280881A JP 2003067148 A JP2003067148 A JP 2003067148A JP 2003067148 A JP2003067148 A JP 2003067148A JP 2004280881 A JP2004280881 A JP 2004280881A
Authority
JP
Japan
Prior art keywords
layer
recording medium
magnetic recording
ramp load
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003067148A
Other languages
Japanese (ja)
Inventor
Satoru Matsunuma
悟 松沼
Takeshi Konuma
剛 小沼
Akira Yano
亮 矢野
Shioji Fujita
塩地 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003067148A priority Critical patent/JP2004280881A/en
Publication of JP2004280881A publication Critical patent/JP2004280881A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium which can maintain a sufficient sliding durability characteristic and corrosion resistance, at a high surface recording density of equal to or more than 600 gigabits/square inch. <P>SOLUTION: The disk-like magnetic recording medium of a magnetic recording system recorded at the surface recording density of equal to or more than 600 gigabits/square inch is provided with a lubrication layer on the surface of the disk-like magnetic recording medium comprising a surplus layer and a fixed layer, wherein the ratio of the surplus layer to the fixed layer is different according to the surface region of the disk-like magnetic recording medium. The long-term sliding durability can be maintained, and the recording/ reproducing can be achieved in the condition of the high surface recording density of equal to or more than 600 gigabits/square inch. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録媒体に関し、より詳細には、長期的な耐摺動特性が維持でき、600ギガビット/平方インチ以上の高い面記録密度の条件においても記録再生が可能となる磁気記録媒体に関する。
【0002】
【従来の技術】
近年、磁気記録媒体の面記録密度を高めるためにヘッドの低浮上量化が求められており、近い将来、極低浮上量での記録あるいは間欠的なコンタクトレコーティングになると予測される。この点に関する本発明者らの試算では、特に600ギガビット/平方インチ以上の面記録密度では、ヘッド浮上量は4nm以下とする必要があり、これに伴ない、磁気記録媒体としては、保護層厚は3nm以下望ましくは2nm以下、 潤滑層厚は2nm以下望ましくは1nm以下に仕上げる必要があるとの結論を得た。
【0003】
600ギガビット/平方インチ以上の面記録密度を実現するために、本発明者らは、まず記録層の生成過程における結晶成長を制御して、記録層の結晶粒の微細化・規則化を図るべく、遷移金属元素とBとを含む軟磁性層と、上記軟磁性層上に隣接して形成され白金族元素とBとを含むシード層と、上記シード層上に隣接して形成された人工格子構造の記録層とした。
【0004】
この記録層の詳細は本発明者らにより特願2002−351973号明細書に記載されている。本明細書において、用語「人工格子構造」とは、複数の異なる物質を単原子或いは数原子の厚さで一方向に互いに周期的に積層して得られる構造を意味する。人工格子構造を有する記録層としては、Coを主体とする層とPd等の白金族元素を主体とする層をそれぞれ数原子程度または単原子程度の厚みで交互に積層した交互積層多層膜であることが好ましい。また、記録層には、添加元素としては、Bを5〜30at%含むことが好ましい。Bを添加することにより、記録層内で組成の揺らぎが発生し、記録層の結晶粒子間で働く面内方向の磁気的交換結合力を低減することができる。一方、軟磁性層のB濃度は5〜30at%であり、シード層のB濃度は20〜70at%であることが好ましい。本発明の磁気記録媒体では、軟磁性層とシード層の両方にBを含有させることにより、シード層の上に形成される人工格子構造の記録層の結晶配向性を最適に制御することができる。
【0005】
ところで、この記録層がもつ高い面記録密度の可能性は、ヘッドとの良好な摺動の成立が前提条件となる。即ち、摺動条件として、潤滑層には磁気記録媒体の起動中に発生する動摩擦力や摩耗の低減(以後、耐摺動耐久性と略称)が強く求められる。とりわけ、今日の2.5インチ型以下の小径磁気ディスクでは、ランプロード方式が用いられてきており、長期にわたって、ロード・アンロードを繰り返したり、ノート型パーソナルコンピュータ搭載用のハードディスクではスピンドル回転による消費電力を低減させるために頻繁にロード・アンロード動作を繰り返している。このような、ロード・アンロードに於いて、特にロード時のヘッドと磁気記録媒体間の衝撃のために潤滑層がワイプ(掻き出し)され、長期的な耐摺動特性が低下することがある。このような低下現象は、特に10000RPM以上になると致命的であることが判った。
【0006】
このような長期的な耐摺動特性の低下を防ぐため、たとえば特許文献1に開示されるように、末端に水酸基を有するパーフルオロポリエーテルと、分子内に水酸基を有する長鎖炭化水素とからなり、前記パーフルオロポリエーテルに対する前記長鎖炭化水素の割合(パーフルオロポリエーテル/長鎖炭化水素)がモル比で0.01〜100 であるような複合型の潤滑剤を潤滑層に使用した磁気記録媒体が提案されている。
【0007】
【特許文献1】
特開平5−247483号公報
【0008】
【発明が解決しようとする課題】
しかし、600ギガビット/平方インチ以上の高面記録密度で予測される潤滑層厚は1nm以下であり、そのような間欠接触が許容される条件下では、上記の潤滑層では不十分であることがわかった。また、ランプロードを頻繁に繰り返したり、長期にわたってランプロードを行うと、十分な耐摺動特性や耐食性が維持できなかった。本発明は、上記課題を解決するためになされたものである。
【0009】
【課題を解決するための手段】
本発明では、磁気記録媒体の保護層の上に形成された潤滑層が、ランプロード領域とそれより内周に3mm以内の範囲と、さらにその内側の範囲の潤滑層が潤滑剤の余剰分と固定分の比率が異なる潤滑層から形成されているので、潤滑層厚が1nm以下であっても、長期的な耐摺動特性が維持できるのである。余剰層と固定層の比率としては、ランプロード領域とそれより内周に3mm以内の範囲では、全潤滑層厚に対する固定層の比率が80%以上であり、かつ、さらにその内側の範囲では、その比率が65%以下であることが望ましい。ランプロード領域とそれより内周の3mm以内の範囲では、ヘッドがロードする瞬間にヘッドによって余剰の潤滑層がワイプされることがあるので、固定層の比率は高いほうがよい。一方、さらに内周の領域では、間欠接触下でのシーク動作に対して、ヘッドと磁気記録媒体表面の動摩擦係数をなるべく低下させる必要があることから、全潤滑層厚に対する固定層の比率は、65%以下であったほうがいい。
【0010】
固定層の形成の方法としては、潤滑剤溶液に保護層まで形成した磁気記録媒体を浸漬して、潤滑層の膜を形成後、ランプロード領域から内周に3mm以内の範囲を磁気記録媒体を回転させながらUVランプを照射して固定化し、その後、磁気記録媒体全体を100℃の高温槽に15分間静置してランプロード領域から内周に3mm以内の範囲とさらに内側の範囲の潤滑層が潤滑剤の余剰層と固定層の比率が異なる潤滑層を形成することが出来る。さらに、あらかじめランプロード領域から内周に3mm以内の範囲以外をマスクして、赤外ランプを照射してから、マスクを外して磁気記録媒体全体を赤外ランプによってさらに照射するなどの方法によっても良い。
【0011】
【発明の実施の形態】
(実施例1)
基板上に、密着層、軟磁性層、シード層、記録層、保護層及び潤滑層を順次積層した。まず、直径65mmのガラス基板上に、密着層としてTi膜を連続スパッタ装置により5nmの膜厚で成膜した。密着層上に、軟磁性層としてCo8515(at%)を膜厚200nmにて成膜した。軟磁性層の成膜では、チャンバー内にArガスを導入しながら、CoB合金ターゲットを用いてDCスパッタした。軟磁性層上にシード層としてPd6634(at%)を膜厚4nmにて成膜した。シード層の成膜では、チャンバー内にKrガスを導入しながら、PdB合金ターゲットを用いてDCスパッタした。次に、シード層上に人工格子構造の記録層を成膜した。記録層の成膜では、Krガス中で、CoターゲットとPd8515(at%)ターゲットを交互に放電しながらDCスパッタして、Co層とPdB層とが交互に積層された人工格子構造の記録層を形成した。Co層の1層あたりの膜厚は0.14nm、PdB層の1層あたりの膜厚は0.94nmであり、PdB層とCo層の積層数は、PdB層を25層とし、Co層を25層とした。その後、テトラヘドラル系非晶質カーボンの保護層を2nmの厚さで成膜した。その後、次式で表されるパーフルオロポリエーテル(平均分子量:4000)の溶液(濃度0.2wt%)に浸漬した。
【0012】
【化1】

Figure 2004280881
【0013】
浸漬時間は3分、引き上げ速度は1mm/secであった。その後、低圧水銀ランプによって、磁気記録媒体のランプロード領域から内周に3mm以内の範囲以外をマスクして、窒素雰囲気で、中心波長184.9nmと253.7nmの紫外光を3分間照射した。そして、マスクを外した後、磁気記録媒体全体を100℃の高温槽に15分間静置した。その後、磁気記録媒体を高温槽から取り出して、テープバニッシュをかけて、微細な凹凸を除去した。反射型フーリエ変換赤外分光光度計(FT−IR)で測定した潤滑層厚は、1nmであった。
【0014】
フッ化炭素系溶媒で本実施例の磁気記録媒体をリンスした後、顕微FT−IRを使って、ランプロード領域から内周に3mm以内の範囲とそれより内側の領域の固定層の膜厚を測定して、それぞれの全潤滑層厚に対する固定層の比率を計算すると、ランプロード領域から内周に3mm以内の範囲では、82%であり、それより内側の領域では、63%であった。
【0015】
本実施例の磁気記録媒体の耐摺動特性を以下のように評価した。ピコスライダーのヘッドを使い、500hPaに減圧したチャンバー内で、ランプロード・アンロード動作を300k回繰り返した。その後、ランプロード部を光学式顕微鏡によって観測したが、スクラッチや磨耗痕は観測されなかった。
【0016】
さらに、ランプロード部において、連続摺動試験を行った。まず、ランプロード部で1rpmの回転速度で動摩擦係数を測定したところ、0.17であった。それから、ヘッド荷重5gの条件で、150rpmで300k回連続摺動した。その後、ランプロード部で1rpmの回転速度で動摩擦係数を測定したところ、0.17であって、動摩擦係数の上昇は見られなかった。また、光学式顕微鏡で観察してもスクラッチ、磨耗痕は観測されなかった。これらの試験の後に、ヘッドスライダーの浮上面を光学顕微鏡で観察すると、特に汚れは認められなかった。
【0017】
また、記録再生ヘッドを使い、15000rpm、 2MBPI、300kTPIの条件(面記録密度600ギガビット/平方インチ)でエラーレートを測定すると、1×10−5以下であり、600ギガビット/平方インチの条件でも良好な記録再生が出来ることがわかった。
【0018】
(比較例1)
本比較例においては、潤滑剤溶液塗布までは実施例1と同様に磁気記録媒体を作製した。その後、磁気記録媒体全体を100℃の高温槽に15分間静置した。その後、磁気記録媒体を高温槽から取り出して、テープバニッシュをかけて、微細な凹凸を除去した。反射型フーリエ変換赤外分光光度計で測定した潤滑層厚は、1nmであった。
【0019】
フッ化炭素系溶媒で本比較例の磁気記録媒体をリンスした後、実施例1と同様に顕微FT−IRを使って、ランプロード領域から内周に3mm以内の範囲とそれより内側の領域の固定層の膜厚を測定して、それぞれの全潤滑層厚に対する固定層の比率を計算すると、ランプロード領域から内周に3mm以内の範囲では63%であり、それより内側の領域でも63%であった。
【0020】
実施例1と同様な方法で500hPaに減圧したチャンバー内で、ランプロード・アンロード動作を300k回繰り返した後、ランプロード部を光学式顕微鏡によって観測すると、微細なスクラッチや磨耗痕が観測された。
【0021】
実施例1と同様なランプロード部における連続摺動試験を行うと、連続摺動試験の前で動摩擦係数は0.20であったが、ヘッド荷重5gの条件で、150rpmで300k回連続摺動した後にランプロード部で動摩擦係数を測定したところ、0.81に上昇し、耐摺動特性の低下が顕著であった。また、光学式顕微鏡で観察すると無数のスクラッチ、磨耗痕が観測された。これらの試験の後に、ヘッドスライダーの浮上面を光学顕微鏡で観察すると、顕著な汚れが観測された。これらは、保護層の磨耗によってヘッドスライダー浮上面に堆積したものと思われる。
【0022】
また、記録再生ヘッドを使い、実施例と同様にエラーレートを測定したところ、1×10−2であり、600ギガビット/平方インチの条件では記録再生できないことがわかった。
【0023】
【発明の効果】
以上、詳述したように、本発明の磁気記録媒体は、ランプロード領域から内周に3mm以内の範囲とさらに内側の範囲の潤滑層が潤滑剤の余剰分と固定分の比率が異なる潤滑層から形成されているので、潤滑層厚が1nmであっても、長期的な耐摺動特性が維持でき、600ギガビット/平方インチ以上の高い面記録密度の条件においても記録再生が可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium, and more particularly, to a magnetic recording medium that can maintain long-term sliding resistance and can perform recording and reproduction even under conditions of a high areal recording density of 600 gigabits / square inch or more. .
[0002]
[Prior art]
In recent years, it has been required to reduce the flying height of a head in order to increase the areal recording density of a magnetic recording medium. In the near future, recording at an extremely low flying height or intermittent contact recording will be performed. According to calculations by the present inventors in this regard, especially at a surface recording density of 600 gigabits / square inch or more, the flying height of the head needs to be 4 nm or less, and accordingly, the magnetic recording medium has a protective layer thickness of less than 4 nm. It was concluded that it was necessary to finish to 3 nm or less, preferably 2 nm or less, and to set the lubricating layer thickness to 2 nm or less, preferably 1 nm or less.
[0003]
In order to achieve an areal recording density of 600 gigabits / square inch or more, the present inventors first controlled crystal growth in the process of forming a recording layer to reduce the size and order of crystal grains in the recording layer. A soft magnetic layer containing a transition metal element and B, a seed layer formed adjacent to the soft magnetic layer and containing a platinum group element and B, and an artificial lattice formed adjacent to the seed layer. The recording layer had a structure.
[0004]
Details of this recording layer are described in Japanese Patent Application No. 2002-319773 by the present inventors. In this specification, the term "artificial lattice structure" means a structure obtained by periodically laminating a plurality of different substances with a thickness of one atom or several atoms in one direction. The recording layer having the artificial lattice structure is an alternating multilayer film in which a layer mainly composed of Co and a layer mainly composed of a platinum group element such as Pd are alternately laminated with a thickness of about several atoms or about one atom. Is preferred. The recording layer preferably contains B as an additive element in an amount of 5 to 30 at%. By adding B, composition fluctuation occurs in the recording layer, and the in-plane magnetic exchange coupling force acting between crystal grains of the recording layer can be reduced. On the other hand, the B concentration of the soft magnetic layer is preferably 5 to 30 at%, and the B concentration of the seed layer is preferably 20 to 70 at%. In the magnetic recording medium of the present invention, by including B in both the soft magnetic layer and the seed layer, the crystal orientation of the recording layer having the artificial lattice structure formed on the seed layer can be optimally controlled. .
[0005]
By the way, the possibility of a high surface recording density of the recording layer is a precondition for achieving good sliding with the head. That is, as a sliding condition, the lubricating layer is strongly required to reduce kinetic frictional force and abrasion generated during startup of the magnetic recording medium (hereinafter abbreviated as sliding durability). In particular, the ramp-load method has been used for today's small-diameter magnetic disks of 2.5 inches or less, and the load / unload operation is repeated for a long period of time. Load and unload operations are frequently repeated to reduce power. In such loading / unloading, the lubricating layer may be wiped (scraped) due to an impact between the head and the magnetic recording medium particularly during loading, and the long-term sliding resistance may deteriorate. It has been found that such a decrease phenomenon is particularly fatal when it is 10,000 rpm or more.
[0006]
In order to prevent such a long-term decrease in sliding resistance, for example, as disclosed in Patent Document 1, a perfluoropolyether having a hydroxyl group at a terminal and a long-chain hydrocarbon having a hydroxyl group in a molecule are used. A composite type lubricant having a molar ratio of the long-chain hydrocarbon to the perfluoropolyether (perfluoropolyether / long-chain hydrocarbon) of 0.01 to 100 was used for the lubricating layer. Magnetic recording media have been proposed.
[0007]
[Patent Document 1]
JP-A-5-247483
[Problems to be solved by the invention]
However, the lubricating layer thickness expected at a high areal recording density of 600 gigabits / square inch or more is 1 nm or less, and under such a condition that intermittent contact is allowed, the lubricating layer described above may be insufficient. all right. Further, if the ramp load is repeated frequently or the ramp load is performed for a long period of time, sufficient sliding resistance and corrosion resistance cannot be maintained. The present invention has been made to solve the above problems.
[0009]
[Means for Solving the Problems]
In the present invention, the lubricating layer formed on the protective layer of the magnetic recording medium has a ramp load region and a range of 3 mm or less on the inner circumference thereof, and the lubricating layer on the inner side thereof has a surplus lubricant amount. Since the lubricating layers are formed with different fixed portions, even if the lubricating layer thickness is 1 nm or less, long-term sliding resistance can be maintained. As for the ratio of the surplus layer and the fixed layer, the ratio of the fixed layer to the total lubricating layer thickness is 80% or more in the range of 3 mm or less in the lamp load region and the inner circumference thereof, and further in the range inside the range. It is desirable that the ratio be 65% or less. Since the excess lubricating layer may be wiped by the head at the moment when the head is loaded, it is preferable that the ratio of the fixed layer is higher in the ramp load area and in a range within 3 mm of the inner circumference thereof. On the other hand, in the further inner peripheral region, the dynamic friction coefficient between the head and the surface of the magnetic recording medium must be reduced as much as possible for the seek operation under intermittent contact. It is better to be 65% or less.
[0010]
As a method of forming the fixed layer, the magnetic recording medium formed up to the protective layer is immersed in a lubricant solution to form a film of the lubricating layer. The entire magnetic recording medium is allowed to stand in a high-temperature bath at 100 ° C. for 15 minutes by rotating it with a UV lamp while rotating, and the lubricating layer is formed within a range of 3 mm or less to the inner circumference from the lamp load area and further inside. However, it is possible to form a lubricating layer in which the ratio between the surplus layer of the lubricant and the fixed layer is different. Further, a method may be used in which an area other than the area within 3 mm from the lamp load area is masked in advance and the infrared lamp is irradiated, and then the mask is removed and the entire magnetic recording medium is further irradiated with the infrared lamp. good.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
An adhesive layer, a soft magnetic layer, a seed layer, a recording layer, a protective layer, and a lubricating layer were sequentially laminated on a substrate. First, a Ti film having a thickness of 5 nm was formed as a contact layer on a glass substrate having a diameter of 65 mm by a continuous sputtering apparatus. On the adhesive layer, Co 85 B 15 (at%) was formed as a soft magnetic layer to a thickness of 200 nm. In forming the soft magnetic layer, DC sputtering was performed using a CoB alloy target while introducing Ar gas into the chamber. Pd 66 B 34 (at%) was formed as a seed layer on the soft magnetic layer to a thickness of 4 nm. In forming the seed layer, DC sputtering was performed using a PdB alloy target while introducing Kr gas into the chamber. Next, a recording layer having an artificial lattice structure was formed on the seed layer. In the formation of the recording layer, an artificial lattice structure in which a Co target and a Pd 85 B 15 (at%) target are alternately discharged and subjected to DC sputtering in a Kr gas to alternately stack Co layers and PdB layers. Was formed. The film thickness of one layer of the Co layer is 0.14 nm, the film thickness of one layer of the PdB layer is 0.94 nm, the number of layers of the PdB layer and the Co layer is 25 layers of the PdB layer, and There were 25 layers. Thereafter, a protective layer of tetrahedral amorphous carbon was formed to a thickness of 2 nm. Then, it was immersed in a solution (concentration: 0.2 wt%) of perfluoropolyether (average molecular weight: 4000) represented by the following formula.
[0012]
Embedded image
Figure 2004280881
[0013]
The immersion time was 3 minutes, and the lifting speed was 1 mm / sec. Thereafter, ultraviolet light having a center wavelength of 184.9 nm and a wavelength of 253.7 nm was irradiated for 3 minutes in a nitrogen atmosphere by using a low-pressure mercury lamp while masking a region other than a region within 3 mm from an inner periphery of the lamp loading region of the magnetic recording medium. Then, after removing the mask, the entire magnetic recording medium was allowed to stand in a high-temperature bath at 100 ° C. for 15 minutes. Thereafter, the magnetic recording medium was taken out of the high-temperature bath and subjected to tape burnish to remove fine irregularities. The thickness of the lubricating layer measured by a reflection type Fourier transform infrared spectrophotometer (FT-IR) was 1 nm.
[0014]
After rinsing the magnetic recording medium of the present example with a fluorocarbon solvent, the thickness of the fixed layer in the area within 3 mm from the ramp load area to the inner circumference and the area inside the area from the ramp load area was measured using microscopic FT-IR. When the ratio of the fixed layer to the total lubricating layer thickness was measured and calculated, the ratio was 82% within a range of 3 mm from the ramp load region to the inner periphery, and was 63% in the region inside the ramp load region.
[0015]
The sliding resistance of the magnetic recording medium of this example was evaluated as follows. The ramp load / unload operation was repeated 300 k times in a chamber reduced in pressure to 500 hPa using the head of a picos slider. Thereafter, the lamp load portion was observed with an optical microscope, but no scratches or wear marks were observed.
[0016]
Further, a continuous sliding test was performed at the ramp load portion. First, when the dynamic friction coefficient was measured at a rotation speed of 1 rpm at the ramp load portion, it was 0.17. Then, the head was continuously slid 300 k times at 150 rpm under the condition of a head load of 5 g. Thereafter, when the dynamic friction coefficient was measured at a rotation speed of 1 rpm at the ramp load portion, it was 0.17, and no increase in the dynamic friction coefficient was observed. In addition, no scratches and wear marks were observed when observed with an optical microscope. After these tests, when the air bearing surface of the head slider was observed with an optical microscope, no particular stain was observed.
[0017]
When the recording / reproducing head was used and the error rate was measured under the conditions of 15000 rpm, 2 MBPI, and 300 kTPI (area recording density: 600 gigabits / square inch), the error rate was 1 × 10 −5 or less, which was good even at 600 gigabits / square inch It was found that recording and reproduction were possible.
[0018]
(Comparative Example 1)
In this comparative example, a magnetic recording medium was manufactured in the same manner as in Example 1 until the application of the lubricant solution. Thereafter, the entire magnetic recording medium was left standing in a high-temperature bath at 100 ° C. for 15 minutes. Thereafter, the magnetic recording medium was taken out of the high-temperature bath and subjected to tape burnish to remove fine irregularities. The lubricating layer thickness measured with a reflection type Fourier transform infrared spectrophotometer was 1 nm.
[0019]
After rinsing the magnetic recording medium of the present comparative example with a fluorocarbon-based solvent, using a micro FT-IR in the same manner as in Example 1, the area within 3 mm from the ramp load area to the inner circumference and the area inside the area were within 3 mm. When the film thickness of the fixed layer is measured and the ratio of the fixed layer to the total lubricating layer thickness is calculated, the ratio is 63% within a range of 3 mm from the ramp load region to the inner periphery, and 63% in the region inside the lamp load region. Met.
[0020]
After the lamp load / unload operation was repeated 300 k times in a chamber evacuated to 500 hPa in the same manner as in Example 1, when the lamp load portion was observed with an optical microscope, fine scratches and wear marks were observed. .
[0021]
When a continuous sliding test was performed on the ramp load portion in the same manner as in Example 1, the dynamic friction coefficient was 0.20 before the continuous sliding test. However, under the condition of a head load of 5 g, continuous sliding was performed 300 k times at 150 rpm at 150 rpm. After that, when the dynamic friction coefficient was measured at the ramp load portion, it was increased to 0.81, and the sliding resistance was significantly reduced. In addition, when observed with an optical microscope, countless scratches and wear marks were observed. After these tests, when the flying surface of the head slider was observed with an optical microscope, remarkable dirt was observed. It is considered that these were deposited on the head slider flying surface due to wear of the protective layer.
[0022]
When the error rate was measured using the recording / reproducing head in the same manner as in the example, it was 1 × 10 −2 , and it was found that recording / reproducing could not be performed under the condition of 600 gigabits / square inch.
[0023]
【The invention's effect】
As described in detail above, in the magnetic recording medium of the present invention, the lubricating layer in the range of 3 mm or less on the inner periphery from the ramp load region and the lubricating layer in the further inner range have different ratios of the surplus lubricant and the fixed lubricant. Therefore, even if the thickness of the lubricating layer is 1 nm, long-term sliding resistance can be maintained, and recording and reproduction can be performed even under conditions of a high areal recording density of 600 gigabits / square inch or more.

Claims (3)

基板と、上記基板上に形成され、遷移金属元素とBとを含む軟磁性層と、上記軟磁性層上に隣接して形成され白金族元素とBとを含むシード層と、上記シード層上に隣接して形成された人工格子構造の記録層と、保護層及び潤滑層を順次積層した600ギガビット/平方インチ以上の面記録密度で記録される円盤状の磁気記録媒体であって、上記円盤状磁気記録媒体の表面にある上記潤滑層は、余剰層と固定層からなり、上記余剰層と上記固定層の比率が上記円盤状磁気記録媒体の表面の領域により異なることを特徴とする磁気記録媒体。A substrate, a soft magnetic layer formed on the substrate and containing a transition metal element and B, a seed layer formed adjacent to the soft magnetic layer and containing a platinum group element and B, A disk-shaped magnetic recording medium recorded at an areal recording density of 600 gigabits / square inch or more, in which a recording layer having an artificial lattice structure formed adjacent to a recording layer, a protective layer and a lubricating layer are sequentially laminated, Wherein the lubricating layer on the surface of the magnetic recording medium comprises a surplus layer and a fixed layer, and the ratio of the surplus layer to the fixed layer varies depending on the surface area of the disk-shaped magnetic recording medium. Medium. 上記円盤状磁気記録媒体の表面には、ランプロード領域が存在し、上記ランプロード領域とそれより内周に3mm以内の範囲では、上記余剰層より上記固定層が厚く、かつ、上記ランプロード領域より3mmを超える内側の領域では上記固定層より上記余剰層が厚いことを特徴とする請求項1記載の磁気記録媒体。On the surface of the disk-shaped magnetic recording medium, there is a ramp load area. In the ramp load area and the inner circumference thereof within a range of 3 mm or less, the fixed layer is thicker than the surplus layer and the ramp load area. 2. The magnetic recording medium according to claim 1, wherein the excess layer is thicker than the fixed layer in an inner region exceeding 3 mm. 上記ランプロード領域とそれより内周に3mm以内の範囲では、全潤滑層厚に対する固定層の比率が80%以上であり、かつ、前記ランプロード領域より3mmを超える内側の範囲では、その比率が65%以下であることを特徴とする請求項2記載の磁気記録媒体。The ratio of the fixed layer to the total lubricating layer thickness is 80% or more in the above-mentioned ramp load region and a range within 3 mm on the inner periphery thereof, and the ratio is 3% or more inside the above-mentioned ramp load region. 3. The magnetic recording medium according to claim 2, wherein the content is 65% or less.
JP2003067148A 2003-03-12 2003-03-12 Magnetic recording medium Withdrawn JP2004280881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067148A JP2004280881A (en) 2003-03-12 2003-03-12 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067148A JP2004280881A (en) 2003-03-12 2003-03-12 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2004280881A true JP2004280881A (en) 2004-10-07

Family

ID=33284849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067148A Withdrawn JP2004280881A (en) 2003-03-12 2003-03-12 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2004280881A (en)

Similar Documents

Publication Publication Date Title
US8846137B2 (en) Method of manufacturing a magnetic disk
US7968505B2 (en) Lubricant
JP3651681B2 (en) Magnetic disk and manufacturing method thereof
US8679655B2 (en) Lubricant and magnetic disk
US7277254B2 (en) Magnetic recording disk and process for manufacture thereof
US20090023017A1 (en) Magnetic disk
WO2010116908A1 (en) Lubricant compound for magnetic disk and magnetic disk
US20100232065A1 (en) Magnetic disk and method of manufacturing the same
JP4099860B2 (en) Liquid lubricant, magnetic recording medium using the same, and manufacturing method thereof
US6617011B2 (en) Elastomeric lubricants for magnetic recording media
US6753060B1 (en) Method for improving performance of thin film recording media and media obtained thereby
US20100009216A1 (en) Perfluoropolyether lubricant thin film for thin film storage medium
US6686019B1 (en) In-situ stabilization of composite lubricant/additive films on thin film media
JP2004152460A (en) Magnetic disk and process for manufacturing method
JP2004280881A (en) Magnetic recording medium
US20090263592A1 (en) Plasma-enhanced chemical vapor deposition of advanced lubricant for thin film storage medium
JP4535251B2 (en) Manufacturing method of lubricant for magnetic disk
JP2004280880A (en) Magnetic recording medium
JP2004280884A (en) Magnetic recording medium
JP2004280885A (en) Magnetic recording medium
JP2004280879A (en) Magnetic recording medium
JP2004280882A (en) Magnetic recording medium
JP2004280883A (en) Magnetic recording medium
JP3888625B2 (en) Magnetic disk and manufacturing method thereof
EP1521245A1 (en) Magnetic recording medium and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606