JP2004279272A - Method and system for evaluating physical property of bedrock, program, and recording medium - Google Patents

Method and system for evaluating physical property of bedrock, program, and recording medium Download PDF

Info

Publication number
JP2004279272A
JP2004279272A JP2003072416A JP2003072416A JP2004279272A JP 2004279272 A JP2004279272 A JP 2004279272A JP 2003072416 A JP2003072416 A JP 2003072416A JP 2003072416 A JP2003072416 A JP 2003072416A JP 2004279272 A JP2004279272 A JP 2004279272A
Authority
JP
Japan
Prior art keywords
evaluation
rock
elastic wave
wave velocity
deformation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003072416A
Other languages
Japanese (ja)
Other versions
JP3885038B2 (en
Inventor
Katsutoshi Kubota
克寿 久保田
Shoichi Noda
祥一 野田
Noritaka Toyoda
紀孝 豊田
Takehiro Shibuya
武弘 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003072416A priority Critical patent/JP3885038B2/en
Publication of JP2004279272A publication Critical patent/JP2004279272A/en
Application granted granted Critical
Publication of JP3885038B2 publication Critical patent/JP3885038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently acquire an evaluation result of excellent precision. <P>SOLUTION: This method/system for evaluation comprises processes for: executing an original position test and elastic wave velocity measurement for other peripheral bedrock to acquire a modulus value of deformation and an elastic wave velocity; drawing out a multiple regression correlation expression based on the modulus value of deformation, the elastic wave velocity and geological property information of the other peripheral bedrock; applying geological property information of an evaluating bedrock to the multiple regression correlation expression to estimate a modulus value of deformation in the evaluating bedrock; executing the elastic wave velocity measurement only for one measuring line in the evaluating bedrock to acquire the modulus value of deformation in the evaluating bedrock; recognizing strength or a change thereof in the evaluating bedrock based on the elastic wave velocity of the evaluating bedrock, and collating it with a prescribed determination reference to determine the necessity of individual investigation for a modulus of deformation; and determining the estimated modulus value of deformation as the modulus value of deformation in the evaluating bedrock, when the individual investigation is determined to be unnecessary. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、岩盤物性評価方法およびシステム、プログラムならびに記録媒体に関する。
【0002】
【従来の技術】
鉄管・コンクリート等の覆工設計においては、岩盤物性値(合成変形係数)を適切に把握する必要がある。そこでこの岩盤物性値を正確に把握するため、平板載荷試験を綿密に実施することが求められている。しかしながら、施工領域において複雑に物性値が変化する全ての岩盤について前記試験を実施するのは施工性・経済性の面で現実的でない。特に斜坑領域に関する試験は、その試験環境に鑑みて実施自体が非常に困難であるため、施工対象となる岩盤と略同様な地質状況の岩盤について数箇所実施することとし、また一方で施工領域全線に渡る弾性波速度測定を実施するのが一般的であった。この場合、前記平板載荷試験の結果と弾性波速度測定の結果の相関をとって補完し、施工領域の岩盤物性評価を行っていた。併せて、全線に渡る地質調査の結果を前記相関に定性的に織込む処理も行われていた(特許文献1および2参照)。
【0003】
【非特許文献1】
水門鉄管No.154(1988.3)社団法人水門鉄管協会
【0004】
【非特許文献2】
水門鉄管No.196(1989.9)社団法人水門鉄管協会
【0005】
【発明が解決しようとする課題】
しかしながら、従来手法には課題が残されていた。すなわち、前記平板載荷試験は、試験機を水平に固定して試験板に荷重を加え、荷重と変位量との変化傾向を測定する作業が必要とされることに起因する課題である。試験方法の特性上、試験機の設置状況が試験結果の精度に大きな影響を与えることになる。例えば斜坑や縦坑などの試験環境では、試験機据付面が元来水平面ではなく、また作業領域が限られた狭いエリアとなってしまう。
【0006】
このため、必要資材等を配置するスペース確保が困難で、またこれら資材等を搬入・運搬するための特別な設備を設ける必要が生じてしまう。従って、試験機の設置自体が困難なものとなる。勿論、斜坑等における作業員の作業性は良好でなく、作業効率の面でも問題が残されていた。
【0007】
また更に、試験機の設置が困難であることに加え、困難な試験環境で得られる試験結果が精度のよい良好なものとなりにくい危惧が存在した。特に、評価すべき岩盤の地質性状が複雑に変化する場合には、試験用のサンプル岩をきめ細かく採取して岩盤評価を行うことが効率面で実現性が薄い一方で、数カ所のみのサンプリングで岩盤評価をすれば評価岩盤全体を確実に評価することが難しかった。他方、従来手法を採用することで岩盤評価に時間をかけることとなれば、トンネル等の掘進効率低下にも繋がりかねず、本工事の進捗に影響を与えるおそれもあったのである。
【0008】
そこで本発明はこのような課題に着目してなされたもので、良好な精度の評価結果を効率的に取得可能とする岩盤物性評価方法およびシステム、プログラムならびに記録媒体を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成する本発明の岩盤物性評価方法は、岩盤物性の評価を行う方法であって、評価岩盤と略同様な地質性状を有する周辺他岩盤に対して原位置試験および弾性波速度測定を実行して、変形係数値および弾性波速度を取得する工程と、前記取得した変形係数値および弾性波速度と、前記周辺他岩盤の地質性状情報とに基づいた重回帰分析を実施し、地質性状情報と変形係数とに関する重回帰相関式を導出する工程と、評価岩盤の地質性状情報を、前記重回帰相関式に適用し、評価岩盤の変形係数値を推定する工程と、評価岩盤における1測線のみについて弾性波速度測定を実行して、評価岩盤の弾性波速度を取得する工程と、
前記評価岩盤の弾性波速度に基づき評価岩盤の強弱またはその変化を認識し、これを所定の判定基準と照合して変形係数の個別検討要否の判定を行う工程と、前記判定により、個別検討が必要ないと判定された場合、前記推定した変形係数値を評価岩盤の変形係数値とする工程と、を含むことを特徴とする。
【0010】
第2の発明は、第1の発明において、前記判定により、個別検討が必要であると判定された場合、当該個別検討箇所に関する有限要素法解析を実行し、変形係数値を新たに算定することを特徴とする。
【0011】
第3の発明は、第1または2の発明において、前記評価岩盤が斜坑または縦坑であり、周辺他岩盤が水平坑であることを特徴とする。
【0012】
第4の発明は、第1〜3のいずれかの発明において、前記地質性状情報は、岩種分布比率、硬さ区分、亀裂間隔、亀裂性状区分、湧水量の少なくともいずれかを含むものとすることを特徴とする。
【0013】
第5の発明は、第1〜4のいずれかの発明において、評価岩盤または周辺他岩盤の地質性状が領域または経時的に変化する場合、利用する地質性状情報の項目を変化地点の地質特性に対応させて選択的に利用することを特徴とする。
【0014】
第6の発明は、岩盤物性の評価を行うシステムであって、評価岩盤と略同様な地質性状を有する周辺他岩盤に対して原位置試験および弾性波速度測定を実行して、変形係数値および弾性波速度を取得する手段と、前記取得した変形係数値および弾性波速度と、前記周辺他岩盤の地質性状情報とに基づいた重回帰分析を実施し、地質性状情報と変形係数とに関する重回帰相関式を導出する手段と、評価岩盤の地質性状情報を、前記重回帰相関式に適用し、評価岩盤の変形係数値を推定する手段と、評価岩盤における1測線のみについて弾性波速度測定を実行して、評価岩盤の弾性波速度を取得する手段と、前記評価岩盤の弾性波速度に基づき評価岩盤の強弱またはその変化を認識し、これを所定の判定基準と照合して変形係数の個別検討要否の判定を行う手段と、前記判定により、個別検討が必要ないと判定された場合、前記推定した変形係数値を評価岩盤の変形係数値とする手段と、を含むことを特徴とする岩盤物性評価システムにかかる。
【0015】
第7の発明は、岩盤物性の評価方法をコンピュータに実行させるためのプログラムであって、評価岩盤と略同様な地質性状を有する周辺他岩盤に対して原位置試験および弾性波速度測定を実行して得られた、変形係数値および弾性波速度を取得する工程と、前記取得した変形係数値および弾性波速度と、前記周辺他岩盤の地質性状情報とに基づいた重回帰分析を実施し、地質性状情報と変形係数とに関する重回帰相関式を導出する工程と、評価岩盤の地質性状情報を、前記重回帰相関式に適用し、評価岩盤の変形係数値を推定する工程と、評価岩盤における1測線のみについて弾性波速度測定を実行して得られた、評価岩盤の弾性波速度を取得する工程と、前記評価岩盤の弾性波速度に基づき評価岩盤の強弱またはその変化を認識し、これを所定の判定基準と照合して変形係数の個別検討要否の判定を行う工程と、前記判定により、個別検討が必要ないと判定された場合、前記推定した変形係数値を評価岩盤の変形係数値とする工程と、を含むことを特徴とする岩盤物性評価プログラムにかかる。このプログラムは、前記各ステップの動作を行うためのコードから構成されている。
【0016】
第8の発明は、第7の発明に記載の岩盤物性評価プログラムを記録したコンピュータ読み取り可能な記録媒体にかかる。
【0017】
【発明の実施の形態】
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は水圧管路用斜坑の構造例を示す図である。図に示す水圧管路用斜坑は、ダムの貯水を発電所の水車に向けて送水する経路として設置されるものであり、当該斜坑周辺の岩盤が本発明の岩盤物性評価方法の適用対象例となる。この斜坑を構築するにあたっては、前記発電所側からダム堤体方向に向けてトンネルボーリングマシンを掘進させ岩盤掘削が行われることとなる。このような水圧管路に敷設される水圧鉄管は、周囲岩盤からの圧力と鉄管内部を挿通する水圧とを略平衡させることで肉薄化等が極力図られる。従って、岩盤圧力や地質性状を詳細かつ確実に把握することが必要となるのである。
【0018】
図2(a)は平板載荷試験の試験状況を示す図であり、(b)は弾性波速度測定の概要を示す図である。平板載荷試験とは、岩盤表面に平らな載荷版を通して荷重を加え、荷重強さと載荷版沈下量との関係から岩盤の支持力や変形特性を求める原位置試験である。具体的には図に示す通り、直径30cm〜60cm程度の鋼板を岩盤上に載置し、ジャッキにより例えば10Mpa程度の載荷を実行する。変形特性等を測定することで、不均質岩盤のひずみ分布等の把握が可能となる。また、弾性波速度測定は、弾性波を評価対象岩盤における発信点にて発生させることで岩盤中を伝播させ、またこれを受信点にて捕捉し、この速度分布を解析することで岩盤強度等を推定することが出来る手法である。(b)図に示すように、弾性波速度が大きいと岩盤強度が高いと判定し、一方、弾性波速度が小さいと岩盤強度が低いと判定する。
【0019】
上記したような急傾斜の斜坑(或いは縦坑)内において前記平板載荷試験等を実施する困難を解消する本発明においては、斜坑内の原位置試験を出来るだけ低減し、また地質性状の観察情報を有効活用するものとしている。このような本発明の岩盤物性評価方法を実現するシステム構成例を図3に示す。なお、このシステム構成例においては、ハードウェア構成に加えて当該ハードウェアにて処理する情報およびその処理流れについても併せて概説している。
【0020】
当該システム100を構成するハードウェアとしては、PDAなどの情報入力端末101と、これとネットワークで結ばれたパーソナルコンピュータ等の情報処理端末102とで主に構成される。両者は勿論、入力インターフェイスと情報処理装置として一体に稼動するものとしてもよい。また、前記情報処理端末102は、先行試験・地質観察結果データベース103および地質データベース104を備えている。
【0021】
なお、本発明におけるシステム100は一例としてPDA101とパーソナルコンピュータ102からなる構成を想定したが、これに限定されることはない。平板載荷試験等を行う原位置にて使用しやすい情報入力端末101と、解析等の処理可能な機能を備える情報処理端末102との組合せであれば任意にシステム構成可能である。また前記情報入力端末101または情報処理端末102は、本発明の岩盤物性評価方法を実現するプログラムを例えばプログラムデータベースなどの適宜な記憶装置に格納し、これを演算装置らがOS(Operating Systems)に基づきメモリに適宜読み出すなどして岩盤物性評価方法を実行する。
【0022】
また、前記PDA101およびパーソナルコンピュータ102は、コンピュータとして、互いのデータ通信を実行するI/O、情報出力を担うディスプレイ等の出力インターフェイス、ユーザからの選択や指示を受け付ける入力インターフェイスを備えている。
【0023】
なお、前記データベース103、104らは、パーソナルコンピュータ102に一体に備わっている例だけでなく、別の装置に付帯しながらもネットワークを介して一体に稼動するとしてもよい。また、PDA101およびパーソナルコンピュータ102らをそれぞれつなぐネットワークに関しては、専用回線やインターネットの他に、WAN(Wide Area Network)、LAN、電灯線ネットワーク、無線ネットワーク、公衆回線網、携帯電話網など様々なネットワークを採用することも出来る。また、VPNなど仮想専用ネットワーク技術を用いれば、インターネットを採用した際にセキュリティ性を高めた通信が確立され好適である。
【0024】
そこで上記のようなシステム100を用いて本発明の岩盤物性評価方法を実行する手順について説明する。まず、図4に従って処理の概要を説明しておく。図4は岩盤物性評価方法のメインフローを示す図である。なおここで説明するフローは前記情報入力端末101または情報処理端末102のいずれか、或いは両者が共働して処理するものとする。
【0025】
システム100は、前記水圧管路用斜坑などの評価岩盤と略同様な地質性状を有する周辺他岩盤(例:作業容易な環境たる水平坑)に対して、前記平板載荷試験(原位置試験)および前記弾性波速度測定を実行して得られた、変形係数値および弾性波速度を取得する(s400、s401)。そして、前記取得した変形係数値および弾性波速度と、前記周辺他岩盤の地質性状情報(地質観察情報)とに基づいた重回帰分析を実施する(s402)。この分析により地質性状情報と変形係数とに関する重回帰相関式を導出することとなる(s403)。
【0026】
なお、前記地質性状情報は、岩種分布比率(塑性変形タイプ:礫岩or砂岩など。弾性変形タイプ:蛇紋岩or泥岩など)硬さ区分(硬質〜軟質)、亀裂間隔(cm単位)、亀裂性状区分(脆弱部分布、開口幅、傾斜角等)、湧水量の少なくともいずれかを含むものとする。また、評価岩盤または周辺他岩盤の地質性状が領域または経時的に変化する場合、利用する地質性状情報の項目を変化地点の地質特性に対応させて選択的に利用する。これにより、複雑に地質性状が変化する岩盤に対しても的確な岩盤物性評価が実施可能となる。
【0027】
次に、評価岩盤の地質性状情報を、上記の如く導出された前記重回帰相関式に適用し、評価岩盤の変形係数値を推定する(s404)。またこれら処理に加えて、評価岩盤における1測線(例:天端での1測線)のみについて弾性波速度測定を実行して、評価岩盤の弾性波速度を取得する(s405、s406)。これにより、前記評価岩盤の弾性波速度に基づき評価岩盤の強弱またはその変化を認識するのである(s407)。
【0028】
認識した評価岩盤の強弱等については、これを予め定めた所定の判定基準と照合して変形係数の個別検討要否の判定を行う(s408)。この判定は、例えば評価対象となる岩盤が周囲の同性状の岩盤と比して著しく異なる(例:急変点である、著しく弱いなど)性状を呈している場合などに柔軟に対応するため実施される。
【0029】
前記判定により、個別検討が必要ないと判定された場合、前記推定した変形係数値を評価岩盤の変形係数値とし(s410)、処理を終了する。他方、前記判定により、個別検討が必要であると判定された場合、当該個別検討箇所に関する有限要素法解析を実行し、変形係数値を新たに算定する(s411)。この新たに算定した変形係数値をもって評価岩盤の変形係数値であると推定し処理を終了する。
【0030】
次に詳細フローについて説明する。図5は岩盤物性評価方法の詳細フローを示す図である。また、前記図3にてシステム100と併せて示した処理用の各種情報についても適宜参照するものとする。処理される情報種別としては、図3で示したように、原位置周辺の他岩盤としての建設地点における、平板載荷試験、弾性波速度測定、および地質観察結果の各情報が想定できる。また前記平板載荷試験については合成変形係数、弾性波速度測定については緩み域弾性波速度、緩み域深さ、および基岩部弾性波速度、更に地質観察結果については岩種分布比率、硬さ区分、亀裂間隔、亀裂性状区分、および湧水量の情報が処理対象となる。これらの情報を周辺他岩盤の情報110とする。一方、評価岩盤が存在する原位置たる設計箇所についても同様に、地質観察結果および弾性波速度測定に関する情報を処理対象とする。これを評価岩盤の情報120とする。
【0031】
周辺他岩盤の情報110は、前記PDA101を介して前記先行試験・地質観察結果データベース103に格納される。また、評価岩盤の情報120は、同じくPDA101を介して前記地質データベース104に格納されることとなる。
【0032】
システム100は、まず前記先行試験・地質観察結果データベース103より評価岩盤と略同性状の周辺他岩盤についての地質情報(地質性状或いは地質観察結果)を抽出し(s501)、これの感度分析を行う(s502)。そして感度の強い地質情報を認識しておく(s503)。
【0033】
また一方で、周辺他岩盤にて実施された平板載荷試験および弾性波速度測定の結果から、合成変形係数の算定(s504)、および緩み域弾性波速度と緩み域深さの算定(s508)の処理を行う。更に、前記算定した合成変形係数に基づき、有限要素法解析を実行し(s505)、基岩変形係数を算出する(s506)。この算出にあたっては基岩部弾性波速度を別途算定し(s507)、反映させているものとする。こうして導出された地質性状の情報と各種試験結果とを併せて重回帰分析を行うことで、地質情報と基岩変形係数との相関関係を示す、重回帰相関式を導出する(s510)。
【0034】
他方、前記設計箇所について得られている地質観察結果の情報と弾性波速度測定の情報とについても処理を行う。ここでは、地質観察の結果得られた地質情報が(s520)、地質データベース104に格納される。また、前記重回帰相関式に対し裕度を排除して当該地質情報を適用することで、評価岩盤の基岩変形係数を推定する(s521、s522)。
【0035】
求めた基岩変形係数については、評価岩盤における1測線のみについて実行された弾性波速度測定の結果、つまり評価岩盤の弾性波速度を、単回帰で適用する(s523、s524)。これにより、例えば評価岩盤が著しく弱いといった箇所を認識し(s525)、変形係数の個別検討の必要性を判定する。前記判定により、個別検討が必要であると判定された場合(s525:YES)、当該個別検討箇所に関する有限要素法解析を実行し(s526)、壁面変位量を算定するなどして(s527)、設計用合成変形係数(変形係数値)を新たに算定する(s528)。他方、前記判定により、個別検討が必要ないと判定された場合(s525:NO)、前記推定した変形係数値を評価岩盤の変形係数値とし、処理を終了する。
【0036】
上記の如く本発明の岩盤物性評価方法を行って得られた評価内容について従来手法との比較結果を以下に示す。図6は地質性状、弾性波速度、および変形係数の各関係を示す図である。図6に示すグラフは、ある水圧管路用斜坑の管路延長に沿って、岩種比率、クロライト面の比率および粘土層の比率、衝撃波速度測定結果、および変形係数の各データを合わせて示したものである。ここで注目すべきは、最終的に利用される変形係数のデータである。このデータにおいて、本発明により得られた変形係数(推定値)が、原位置試験の結果(つまり実測値)とほぼ一致している。従って、原位置試験を低減しながらも、精度良く推定がなされていることが明らかである。また、重回帰相関分析により得られた重回帰相関式も、図7に示すとおり高精度のものとなっている。従って、重回帰相関式に周辺他岩盤の地質性状の情報を適宜適用すれば、確度に優れた変形係数値を推定可能となるわけである。
【0037】
【発明の効果】
以上詳細に説明したように、本発明の岩盤物性評価方法等によれば、例えば斜坑や縦坑などの環境にあっても原位置試験の負担を抑制することが可能となる。従って、岩盤物性評価を効率よくかつ低コストで実施することが出来る。しかも、このように効率のよい評価を可能にする一方で、精度のよい良好な評価結果を得ることが可能である。その効果は特に、評価すべき岩盤の地質性状が複雑に変化するといった従来では困難な状況下においても奏せられる。また、的確な岩盤評価を効率的に実現するのであるから、トンネル等の掘進効率に与える影響を最小限のものと出来る。
しかして、良好な精度の評価結果を効率的に取得可能とする岩盤物性評価方法およびシステム、プログラムならびに記録媒体を提供可能となる。
【図面の簡単な説明】
【図1】水圧管路用斜坑の構造例を示す図である。
【図2】(a)は平板載荷試験の試験状況を示す図であり、(b)は弾性波速度測定の概要を示す図である。
【図3】岩盤物性評価システムの構成例を示す図である。
【図4】岩盤物性評価方法のメインフローを示す図である。
【図5】岩盤物性評価方法の詳細フローを示す図である。
【図6】地質性状、弾性波速度、および変形係数の各関係を示す図である。
【図7】重回帰分析における実測値と予測値との関係を示す図である。
【符号の説明】
100 岩盤物性評価システム、システム
101 情報入力端末、PDA
102 情報処理端末、パーソナルコンピュータ
103 先行試験・地質観察結果データベース
104 地質データベース
120 評価岩盤の情報
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rock physical property evaluation method and system, a program, and a recording medium.
[0002]
[Prior art]
In the design of lining such as iron pipes and concrete, it is necessary to appropriately grasp the properties of the rock mass (synthetic deformation coefficient). Therefore, in order to accurately grasp the physical properties of the rock, it is required to conduct a flat plate loading test in detail. However, it is not realistic in terms of workability and economics to carry out the test for all rocks whose physical property values change in a complicated manner in the construction area. In particular, it is extremely difficult to carry out tests on the shaft shaft area in view of the test environment.Therefore, it is necessary to conduct several tests on rocks with almost the same geological conditions as the rocks to be constructed. It has been common practice to measure elastic wave velocities over a period of time. In this case, the results of the plate loading test and the results of the elastic wave velocity measurement are correlated and complemented to evaluate the rock properties in the construction area. In addition, a process of qualitatively incorporating the result of the geological survey over the entire line into the correlation has been performed (see Patent Documents 1 and 2).
[0003]
[Non-patent document 1]
Water gate iron tube No. 154 (19888.3) Suimon Iron Pipe Association
[Non-patent document 2]
Water gate iron tube No. 196 (1989. 9) Suimon Iron Pipe Association
[Problems to be solved by the invention]
However, a problem remains in the conventional method. That is, the flat plate loading test is a problem caused by the need to fix the test machine horizontally, apply a load to the test plate, and measure the tendency of change between the load and the displacement. Due to the characteristics of the test method, the installation condition of the test machine has a great influence on the accuracy of the test result. For example, in a test environment such as a shaft or a shaft, the installation surface of the test machine is not originally a horizontal surface, and the work area is a narrow area with a limited working area.
[0006]
For this reason, it is difficult to secure a space for arranging necessary materials and the like, and it is necessary to provide special equipment for carrying in and transporting the materials and the like. Therefore, installation of the test machine itself becomes difficult. Of course, the workability of the workers in the inclined shaft or the like is not good, and there is still a problem in terms of work efficiency.
[0007]
Furthermore, in addition to the difficulty in setting up the test machine, there is a concern that the test results obtained in a difficult test environment may not be accurate and good. In particular, when the geological characteristics of the rock to be evaluated change in a complicated manner, it is not feasible in terms of efficiency to perform a rock sample evaluation by taking sample rocks for the test in detail, but the rock is sampled at only a few locations. It was difficult to reliably evaluate the entire evaluation rock mass. On the other hand, if it takes time to evaluate the rock mass by adopting the conventional method, it may lead to a decrease in the excavation efficiency of tunnels and the like, which may affect the progress of this construction.
[0008]
Therefore, the present invention has been made in view of such problems, and an object of the present invention is to provide a rock physical property evaluation method and system, a program, and a recording medium that enable efficient acquisition of good precision evaluation results. .
[0009]
[Means for Solving the Problems]
The rock physical property evaluation method of the present invention that achieves the above object is a method for evaluating rock physical properties, and performs an in-situ test and an elastic wave velocity measurement on other surrounding rocks having substantially the same geological properties as the evaluation rock. Executing the step of acquiring a deformation coefficient value and an elastic wave velocity, and performing a multiple regression analysis based on the acquired deformation coefficient value and elastic wave velocity, and the geological property information of the surrounding rock mass, A step of deriving a multiple regression correlation equation relating to the information and the deformation coefficient, a step of applying the geological property information of the evaluation rock to the multiple regression correlation equation, and estimating a deformation coefficient value of the evaluation rock, Performing an elastic wave velocity measurement on only the rock mass to obtain an elastic wave velocity of the evaluation rock mass;
A step of recognizing the strength of the evaluation rock mass or its change based on the elastic wave velocity of the evaluation rock mass, collating it with a predetermined criterion to determine whether or not individual examination of the deformation coefficient is required; and And determining the estimated deformation coefficient value as the deformation coefficient value of the evaluation rock mass when it is determined that is not necessary.
[0010]
According to a second aspect of the present invention, in the first aspect, when it is determined by the determination that the individual study is necessary, a finite element method analysis is performed on the individual study portion to newly calculate a deformation coefficient value. It is characterized by.
[0011]
A third invention is characterized in that, in the first or second invention, the evaluation rock is a slope shaft or a vertical shaft, and other surrounding rocks are horizontal shafts.
[0012]
In a fourth aspect based on any one of the first to third aspects, the geological property information includes at least one of a rock type distribution ratio, a hardness class, a crack interval, a crack class, and a spring water amount. Features.
[0013]
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, when the geological properties of the evaluation rock mass or the surrounding rock mass change over time or over time, the item of the geological property information to be used is changed to the geological characteristics at the change point. It is characterized in that it is selectively used correspondingly.
[0014]
The sixth invention is a system for evaluating the properties of a rock mass, which performs an in-situ test and an elastic wave velocity measurement on other surrounding rock masses having substantially the same geological properties as the evaluated rock mass to obtain a deformation coefficient value and Means for acquiring an elastic wave velocity, performing a multiple regression analysis based on the acquired deformation coefficient value and elastic wave velocity and the geological property information of the surrounding rock mass, and performing multiple regression analysis on the geological property information and the deformation coefficient. A means for deriving a correlation equation, a means for applying the geological property information of the evaluation rock to the multiple regression correlation equation to estimate a deformation coefficient value of the evaluation rock, and an elastic wave velocity measurement for only one measurement line in the evaluation rock Means for obtaining the elastic wave velocity of the evaluation rock mass, and recognizing the strength or the change of the evaluation rock mass based on the elastic wave speed of the evaluation rock mass, collating this with a predetermined criterion, and individually examining the deformation coefficient. Necessity And a means for setting the estimated deformation coefficient value as the deformation coefficient value of the evaluation rock mass when it is determined that individual examination is not required by the judgment, It takes
[0015]
A seventh invention is a program for causing a computer to execute a method of evaluating physical properties of a rock, and executes an in-situ test and an elastic wave velocity measurement on other surrounding rocks having substantially the same geological properties as the evaluated rock. Obtained, the step of acquiring the deformation coefficient value and the elastic wave velocity, and performing the multiple regression analysis based on the acquired deformation coefficient value and the elastic wave velocity and the geological property information of the surrounding other rocks, A step of deriving a multiple regression correlation equation relating to property information and a deformation coefficient; a step of applying the geological property information of the evaluation rock mass to the multiple regression correlation equation to estimate a deformation coefficient value of the evaluation rock mass; The step of acquiring the elastic wave velocity of the evaluation rock obtained by executing the elastic wave velocity measurement only for the survey line, and recognizing the strength or the change of the evaluation rock based on the elastic wave velocity of the evaluation rock, A step of determining whether or not individual examination of the deformation coefficient is necessary by collating with a predetermined judgment criterion, and, if it is determined that individual examination is not necessary, the estimated deformation coefficient value And a rock mass property evaluation program. This program is composed of codes for performing the operations of the above steps.
[0016]
An eighth invention relates to a computer-readable recording medium recording the rock physical property evaluation program according to the seventh invention.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an example of the structure of a hydraulic pipe inclined shaft. The inclined shaft for hydraulic pipeline shown in the figure is installed as a route for transmitting the water stored in the dam toward the turbine of the power plant, and the rock around the inclined shaft is an example to which the rock physical property evaluation method of the present invention is applied. Become. In constructing this inclined shaft, rock excavation is performed by excavating a tunnel boring machine from the power plant side toward the dam embankment. The hydraulic penstock laid in such a hydraulic conduit is made as thin as possible by substantially equilibrating the pressure from the surrounding rock and the water pressure passing through the inside of the steel pipe. Therefore, it is necessary to grasp the rock pressure and geological properties in detail and surely.
[0018]
FIG. 2A is a diagram showing a test situation of a flat plate loading test, and FIG. 2B is a diagram showing an outline of an elastic wave velocity measurement. The flat plate loading test is an in-situ test in which a load is applied to a rock surface through a flat loading plate, and the bearing capacity and deformation characteristics of the rock are determined from the relationship between the load strength and the amount of settlement of the loaded plate. More specifically, as shown in the figure, a steel plate having a diameter of about 30 cm to 60 cm is placed on the rock, and a load of, for example, about 10 Mpa is executed by a jack. By measuring the deformation characteristics, etc., it becomes possible to grasp the strain distribution and the like of the heterogeneous rock. Elastic wave velocity measurement is performed by generating an elastic wave at the transmitting point on the rock to be evaluated and propagating through the rock, capturing it at the receiving point, and analyzing the velocity distribution to determine the strength of the rock. It is a technique that can estimate. (B) As shown in the figure, if the elastic wave velocity is high, it is determined that the rock strength is high, while if the elastic wave velocity is low, it is determined that the rock strength is low.
[0019]
In the present invention, which solves the above-mentioned difficulty in carrying out the flat plate loading test and the like in a steep inclined shaft (or vertical shaft) as described above, the in-situ test in the inclined shaft is reduced as much as possible, and observation information of geological properties is obtained. Is to be used effectively. FIG. 3 shows an example of a system configuration for realizing such a rock physical property evaluation method of the present invention. In this example of the system configuration, information processed by the hardware and a processing flow thereof are outlined in addition to the hardware configuration.
[0020]
The hardware constituting the system 100 mainly includes an information input terminal 101 such as a PDA and an information processing terminal 102 such as a personal computer connected to the information input terminal 101 via a network. Of course, both may operate integrally as an input interface and an information processing device. Further, the information processing terminal 102 includes a preceding test / geological observation result database 103 and a geological database 104.
[0021]
The system 100 according to the present invention is assumed to have a configuration including the PDA 101 and the personal computer 102 as an example, but is not limited thereto. The system can be arbitrarily configured as long as it is a combination of the information input terminal 101 which is easy to use at the original position where a flat plate loading test is performed and the information processing terminal 102 which has a function capable of processing such as analysis. In addition, the information input terminal 101 or the information processing terminal 102 stores a program for realizing the rock property evaluation method of the present invention in an appropriate storage device such as a program database, and the arithmetic device or the like stores the program in an operating system (OS). The rock physical property evaluation method is executed by, for example, appropriately reading out the information into a memory.
[0022]
Further, the PDA 101 and the personal computer 102 include, as computers, an I / O for executing data communication with each other, an output interface such as a display for outputting information, and an input interface for receiving selection and instructions from a user.
[0023]
It should be noted that the databases 103 and 104 are not limited to the example provided integrally with the personal computer 102, but may be operated integrally via a network while being attached to another device. As for the network connecting the PDA 101 and the personal computer 102, various networks such as a WAN (Wide Area Network), a LAN, a power line network, a wireless network, a public line network, and a mobile phone network are used in addition to a dedicated line and the Internet. Can also be adopted. Further, if a virtual private network technology such as VPN is used, communication with enhanced security is established when the Internet is adopted, which is preferable.
[0024]
Therefore, a procedure for executing the rock physical property evaluation method of the present invention using the system 100 as described above will be described. First, an outline of the processing will be described with reference to FIG. FIG. 4 is a diagram showing a main flow of the rock physical property evaluation method. It is assumed that the flow described here is performed by either the information input terminal 101 or the information processing terminal 102, or by both working together.
[0025]
The system 100 performs the above-mentioned flat plate loading test (in-situ test) on other surrounding rocks (e.g., a horizontal pit which is an easy-to-work environment) having substantially the same geological properties as the evaluation rocks such as the hydraulic pipeline inclined shaft. A deformation coefficient value and an elastic wave velocity obtained by executing the elastic wave velocity measurement are acquired (s400, s401). Then, a multiple regression analysis is performed based on the acquired deformation coefficient value and elastic wave velocity and the geological property information (geological observation information) of the surrounding rocks (s402). Through this analysis, a multiple regression correlation equation relating to the geological property information and the deformation coefficient is derived (s403).
[0026]
The geological property information includes a rock type distribution ratio (plastic deformation type: conglomerate or sandstone, etc .; elastic deformation type: serpentine or mudstone, etc.) hardness classification (hard to soft), crack interval (cm unit), crack It shall include at least one of the property classification (fragile portion distribution, opening width, inclination angle, etc.) and spring water volume. When the geological properties of the evaluation rock mass or the surrounding rock mass change over time or over time, the items of the geological property information to be used are selectively used in accordance with the geological characteristics at the change point. As a result, accurate rock property evaluation can be performed even for rocks whose geological properties change in a complicated manner.
[0027]
Next, the deformation property value of the evaluation rock is estimated by applying the geological property information of the evaluation rock to the multiple regression correlation formula derived as described above (s404). Further, in addition to these processes, the elastic wave velocity measurement is performed only on one measurement line (eg, one measurement line at the top) on the evaluation rock to acquire the elastic wave velocity of the evaluation rock (s405 and s406). Thus, the strength of the evaluation rock or its change is recognized based on the elastic wave velocity of the evaluation rock (s407).
[0028]
With respect to the strength of the recognized rock mass, it is compared with a predetermined criterion to determine whether or not individual examination of the deformation coefficient is necessary (s408). This judgment is performed in order to flexibly cope with, for example, a case where the rock mass to be evaluated has a property that is significantly different from the surrounding rock mass of the same nature (eg, a sudden change point, extremely weakness, etc.). You.
[0029]
If it is determined that the individual examination is not necessary, the estimated deformation coefficient value is set as the deformation coefficient value of the evaluation rock (s410), and the process ends. On the other hand, when it is determined by the above determination that the individual study is necessary, the finite element method analysis is performed on the individual study part, and the deformation coefficient value is newly calculated (s411). The newly calculated deformation coefficient value is estimated to be the deformation coefficient value of the evaluation rock, and the processing is terminated.
[0030]
Next, a detailed flow will be described. FIG. 5 is a diagram showing a detailed flow of the rock physical property evaluation method. In addition, various types of information for processing shown in conjunction with the system 100 in FIG. As the type of information to be processed, as shown in FIG. 3, each information of a flat plate loading test, an elastic wave velocity measurement, and a result of geological observation at a construction point as another rock around the original position can be assumed. In addition, for the plate loading test, the synthetic deformation coefficient, the elastic wave velocity measurement for the loose area elastic wave velocity, the loose area depth, and the base rock elastic wave velocity, and for the geological observation results, rock type distribution ratio, hardness classification, Information on the crack interval, crack property classification, and spring water amount is to be processed. These pieces of information are referred to as information 110 on other surrounding rocks. On the other hand, the geological observation results and the information on the elastic wave velocity measurement are also processed for the original design site where the evaluation rock mass exists. This will be referred to as evaluation rock information 120.
[0031]
Information 110 on the surrounding rocks is stored in the preceding test / geological observation result database 103 via the PDA 101. In addition, the information 120 of the evaluation bedrock is also stored in the geological database 104 via the PDA 101.
[0032]
The system 100 first extracts geological information (geological properties or geological observation results) of the surrounding rocks having substantially the same properties as the evaluation rock from the preceding test / geological observation result database 103 (s501), and performs sensitivity analysis on the information. (S502). Then, highly sensitive geological information is recognized (s503).
[0033]
On the other hand, based on the results of the plate loading test and elastic wave velocity measurement performed on the surrounding rocks, the calculation of the composite deformation coefficient (s504) and the calculation of the elastic wave velocity and the depth of the loose area (s508) were performed. Perform processing. Further, a finite element method analysis is executed based on the calculated composite deformation coefficient (s505), and a base rock deformation coefficient is calculated (s506). In this calculation, it is assumed that the base rock elastic wave velocity is separately calculated (s507) and reflected. A multiple regression analysis is performed using the information on the geological properties thus derived and various test results in combination to derive a multiple regression correlation equation that indicates the correlation between the geological information and the deformation coefficient of the base rock (s510).
[0034]
On the other hand, processing is also performed on the information of the geological observation result and the information of the elastic wave velocity measurement obtained for the design location. Here, the geological information obtained as a result of the geological observation is stored in the geological database 104 (s520). In addition, by applying the geological information to the multiple regression correlation equation while excluding the margin, the base rock deformation coefficient of the evaluation rock is estimated (s521, s522).
[0035]
With respect to the obtained base rock deformation coefficient, the result of the elastic wave velocity measurement performed on only one measurement line in the evaluation rock, that is, the elastic wave velocity of the evaluation rock is applied by simple regression (s523, s524). Thereby, for example, a part where the evaluation rock is extremely weak is recognized (s525), and the necessity of individual examination of the deformation coefficient is determined. When it is determined by the above determination that the individual study is necessary (s525: YES), the finite element method analysis is performed on the individual study location (s526), and the amount of wall displacement is calculated (s527). A synthetic deformation coefficient (deformation coefficient value) for design is newly calculated (s528). On the other hand, when it is determined that the individual examination is not necessary (s525: NO), the estimated deformation coefficient value is set as the deformation coefficient value of the evaluation rock, and the process ends.
[0036]
The results of comparison of the evaluation contents obtained by performing the method for evaluating physical properties of rock according to the present invention with the conventional method are shown below. FIG. 6 is a diagram showing each relationship among the geological properties, the elastic wave velocity, and the deformation coefficient. The graph shown in FIG. 6 is obtained by combining the data of rock type ratio, chlorite surface ratio and clay layer ratio, shock wave velocity measurement result, and deformation coefficient along the pipeline extension of a certain hydraulic pipeline shaft. It is shown. What should be noted here is deformation coefficient data that is finally used. In this data, the deformation coefficient (estimated value) obtained according to the present invention substantially matches the result of the in-situ test (that is, the actually measured value). Therefore, it is clear that the estimation is performed with high accuracy while reducing the in-situ test. In addition, the multiple regression correlation equation obtained by the multiple regression correlation analysis is also highly accurate as shown in FIG. Therefore, if the information on the geological properties of the surrounding rocks is appropriately applied to the multiple regression correlation equation, it is possible to estimate the deformation coefficient value with excellent accuracy.
[0037]
【The invention's effect】
As described in detail above, according to the method for evaluating physical properties of a rock according to the present invention, it is possible to suppress the burden of an in-situ test even in an environment such as a shaft or a shaft. Therefore, the rock property evaluation can be performed efficiently and at low cost. Moreover, while efficient evaluation can be performed in this way, it is possible to obtain accurate and favorable evaluation results. This effect can be achieved especially under difficult conditions, such as complicated changes in the geological properties of the rock to be evaluated. In addition, since accurate rock mass evaluation is efficiently realized, the influence on excavation efficiency of a tunnel or the like can be minimized.
Thus, it is possible to provide a rock physical property evaluation method and system, a program, and a recording medium that enable efficient acquisition of good accuracy evaluation results.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of the structure of an inclined shaft for a hydraulic pipeline.
FIG. 2A is a diagram illustrating a test situation of a flat plate loading test, and FIG. 2B is a diagram illustrating an outline of an elastic wave velocity measurement.
FIG. 3 is a diagram illustrating a configuration example of a rock physical property evaluation system.
FIG. 4 is a diagram showing a main flow of a method for evaluating rock properties.
FIG. 5 is a diagram showing a detailed flow of a method for evaluating physical properties of rock.
FIG. 6 is a diagram showing relationships among geological properties, elastic wave velocities, and deformation coefficients.
FIG. 7 is a diagram showing a relationship between an actually measured value and a predicted value in a multiple regression analysis.
[Explanation of symbols]
100 rock mass property evaluation system, system 101 information input terminal, PDA
102 Information processing terminal, personal computer 103 Preliminary test / geological observation result database 104 Geological database 120 Information on evaluation rock mass

Claims (8)

岩盤物性の評価を行う方法であって、
評価岩盤と略同様な地質性状を有する周辺他岩盤に対して原位置試験および弾性波速度測定を実行して、変形係数値および弾性波速度を取得する工程と、
前記取得した変形係数値および弾性波速度と、前記周辺他岩盤の地質性状情報とに基づいた重回帰分析を実施し、地質性状情報と変形係数とに関する重回帰相関式を導出する工程と、
評価岩盤の地質性状情報を、前記重回帰相関式に適用し、評価岩盤の変形係数値を推定する工程と、
評価岩盤における1測線のみについて弾性波速度測定を実行して、評価岩盤の弾性波速度を取得する工程と、
前記評価岩盤の弾性波速度に基づき評価岩盤の強弱またはその変化を認識し、これを所定の判定基準と照合して変形係数の個別検討要否の判定を行う工程と、前記判定により、個別検討が必要ないと判定された場合、前記推定した変形係数値を評価岩盤の変形係数値とする工程と、
を含むことを特徴とする岩盤物性評価方法。
A method for evaluating rock properties,
Performing an in-situ test and elastic wave velocity measurement on other surrounding rocks having substantially the same geological properties as the evaluation rock mass, and obtaining a deformation coefficient value and an elastic wave velocity,
Performing multiple regression analysis based on the acquired deformation coefficient value and elastic wave velocity and the geological property information of the surrounding other rock mass, and deriving a multiple regression correlation equation for the geological property information and the deformation coefficient,
Applying the geological property information of the evaluation rock mass to the multiple regression correlation equation, estimating a deformation coefficient value of the evaluation rock mass,
Performing an elastic wave velocity measurement on only one measurement line in the evaluation rock mass to obtain an elastic wave velocity of the evaluation rock mass;
A step of recognizing the strength of the evaluation rock mass or its change based on the elastic wave velocity of the evaluation rock mass, collating it with a predetermined criterion to determine whether or not individual examination of the deformation coefficient is required; and If it is determined that it is not necessary, the estimated deformation coefficient value as a deformation coefficient value of the evaluation rock,
A rock physical property evaluation method comprising:
前記判定により、個別検討が必要であると判定された場合、当該個別検討箇所に関する有限要素法解析を実行し、変形係数値を新たに算定することを特徴とする請求項1に記載の岩盤物性評価方法。The rock physical properties according to claim 1, wherein when it is determined that the individual examination is necessary, the finite element method analysis is performed on the individual examination part to newly calculate a deformation coefficient value. Evaluation method. 前記評価岩盤が斜坑または縦坑であり、周辺他岩盤が水平坑であることを特徴とする請求項1または2に記載の岩盤物性評価方法。The method according to claim 1 or 2, wherein the evaluation rock is a shaft or a shaft, and the other surrounding rock is a horizontal shaft. 前記地質性状情報は、岩種分布比率、硬さ区分、亀裂間隔、亀裂性状区分、湧水量の少なくともいずれかを含むものとすることを特徴とする請求項1〜3のいずれかに記載の岩盤物性評価方法。The rock property evaluation according to any one of claims 1 to 3, wherein the geological property information includes at least one of a rock type distribution ratio, a hardness class, a crack interval, a crack property class, and a spring water amount. Method. 評価岩盤または周辺他岩盤の地質性状が領域または経時的に変化する場合、利用する地質性状情報の項目を変化地点の地質特性に対応させて選択的に利用することを特徴とする請求項1〜4のいずれかに記載の岩盤物性評価方法。When the geological properties of the evaluation rock mass or the surrounding rock mass change over time or over time, the items of the geological property information to be used are selectively used in accordance with the geological characteristics of the change point. 4. The rock physical property evaluation method according to any one of 4. 岩盤物性の評価を行うシステムであって、
評価岩盤と略同様な地質性状を有する周辺他岩盤に対して原位置試験および弾性波速度測定を実行して、変形係数値および弾性波速度を取得する手段と、
前記取得した変形係数値および弾性波速度と、前記周辺他岩盤の地質性状情報とに基づいた重回帰分析を実施し、地質性状情報と変形係数とに関する重回帰相関式を導出する手段と、
評価岩盤の地質性状情報を、前記重回帰相関式に適用し、評価岩盤の変形係数値を推定する手段と、
評価岩盤における1測線のみについて弾性波速度測定を実行して、評価岩盤の弾性波速度を取得する手段と、
前記評価岩盤の弾性波速度に基づき評価岩盤の強弱またはその変化を認識し、これを所定の判定基準と照合して変形係数の個別検討要否を判定を行う手段と、前記判定により、個別検討が必要ないと判定された場合、前記推定した変形係数値を評価岩盤の変形係数値とする手段と、
を含むことを特徴とする岩盤物性評価システム。
A system for evaluating rock properties,
Means for performing an in-situ test and an elastic wave velocity measurement on other surrounding rocks having substantially the same geological properties as the evaluation rock mass, and obtaining a deformation coefficient value and an elastic wave velocity,
Performing multiple regression analysis based on the acquired deformation coefficient value and elastic wave velocity, and the geological property information of the surrounding rocks, and deriving a multiple regression correlation equation for the geological property information and the deformation coefficient,
Means for applying the geological property information of the evaluation rock mass to the multiple regression correlation equation and estimating a deformation coefficient value of the evaluation rock mass;
Means for performing elastic wave velocity measurement on only one measurement line in the evaluation rock mass to obtain an elastic wave velocity of the evaluation rock mass;
Means for recognizing the strength or change of the evaluation rock mass based on the elastic wave velocity of the evaluation rock mass and comparing it with a predetermined judgment criterion to judge the necessity of individual examination of the deformation coefficient; and When it is determined that is not necessary, the estimated deformation coefficient value as a deformation coefficient value of the evaluation rock,
A rock physical property evaluation system comprising:
岩盤物性の評価方法をコンピュータに実行させるためのプログラムであって、
評価岩盤と略同様な地質性状を有する周辺他岩盤に対して原位置試験および弾性波速度測定を実行して得られた、変形係数値および弾性波速度を取得する工程と、
前記取得した変形係数値および弾性波速度と、前記周辺他岩盤の地質性状情報とに基づいた重回帰分析を実施し、地質性状情報と変形係数とに関する重回帰相関式を導出する工程と、
評価岩盤の地質性状情報を、前記重回帰相関式に適用し、評価岩盤の変形係数値を推定する工程と、
評価岩盤における1測線のみについて弾性波速度測定を実行して得られた、評価岩盤の弾性波速度を取得する工程と、
前記評価岩盤の弾性波速度に基づき評価岩盤の強弱またはその変化を認識し、これを所定の判定基準と照合して変形係数の個別検討要否を判定を行う工程と、前記判定により、個別検討が必要ないと判定された場合、前記推定した変形係数値を評価岩盤の変形係数値とする工程と、
を含むことを特徴とする岩盤物性評価プログラム。
A program for causing a computer to execute a method for evaluating rock properties,
A step of acquiring an deformation coefficient value and an elastic wave velocity obtained by performing an in-situ test and an elastic wave velocity measurement on the surrounding other rocks having substantially the same geological properties as the evaluation rock mass,
Performing multiple regression analysis based on the acquired deformation coefficient value and elastic wave velocity and the geological property information of the surrounding other rock mass, and deriving a multiple regression correlation equation for the geological property information and the deformation coefficient,
Applying the geological property information of the evaluation rock mass to the multiple regression correlation equation, estimating a deformation coefficient value of the evaluation rock mass,
A step of acquiring an elastic wave velocity of the evaluation rock obtained by performing an elastic wave velocity measurement on only one measurement line in the evaluation rock,
A step of recognizing the strength of the evaluation rock mass or its change based on the elastic wave velocity of the evaluation rock mass, collating this with a predetermined determination criterion to determine whether or not individual examination of the deformation coefficient is required; and If it is determined that it is not necessary, the estimated deformation coefficient value as a deformation coefficient value of the evaluation rock,
A rock physical property evaluation program characterized by including:
請求項7に記載の岩盤物性評価プログラムを記録したコンピュータ読み取り可能な記録媒体。A computer-readable recording medium on which the program for evaluating physical properties of rock according to claim 7 is recorded.
JP2003072416A 2003-03-17 2003-03-17 Rock physical property evaluation method and system, program, and recording medium Expired - Fee Related JP3885038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072416A JP3885038B2 (en) 2003-03-17 2003-03-17 Rock physical property evaluation method and system, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072416A JP3885038B2 (en) 2003-03-17 2003-03-17 Rock physical property evaluation method and system, program, and recording medium

Publications (2)

Publication Number Publication Date
JP2004279272A true JP2004279272A (en) 2004-10-07
JP3885038B2 JP3885038B2 (en) 2007-02-21

Family

ID=33288615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072416A Expired - Fee Related JP3885038B2 (en) 2003-03-17 2003-03-17 Rock physical property evaluation method and system, program, and recording medium

Country Status (1)

Country Link
JP (1) JP3885038B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535113A (en) * 2018-03-25 2018-09-14 石家庄铁道大学 A kind of horizontal layered rock mass deformation parametric synthesis determines method
CN111551427A (en) * 2020-04-23 2020-08-18 长江水利委员会长江科学院 Advanced quantitative prediction method for large deformation of soft rock of deep-buried long tunnel
CN113420506A (en) * 2021-06-30 2021-09-21 北京交通大学 Method for establishing prediction model of tunneling speed, prediction method and device
CN115900635A (en) * 2023-03-09 2023-04-04 四川省交通勘察设计研究院有限公司 Tunnel deformation data monitoring method, device and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535113A (en) * 2018-03-25 2018-09-14 石家庄铁道大学 A kind of horizontal layered rock mass deformation parametric synthesis determines method
CN108535113B (en) * 2018-03-25 2020-11-13 石家庄铁道大学 Comprehensive determination method for deformation parameters of horizontal stratified rock mass
CN111551427A (en) * 2020-04-23 2020-08-18 长江水利委员会长江科学院 Advanced quantitative prediction method for large deformation of soft rock of deep-buried long tunnel
CN111551427B (en) * 2020-04-23 2023-01-17 长江水利委员会长江科学院 Advanced quantitative prediction method for large deformation of soft rock of deep-buried long tunnel
CN113420506A (en) * 2021-06-30 2021-09-21 北京交通大学 Method for establishing prediction model of tunneling speed, prediction method and device
CN115900635A (en) * 2023-03-09 2023-04-04 四川省交通勘察设计研究院有限公司 Tunnel deformation data monitoring method, device and system

Also Published As

Publication number Publication date
JP3885038B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
Wang et al. Bayesian characterization of correlation between uniaxial compressive strength and Young's modulus of rock
Cai et al. Back-analysis of rock mass strength parameters using AE monitoring data
Yue et al. Automatic monitoring of rotary-percussive drilling for ground characterization—illustrated by a case example in Hong Kong
Cai et al. Comparison of CPT charts for soil classification using PCPT data: example from clay deposits in Jiangsu Province, China
Ajalloeian et al. Estimation of limestone rock mass deformation modulus using empirical equations
Rivard et al. Monitoring of an hydraulic structure affected by ASR: A case study
Gurocak Analyses of stability and support design for a diversion tunnel at the Kapikaya dam site, Turkey
Aksoy et al. An example of estimating rock mass deformation around an underground opening using numerical modeling
Ask New developments in the integrated stress determination method and their application to rock stress data at the Äspö HRL, Sweden
Tang et al. An objective crack initiation stress identification method for brittle rock under compression using a reference line
Qiao et al. Modelling and experimental investigation of cobalt-Rich crust cutting in ocean environment
JP4421146B2 (en) Geological prediction method and geological prediction device in front of tunnel face
Tang et al. Indirect estimation of rock uniaxial compressive strength from simple index tests: Review and improved least squares regression tree predictive model
JP2004279272A (en) Method and system for evaluating physical property of bedrock, program, and recording medium
Hu et al. Influence of engineering parameters on rock breaking performance of raise boring machine
JP6820505B2 (en) Tunnel ground exploration method
JP2004239640A (en) Method of predicting geological properties in front of ground excavation part
JP3856392B2 (en) Evaluation method of natural ground in front of ground excavation part
JP2007333638A (en) Stability evaluation method of brittle structure, stability evaluating device, and stability evaluation program
Shahverdiloo et al. A new correlation to predict rock mass deformability modulus considering loading level of dilatometer tests
Han et al. Determination of geo-stress in deep strata incorporating borehole diametral deformation measurement and overcoring
JP5319618B2 (en) Ground condition prediction method and tunnel excavation method
Kung Finite element analysis of wall deflection and ground movements caused by braced excavations
Shin et al. Numerical simulation of seepage-induced behavior of tunnel for analyzing deformation characteristic and estimating geotechnical parameters
Khodabakhshi et al. Numerical modeling of determination of in situ rock mass deformation modulus using the plate load test

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees