JP2004279123A - Material distinguishing device for mixed waste - Google Patents

Material distinguishing device for mixed waste Download PDF

Info

Publication number
JP2004279123A
JP2004279123A JP2003068583A JP2003068583A JP2004279123A JP 2004279123 A JP2004279123 A JP 2004279123A JP 2003068583 A JP2003068583 A JP 2003068583A JP 2003068583 A JP2003068583 A JP 2003068583A JP 2004279123 A JP2004279123 A JP 2004279123A
Authority
JP
Japan
Prior art keywords
belt
mixed waste
waste
light
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003068583A
Other languages
Japanese (ja)
Other versions
JP3901651B2 (en
Inventor
Shigeru Tatsumi
滋 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2003068583A priority Critical patent/JP3901651B2/en
Publication of JP2004279123A publication Critical patent/JP2004279123A/en
Application granted granted Critical
Publication of JP3901651B2 publication Critical patent/JP3901651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To distinguish materials surely with high probability on waste plastic articles and compound pipes from among mixed wastes by means of a relatively simple structure. <P>SOLUTION: The mixed wastes P conveyed on a belt 2 are distinguished by a plurality of reflection-type photosensors directed toward a conveying surface from its upper side, with the beam direction of at least one of the photosensors made differ from the others. Therefore, a certain beam has a longer irradiation distance on the conveying surface of the belt, increasing the chances of distinguishing plastic materials in the mixed wastes conveyed in a spread manner over the conveying surface of the belt 2. By providing reflection-type photosensors 8 and 9 on both the side parts of the belt 2 with both the directions of their beams directed toward the upstream side or downstream side of the belt, distinguishing power is enhanced since mixed wastes receive the beam of the photosensor on the other side when the beam of the photosensor on one side is shaded by other mixed wastes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、一般家庭から排出される資源ごみや産業廃棄物のなどの混合廃棄物において、塩化ビニールなどのプラスチック材質とそれ以外のものに識別する材質識別装置に関するものである。
【0002】
【従来の技術】
一般家庭から排出される資源ごみや産業廃棄物のなどの混合廃棄物は、紙、ビニールなどのプラスチック、木、コンクリート、土、金属製品類、布類、ゴム、ガラス製品などが混在し、その中から資源ごみとして回収するため、プラスチック材質のものを選別する必要がある。
その選別には、選別ラインの搬送コンベア上を流れる間に作業員の目視によって人為的に選別したり、搬送コンベアの直上部に設けた赤外線センサなどからなる材質識別装置により、混合廃棄物から塩化ビニールなどのプラスチック材の表面を材質識別し、その識別結果に基づき作業員が人為的に選別したり、さらには識別結果により機械的に選別している。
その赤外線センサなどで識別する場合、ベルト上を移動する混合廃棄物が上下方向に重なり合っていると、赤外線センサが上部にあるので、その照射光が上方に位置する混合廃棄物に邪魔されて、その下方に位置する混合廃棄物に照射されないまま材質識別装置を通過してしまい、混合廃棄物中から識別対象物であるプラスチック材を正確に識別できない場合がある。
また、搬送コンベアの直上部に複数の赤外線センサを平面的に配置して上記赤外線センサから下向きに照射して識別対象物を識別する方法も考えられるが、この場合、識別対象物の上表面を確実に照射して識別できるとしても、横向き状態で搬送される混合廃棄物中に複合パイプなどのパイプ類が混在する場合、その内面に赤外線センサからの照射光が当らないため、内面材質を識別することができない。因みに、前記の複合パイプとは金属管やコンクリート(モルタル)管などの外面および内面にプラスチックを被覆または積層したパイプのことである。
【0003】
また、プラスチック材の選別方法として、図4に示すように、ベルトコンベア21によって移送中のプラスチック容器の原料20の種類を赤外線分光器22で判別し、ベルトコンベア21の進行方向に少なくとも1ヵ所以上設けた自動分別機(図示省略)を赤外線分光器22の指令信号に応じて作動させて、原料の種類に応じてプラスチック容器を選別するものがあり、この選別方法における赤外線分光器22は、ベルトコンベア21の外側の一方に発光源22aを設け、他方にこの発光源22aに対向して受光源22bを設けて、赤外線分光器22により、ベルトコンベア21によって整列されて移送中の各種廃棄プラスチック容器20の原料の種類を検出するものである。すなわち、廃棄プラスチック容器20がベルトコンベア21の外側に設けた赤外線分光器22の発光源22aと受光源22bとの間を通過するとき、その原料の種類の違いを分光検出波形によって判別するのである(特許文献1参照)。
【0004】
【特許文献1】
特開平08−1101号公報 (第2頁、第2図)。
【0005】
【発明が解決しようとする課題】
特許文献1に記載の従来技術は、発光源22aと受光源22bがベルトコンベア21の走行方向に直角かつ対向状に配置され、その照射光が前記走行方向に対して直角方向に向いているため、この照射光はランダムな向きで搬送される混合廃棄物中の複合パイプの内面をほとんど照射することができない。だから、識別対象物である廃棄プラスチック容器20がベルトコンベア21上を一定の向きでしかも1列状態に移送されることが前提であり、このため、識別対象物を含む混合廃棄物がベルトコンベア21の幅方向に多列状態で、しかも上下方向に重なり合って搬送される場合は、発光源22aからの照射光が混合廃棄物により邪魔されて受光源22bに達しないため確実に識別ができず、その精度が充分でないという問題がある。
【0006】
そこで、この発明は、一般家庭から排出される資源ごみや産業廃棄物などの混合廃棄物中から廃プラスチック材および複合パイプ類を比較的簡単な構造により、確実かつ高確率に材質識別することを課題とする。
【0007】
【課題を解決するための手段】
前記の課題を解決するために、この発明の混合廃棄物の材質識別装置は、搬送コンベアのベルトの上方から搬送面に向けて反射式光センサを複数個設け、その反射式光センサの少なくとも1つの光線方向の向きを他のものと異ならせたことにより、1つの光線方向は、上記ベルトの走行方向に直角な方向に対して傾いた向きとなるから、この光線は上記ベルトの搬送面における照射距離が長くなり、このため、上記ベルトの搬送面に広がった(多列)状態で搬送される混合廃棄物中のプラスチック材を識別する機会が増える。また、上記1つの傾いた光線がプラスチックを内面被覆または積層した複合パイプの内面を照射し、その材質を識別できる。
【0008】
上記反射式光センサを上記ベルトの両側部に設けたものとするとともに、上記反射式光センサの光線方向を共に該ベルト上流側または下流側に向けたことにより、上記ベルトの両側から照射するので、混合廃棄物が上記ベルトの幅方向に広がって搬送される場合において、一側の反射式光センサの光線が他の混合廃棄物に遮られているときは混合廃棄物が他側の反射式光センサの光線を受けて識別力が向上する。また、光線が混合廃棄物の中まで入る機会が高まる。さらに、光線方向を共に該ベルトの上流側または下流側に向けることにより、複合パイプの内面を照射し、その材質を検知し、識別できる。
上記反射式光センサを上記ベルトの両側部および上部に設けた構成を採用することにより、ほぼ水平な横向き状態で搬送される廃プラスチックを内面被覆または積層した複合パイプだけでなく、ほぼ垂直な縦向き状態で搬送される複合パイプのいずれの内面も確実に検知し、識別できる。
上記反射式光センサの内の1個を上記ベルトの一側部に設け、他の1個を上記ベルトの上部に設けたものとするとともに、上記反射式光センサの光線方向を共に該ベルトの上流側または下流側に向けた構成を採用することができる。
【0009】
上記反射式光センサの光線方向を上記ベルトの搬送面に向けて斜め下向きとした構成の採用により、光線が重なり合っている混合廃棄物の中まで入る機会がさらに高まる。
上記反射式光センサを、その光線が該ベルトの搬送面上で互いに交差しないように設けた構成の採用により、その光線の交差によって生じる反射光量の干渉がなく、混合廃棄物中の廃プラスチックを高精度に検知し、識別できる。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態を添付の図面に基づいて説明する。図1から図3において、1はベルト2を具えた搬送コンベアで、ベルト2上に一般家庭から排出される資源ごみや産業廃棄物などである紙、ビニールなどのプラスチック、木、コンクリート、土、金属製品類、布類、ゴム、ガラス製品などの混合廃棄物Pを一端上部から供給して搬送し、他端から排出するようになっている。
ベルト2は本体フレーム5に支持された両端のドラム3,4に巻回され、図示しない駆動装置によって回転するドラム4により走行する。6はドラム4の排出付近に設けた排出シュートである。
7はベルト2の走行方向に対し直角に跨いで設置した門型のセンサフレームである。8,9はセンサフレーム7の両側面からベルト2の上方の搬送面に向けて設けた反射式光センサである。この反射式光センサとして赤外線センサや近赤外線センサなどを使用することができる。以後は赤外線センサを用いて説明する。
【0011】
赤外線センサ8,9は照射光用の光源部とこの光源部と並設する反射光用の受光部とからなり、光源部から照射光を混合廃棄物Pに照射し、混合廃棄物Pから反射した反射光を受光部で受光するようになっている。
また、赤外線センサ8,9はいずれもベルト2の上流側に向けて設ける。すなわち、ベルト2の走行方向線dと光源部からの照射光線a,bとのなす角度をそれぞれα、βに設定する。前記角度α、βは照射光線a,bが交差しないような角度に変え、例えばα=75度、β=60度に設定する。ただし、赤外線センサ8,9の上下方向の取付け位置をずらせば、前記角度α、βは同じでもよい。このように赤外線センサ8,9を所定の角度で設置することにより、混合廃棄物Pの上表面のみならず、特に識別対象物である複合パイプがほぼ垂直な縦向き状態以外の向きで搬送されてきても、該複合パイプの内面へ光源部からの照射光が当たり反射光が受光部で受光される。
さらに、赤外線センサ8,9をベルト2の搬送面に向けて斜め下向きに設定する。すなわち、センサフレーム7両側面の垂直面eと光源部からの照射光線a,bとのなす角度をそれぞれα、βに設定する。前記角度α、βは前記角度α、βが交差しないように設定されておれば同一角度でもよいが、前記角度α、βが逆に同じであれば、照射光線a,bが交わないように異なる角度に設定する。
照射光線a,bが交差しないようにする理由は、該照射光線a,bが交差することにより、混合廃棄物Pからの反射光の光量が干渉して変わることを避けて廃プラスチックのみからの正確な光量を受光するためである。
赤外線センサ8,9は、図示の例ではいずれもベルト2の上流側に向けて設けたが、下流側に向けて設けても同効である。
【0012】
10はセンサフレーム7の上面からベルト2に向けて設けた赤外線センサなどの反射式光センサで、照射光用の光源部とこの光源部と並設する反射光用の受光部とからなる。反射式光センサ10の光源部からの照射光線cは、赤外線センサ8,9と同様に、図2に示すように上流側または下流側に向けて所定の傾き角度を付けるが、ベルト2の搬送面に直下する方向でもよい。ただし、光源部からの照射光線cは前記照射光線a,bと、前記と同様の理由で、交差しないようにする。
【0013】
前記の構成において、一般家庭から排出される資源ごみや産業廃棄物などの混合廃棄物Pを搬送コンベア1の一端からベルト2上に供給する。ベルト2上の混合廃棄物Pはベルト2上の幅方向に広がった(多列)状態で、しかも上下方向に重なり合い、さらにまちまちの方向を向いた状態で搬送される。この搬送過程で、混合廃棄物Pにベルト2の両側面に設けた赤外線センサ8,9の光源部から照射した照射光が当たり、その表面で反射されて反射光となり、反射光が受光部で受光される。例えば、反射式光センサ8の照射光線aが他の混合廃棄物に遮られているときは混合廃棄物が反射式光センサ9の照射光線bを受けて識別力が向上する。さらに、照射光の光線方向を共にベルト2の上流側または下流側に向けることにより、複合パイプの内面を照射し、その材質を検知し、識別できる。
前記反射光の受光量が混合廃棄物P中の特定材質、すなわちプラスチックに特有の受光量の範囲内にあれば、プラスチック材質であることを識別するように予め設定しておく。このように設定された状態で混合廃棄物P中にプラスチックが存在すると、赤外線センサ8,9により、その廃プラスチックを判別することができる。例えば、混合廃棄物が図1に示すように複合パイプPである場合はその内面が照射光線aにより、また、複合パイプP1である場合は照射光線bにより確実に照射される。
赤外線センサ8,9により判別された廃プラスチックは、その判別した結果をランプなどで表示するようにして、そのランプの表示に基づいてセンサフレーム7の排出シュート6側に位置する作業員によって拾い上げ除去され、残りの混合廃棄物Pは排出シュート6から排出される。
このようにベルト2の両側面に設けた両赤外線センサ8,9の向きや照射光線a,bの照射角度を適宜の角度に設定することにより、混合廃棄物Pが上下方向に重なりあったり、まちまちの方向を向いていても、照射光線が混合廃棄物Pの表面に洩れなく当るとともに混合廃棄物の中まで入る機会が高まり、その反射光が受光されて混合廃棄物P中の識別対象物である廃プラスチック材が確実かつ高精度に識別されるのである。
また、反射式光センサ10により、混合廃棄物Pの上表面への照射の確率が高まり、また縦向きに搬送される複合パイプ内面の照射が可能となり、さらには赤外線センサ8,9との組み合わせにより一層識別精度を高めることができる。
【0014】
また、赤外線センサ8,9光源部からの照射光線a,bを搬送面に向かって斜め下向きに照射することで、照射光線a,bが混合廃棄物の中まで入る機会がさらに高まる。すなわち、混合廃棄物Pがベルト2の幅方向に広がりかつ上下に重なっている場合でも、下方の混合廃棄物Pにも照射され、識別対象物である廃プラスチックを確実に検知できて、識別精度が向上する。
また、内面にプラスチック被覆または積層した複合パイプがほぼ水平な横向き状態で搬送されても、光源部の照射光を複合パイプの開口から内面へ照射することが可能となる。この内面に照射されることは、その表面が汚れていて反射光を感知し難い場合であっても内面まで汚れていることは少ないから、その材質の識別精度が高まる。
【0015】
前記の実施形態では赤外線センサ8,9および10の組み合わせを挙げたが、赤外線センサ10と、赤外線センサ8または9との組み合わせも可能である。
【0016】
前記の実施形態では、識別された廃プラスチックを作業員により取り除いたが、人手を煩わさず、機械的除去手段を用いて取り除くことができる。この手段の一つとしては、搬送コンベア1の終端に図示しないダンパを介して廃プラスチックの排出路とそれ以外のものの排出路を設けてその終端から落下する廃プラスチックを、前記ダンパを作動して廃プラスチック側の排出路に切り換えて排出する形式である。他の一つは、搬送コンベア1のベルト2上を上記ベルト2の走行方向に対して直角方向に走行するスクレーパを設けて、このスクレーパを走行させてベルト2上の廃プラスチック材やパイプ類を掻き取り排出する形式である。前記いずれの場合も廃プラスチックのみを取り除くことは難しいが、少なくとも廃プラスチックが除かれた混合廃棄物Pは該廃プラスチックの混入率が極めて少ないものである。
【0017】
【発明の効果】
この発明は、以上のように、搬送コンベアのベルトの上方から搬送面に向けて反射式光センサを複数個設け、その反射式センサの少なくとも1つの光線方向の向きを他のものと異ならせたことにより、上記ベルトの搬送面に広がった(多列)状態で搬送される混合廃棄物中のプラスチック材を識別する機会が増え、確実かつ高確率に材質識別できるとともにその処理能力もアップする。
また、上記1つの傾いた光線がプラスチックを内面被覆または積層した複合パイプの内面を照射し、その材質を識別できる。
さらに、混合廃棄物中に含まれる廃プラスチックの識別を事前の人的・機械的操作による配置換え整列を行なうことなくできるから、構造が簡単となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る材質識別装置の平面図
【図2】本発明の実施形態に係る材質識別装置の正面図
【図3】図2のA−A線矢視図
【図4】従来例の材質識別装置の一部を示す概略図で(A)は平面図、(B)は側面図
【符号の説明】
P 混合廃棄物(複合パイプ)
1 搬送コンベア
2 ベルト
3,4 ドラム
5 本体フレーム
6 排出シュート
7 センサフレーム
8,9 反射式光センサ(赤外線センサ)
10 反射式光センサ(赤外線センサ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a material discriminating apparatus for discriminating between plastic materials such as vinyl chloride and others in mixed wastes such as recyclable waste and industrial wastes discharged from general households.
[0002]
[Prior art]
Mixed waste such as recyclable garbage and industrial waste discharged from general households includes paper, plastic such as vinyl, wood, concrete, soil, metal products, cloth, rubber, glass products, etc. It is necessary to sort plastic materials in order to collect them as recyclable waste.
For the sorting, the workers can visually select the material while flowing on the conveyor on the sorting line, or use a material identification device such as an infrared sensor installed directly above the conveyor to convert the mixed waste into chloride. The surface of a plastic material such as vinyl is material-identified, and an operator manually sorts the material based on the identification result, or further mechanically sorts the material based on the identification result.
When identifying with the infrared sensor, etc., if the mixed waste moving on the belt overlaps vertically, the infrared sensor is at the top, so the irradiation light is disturbed by the mixed waste located above, In some cases, the mixed waste located below passes through the material identification device without being irradiated, and the plastic material as the identification target cannot be accurately identified from the mixed waste.
In addition, a method is also conceivable in which a plurality of infrared sensors are arranged in a plane just above the transport conveyor and the object to be identified is identified by irradiating the infrared sensor downward from the infrared sensor. Even if it is possible to identify by irradiating reliably, even if mixed pipes such as composite pipes are mixed in the mixed waste conveyed in the horizontal position, the inner surface is not identified because the irradiation light from the infrared sensor does not hit the inner surface. Can not do it. Incidentally, the above-mentioned composite pipe is a pipe in which plastic is coated or laminated on an outer surface and an inner surface such as a metal tube and a concrete (mortar) tube.
[0003]
As a method for sorting plastic materials, as shown in FIG. 4, the type of the raw material 20 of the plastic container being transferred by the belt conveyor 21 is determined by the infrared spectroscope 22, and at least one location in the traveling direction of the belt conveyor 21. An automatic sorting machine (not shown) provided is operated according to a command signal of the infrared spectroscope 22 to sort plastic containers according to the type of raw material. In this sorting method, the infrared spectroscope 22 includes a belt. A light emitting source 22a is provided on one side of the conveyor 21 and a light receiving and receiving light source 22b is provided on the other side of the light emitting source 22a. This is to detect the types of the 20 raw materials. That is, when the waste plastic container 20 passes between the light emitting source 22a and the light receiving source 22b of the infrared spectroscope 22 provided outside the belt conveyor 21, the difference in the type of the raw material is determined based on the spectral detection waveform. (See Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 08-11081 (page 2, FIG. 2).
[0005]
[Problems to be solved by the invention]
In the prior art described in Patent Literature 1, the light emitting source 22a and the receiving light source 22b are arranged at right angles and opposed to the traveling direction of the belt conveyor 21, and the irradiation light is directed at right angles to the traveling direction. However, this irradiation light can hardly irradiate the inner surface of the composite pipe in the mixed waste conveyed in a random direction. Therefore, it is premised that the waste plastic container 20 to be identified is transferred on the belt conveyor 21 in a fixed direction and in a single row, and therefore, the mixed waste containing the identification object is transferred to the belt conveyor 21. In the case of being conveyed in a multi-row state in the width direction and overlapping in the vertical direction, the irradiation light from the light emitting source 22a is obstructed by the mixed waste and does not reach the light receiving light source 22b, so that the identification cannot be reliably performed. There is a problem that the accuracy is not sufficient.
[0006]
Therefore, the present invention aims to identify waste plastic materials and composite pipes from mixed wastes such as recyclable garbage and industrial wastes discharged from ordinary households with a relatively simple structure and with high reliability and high reliability. Make it an issue.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a material identification device for mixed waste of the present invention is provided with a plurality of reflective optical sensors from above a belt of a transport conveyor toward a transport surface, and at least one of the reflective optical sensors is provided. By making the direction of one light beam direction different from the other, one light beam direction is inclined with respect to a direction perpendicular to the running direction of the belt. The irradiation distance becomes longer, and therefore, the opportunity to identify the plastic material in the mixed waste conveyed in a state of being spread (multi-row) on the conveying surface of the belt increases. Further, the one inclined light beam illuminates the inner surface of the composite pipe in which the inner surface is covered or laminated with plastic, and the material can be identified.
[0008]
Since the reflection type optical sensor is provided on both sides of the belt, and the light beam direction of the reflection type optical sensor is directed to the upstream side or the downstream side of the belt, irradiation is performed from both sides of the belt. When the mixed waste is conveyed while being spread in the width direction of the belt, when the light from the reflection type optical sensor on one side is blocked by another mixed waste, the mixed waste is reflected on the other side. The discrimination power is improved by receiving the light beam from the optical sensor. Also, the chance of light rays entering the mixed waste increases. Further, by directing both light beams toward the upstream side or the downstream side of the belt, the inner surface of the composite pipe can be irradiated, and the material thereof can be detected and identified.
By adopting a configuration in which the reflection type optical sensor is provided on both sides and the upper part of the belt, not only a composite pipe in which waste plastic conveyed in a substantially horizontal state is covered or laminated, but also a substantially vertical vertical Any inner surface of the composite pipe conveyed in the oriented state can be reliably detected and identified.
One of the reflection-type optical sensors is provided on one side of the belt, and the other is provided on the upper portion of the belt. A configuration directed to the upstream side or the downstream side can be adopted.
[0009]
By adopting a configuration in which the light beam direction of the reflection type optical sensor is obliquely downward toward the conveying surface of the belt, the chance of the light beam entering the overlapping mixed waste is further increased.
By adopting a configuration in which the reflection type optical sensor is provided so that the light beams do not cross each other on the conveying surface of the belt, there is no interference of the reflected light amount caused by the crossing of the light beams, and the waste plastic in the mixed waste can be removed. Highly accurate detection and identification.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 to 3, reference numeral 1 denotes a conveyor provided with a belt 2, which is a waste such as paper and vinyl, such as resources and industrial waste discharged from ordinary households, such as plastic, wood, concrete, soil, and the like. Mixed waste P such as metal products, cloths, rubber, and glass products is supplied and transported from one upper end and discharged from the other end.
The belt 2 is wound around drums 3 and 4 at both ends supported by a main body frame 5 and runs on a drum 4 rotated by a driving device (not shown). Reference numeral 6 denotes a discharge chute provided near the discharge of the drum 4.
Reference numeral 7 denotes a gate-type sensor frame which is installed so as to extend at right angles to the traveling direction of the belt 2. Reference numerals 8 and 9 denote reflective optical sensors provided from both side surfaces of the sensor frame 7 toward the conveying surface above the belt 2. An infrared sensor, a near infrared sensor, or the like can be used as the reflection type optical sensor. Hereinafter, description will be made using an infrared sensor.
[0011]
The infrared sensors 8 and 9 each include a light source unit for irradiation light and a light receiving unit for reflected light juxtaposed with the light source unit. The light source unit irradiates irradiation light to the mixed waste P and reflects the light from the mixed waste P. The reflected light is received by the light receiving section.
Further, the infrared sensors 8 and 9 are both provided toward the upstream side of the belt 2. That is, the angles formed by the traveling direction line d of the belt 2 and the irradiation light beams a and b from the light source unit are set to α 1 and β 1 , respectively. The angles α 1 and β 1 are changed so that the irradiation light beams a and b do not intersect, and are set to, for example, α 1 = 75 degrees and β 1 = 60 degrees. However, the angles α 1 and β 1 may be the same if the mounting positions of the infrared sensors 8 and 9 in the vertical direction are shifted. By arranging the infrared sensors 8 and 9 at a predetermined angle in this way, not only the upper surface of the mixed waste P but also the composite pipe to be identified is transported in a direction other than the substantially vertical state. Even if it comes, the irradiation light from the light source unit hits the inner surface of the composite pipe and the reflected light is received by the light receiving unit.
Further, the infrared sensors 8 and 9 are set obliquely downward toward the conveying surface of the belt 2. That is, the angles between the vertical surfaces e on both sides of the sensor frame 7 and the irradiation light beams a and b from the light source unit are set to α 2 and β 2 , respectively. The angles α 2 and β 2 may be the same as long as the angles α 1 and β 1 are set so as not to intersect with each other. However, if the angles α 1 and β 1 are the same, the irradiation light beams a and Different angles are set so that b does not intersect.
The reason why the irradiation light beams a and b do not intersect is that the irradiation light beams a and b do not intersect with each other so that the amount of reflected light from the mixed waste P does not change due to interference, and only the light from the waste plastic is used. This is for receiving an accurate light amount.
Although the infrared sensors 8 and 9 are provided toward the upstream side of the belt 2 in the illustrated example, the same effect can be obtained by providing them toward the downstream side.
[0012]
Reference numeral 10 denotes a reflection type optical sensor such as an infrared sensor provided from the upper surface of the sensor frame 7 toward the belt 2, and includes a light source unit for irradiation light and a light receiving unit for reflected light juxtaposed with the light source unit. The irradiation light beam c from the light source unit of the reflection type optical sensor 10 has a predetermined inclination angle toward the upstream side or the downstream side as shown in FIG. It may be a direction directly below the surface. However, the irradiation light beam c from the light source unit should not cross the irradiation light beams a and b for the same reason as described above.
[0013]
In the above configuration, mixed waste P such as recyclable waste and industrial waste discharged from a general household is supplied onto the belt 2 from one end of the conveyor 1. The mixed wastes P on the belt 2 are conveyed in a state of spreading in the width direction on the belt 2 (multiple rows), overlapping in the vertical direction, and further facing in various directions. In this transporting process, the irradiation light irradiated from the light sources of the infrared sensors 8 and 9 provided on both sides of the belt 2 hits the mixed waste P, is reflected on the surface to become reflected light, and the reflected light is reflected by the light receiving unit. Received. For example, when the irradiation light beam a of the reflection type optical sensor 8 is blocked by another mixed waste, the mixed waste receives the irradiation light beam b of the reflection type optical sensor 9 and the discrimination power is improved. Further, by directing both the light beams of the irradiation light toward the upstream side or the downstream side of the belt 2, the inner surface of the composite pipe can be irradiated, and the material thereof can be detected and identified.
If the received light amount of the reflected light is within a range of a specific material in the mixed waste material P, that is, a range of the received light amount specific to the plastic, it is set in advance so as to identify the plastic material. When plastic is present in the mixed waste P in the state set as described above, the waste plastic can be determined by the infrared sensors 8 and 9. For example, when the mixed waste is a composite pipe P as shown in FIG. 1, the inner surface is surely irradiated with the irradiation light beam a, and when the mixed waste is a composite pipe P1, the irradiation light beam b is surely irradiated.
The waste plastic determined by the infrared sensors 8 and 9 is displayed on a lamp or the like, and the result of the determination is picked up and removed by an operator located on the discharge chute 6 side of the sensor frame 7 based on the display of the lamp. The remaining mixed waste P is discharged from the discharge chute 6.
By setting the directions of the infrared sensors 8 and 9 provided on both sides of the belt 2 and the irradiation angles of the irradiation light beams a and b to appropriate angles in this manner, the mixed waste P may overlap in the vertical direction, Irrespective of the direction of the mixture, the irradiating light impinges on the surface of the mixed waste P without leaking, and the chance of entering the mixed waste increases, and the reflected light is received and the object to be identified in the mixed waste P is received. Is reliably and accurately identified.
Further, the reflection type optical sensor 10 increases the probability of irradiating the upper surface of the mixed waste P, makes it possible to irradiate the inner surface of the composite pipe conveyed in the vertical direction, and further combines it with the infrared sensors 8 and 9. Thus, the identification accuracy can be further improved.
[0014]
In addition, by irradiating the irradiation light beams a and b from the light sources of the infrared sensors 8 and 9 obliquely downward toward the conveyance surface, the chance of the irradiation light beams a and b entering the mixed waste is further increased. That is, even when the mixed waste P spreads in the width direction of the belt 2 and overlaps vertically, the mixed waste P below is also irradiated, and the waste plastic to be identified can be reliably detected, and the identification accuracy can be improved. Is improved.
Further, even when the composite pipe with the plastic coating or lamination on the inner surface is conveyed in a substantially horizontal horizontal state, the irradiation light of the light source unit can be radiated from the opening of the composite pipe to the inner surface. Irradiation on the inner surface improves the identification accuracy of the material because the inner surface is less likely to be contaminated even if the surface is dirty and it is difficult to detect reflected light.
[0015]
In the above-described embodiment, the combination of the infrared sensors 8, 9 and 10 is described, but a combination of the infrared sensor 10 and the infrared sensor 8 or 9 is also possible.
[0016]
In the above-described embodiment, the identified waste plastic is removed by the operator, but the waste plastic can be removed using a mechanical removal means without any trouble. As one of the means, a discharge path for waste plastic and a discharge path for other waste are provided at the end of the conveyor 1 via a damper (not shown), and the waste plastic falling from the end is operated by operating the damper. It is a type that discharges by switching to the waste plastic side discharge path. The other one is provided with a scraper that runs on the belt 2 of the conveyor 1 in a direction perpendicular to the running direction of the belt 2, and runs the scraper to remove waste plastic materials and pipes on the belt 2. It is a form of scraping and discharging. In either case, it is difficult to remove only the waste plastic, but at least the mixed waste P from which the waste plastic has been removed has a very low mixing ratio of the waste plastic.
[0017]
【The invention's effect】
As described above, according to the present invention, a plurality of reflective optical sensors are provided from above the belt of the transport conveyor toward the transport surface, and the direction of at least one light beam direction of the reflective sensor is made different from that of the other. As a result, the chance of identifying the plastic material in the mixed waste conveyed in a state of being spread (multi-row) on the conveying surface of the belt increases, and the material can be identified with high probability and the processing ability is improved.
Further, the one inclined light beam illuminates the inner surface of the composite pipe in which the inner surface is covered or laminated with plastic, and the material can be identified.
Further, the structure can be simplified since the waste plastic contained in the mixed waste can be identified without performing rearrangement and alignment by prior human and mechanical operations.
[Brief description of the drawings]
FIG. 1 is a plan view of a material identification device according to an embodiment of the present invention; FIG. 2 is a front view of the material identification device according to the embodiment of the present invention; FIG. 4 is a schematic view showing a part of a conventional material identification device, in which (A) is a plan view and (B) is a side view.
P Mixed waste (composite pipe)
DESCRIPTION OF SYMBOLS 1 Conveyor 2 Belt 3, 4 Drum 5 Body frame 6 Discharge chute 7 Sensor frame 8, 9 Reflection type optical sensor (infrared sensor)
10. Reflection type optical sensor (infrared sensor)

Claims (6)

搬送コンベア1のベルト2上の混合廃棄物Pを前記ベルト2の上方から搬送面に向けて設けた反射式光センサにより廃プラスチックとそれ以外の混合廃棄物Pとに識別する混合廃棄物の材質識別装置において、
反射式光センサを複数個設け、その反射式光センサの少なくとも1つの光線方向の向きを他のものと異ならせたことを特徴とする混合廃棄物の材質識別装置。
Material of the mixed waste P on the belt 2 of the conveyor 1 for discriminating between the waste plastic and the other mixed waste P by a reflective optical sensor provided from above the belt 2 toward the conveying surface. In the identification device,
A material identification device for mixed waste, wherein a plurality of reflective optical sensors are provided, and the direction of at least one light beam direction of the reflective optical sensors is made different from that of others.
上記反射式光センサを上記ベルト2の両側部に設けたものとするとともに、上記反射式光センサの光線方向を共に該ベルト2の上流側または下流側に向けたことを特徴とする請求項1に記載の混合廃棄物の材質識別装置。2. The reflection type optical sensor is provided on both sides of the belt 2, and both light directions of the reflection type optical sensor are directed upstream or downstream of the belt 2. 3. The material identification device for mixed waste described in (1). 上記反射式光センサを上記ベルト2の上部に設けたものとすることを特徴とする請求項2に記載の混合廃棄物の材質識別装置。The apparatus according to claim 2, wherein the reflection type optical sensor is provided above the belt (2). 上記反射式光センサの内の1個を上記ベルト2の一側部に設け、他の1個を上記ベルト2の上部に設けたものとするとともに、上記反射式光センサの光線方向を共に該ベルト2の上流側または下流側に向けたことを特徴とする請求項1に記載の混合廃棄物の材質識別装置。One of the reflection-type optical sensors is provided on one side of the belt 2 and the other is provided on the upper portion of the belt 2. The material identification device for mixed waste according to claim 1, wherein the material is directed to the upstream side or the downstream side of the belt 2. 上記反射式光センサの光線方向を上記ベルト2の搬送面に向けて斜め下向きとしたことを特徴とする請求項1乃至4のいずれかに記載の混合廃棄物の材質識別装置。5. The apparatus according to claim 1, wherein a light beam direction of the reflection-type optical sensor is obliquely downward toward the conveying surface of the belt. 上記反射式光センサを、その光線が該ベルト2の搬送面上で互いに交差しないように設けたものとすることを特徴とする請求項1乃至5のいずれかに記載の混合廃棄物の材質識別装置。The material identification of the mixed waste according to any one of claims 1 to 5, wherein the reflection type optical sensors are provided so that their light beams do not cross each other on the conveying surface of the belt (2). apparatus.
JP2003068583A 2003-03-13 2003-03-13 Material identification system for mixed waste Expired - Fee Related JP3901651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068583A JP3901651B2 (en) 2003-03-13 2003-03-13 Material identification system for mixed waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068583A JP3901651B2 (en) 2003-03-13 2003-03-13 Material identification system for mixed waste

Publications (2)

Publication Number Publication Date
JP2004279123A true JP2004279123A (en) 2004-10-07
JP3901651B2 JP3901651B2 (en) 2007-04-04

Family

ID=33285870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068583A Expired - Fee Related JP3901651B2 (en) 2003-03-13 2003-03-13 Material identification system for mixed waste

Country Status (1)

Country Link
JP (1) JP3901651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176909A (en) * 2019-04-17 2020-10-29 株式会社メタルワン Iron scrap inspection method and iron scrap inspection system
KR102371533B1 (en) * 2020-12-03 2022-03-08 주식회사 암펠 Apparatus for sorting of scrap plastics
KR20230072689A (en) * 2021-11-18 2023-05-25 (주)우림아이씨티 Method of detecting the material of the target object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013069A (en) * 1999-06-29 2001-01-19 Ishikawajima Harima Heavy Ind Co Ltd Material quality discrimination method of waste
JP2002540397A (en) * 1999-03-19 2002-11-26 ティーデマンス−ヨー ホー アンドレセン アーエンエス, トレーディング アズ ティーテ セーホー アウトソット Material inspection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540397A (en) * 1999-03-19 2002-11-26 ティーデマンス−ヨー ホー アンドレセン アーエンエス, トレーディング アズ ティーテ セーホー アウトソット Material inspection
JP2001013069A (en) * 1999-06-29 2001-01-19 Ishikawajima Harima Heavy Ind Co Ltd Material quality discrimination method of waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176909A (en) * 2019-04-17 2020-10-29 株式会社メタルワン Iron scrap inspection method and iron scrap inspection system
JP7213741B2 (en) 2019-04-17 2023-01-27 株式会社メタルワン Iron scrap inspection method and iron scrap inspection system
KR102371533B1 (en) * 2020-12-03 2022-03-08 주식회사 암펠 Apparatus for sorting of scrap plastics
KR20230072689A (en) * 2021-11-18 2023-05-25 (주)우림아이씨티 Method of detecting the material of the target object
KR102602000B1 (en) 2021-11-18 2023-11-14 (주)우림아이씨티 Method of detecting the material of the target object

Also Published As

Publication number Publication date
JP3901651B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US6914678B1 (en) Inspection of matter
RU2315977C2 (en) Method and apparatus for analyzing and sorting flow of material
JP2016532543A (en) Bulk material sorting apparatus and bulk material sorting method
JP6250644B2 (en) Method and equipment for inspecting empty bottles
US20100278302A1 (en) Apparatus for Detecting Specific Element
IL189621A (en) Egg counter for counting eggs transferred by egg collection conveyer
WO1996014168A1 (en) Sorting apparatus
JP3843138B2 (en) Device for detecting scattered dirt in a transparent container
JP2003166879A (en) Sorting device by color/material of used bottle
US4781742A (en) Method and apparatus for detecting unwanted materials among cullet
JP3715524B2 (en) X-ray foreign object detection device
JP3901651B2 (en) Material identification system for mixed waste
EP1698888A2 (en) Inspection of matter
JP2003536069A (en) X-ray inspection equipment for food
JP3965659B2 (en) Waste bottle sorter
JP3400931B2 (en) Sorting device
JP2811043B2 (en) Automatic bottle identification method and apparatus, and bottle separation apparatus using this identification apparatus
JP3373278B2 (en) Bottle color sorter
JP3338642B2 (en) Tableware sorting equipment
JPS62226392A (en) Counter
JP5531271B2 (en) Bivalve inspection method and inspection device
JPH0889907A (en) Glass bottle separator
JP3079206U (en) Inspection machine for glass pieces in bottles by X-ray
JPH0929184A (en) Color identifying device for glass bottle
JPS6315765Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees