JP2004279112A - 19f solid nuclear magnetic resonance measuring method of ion-exchange membrane resin - Google Patents

19f solid nuclear magnetic resonance measuring method of ion-exchange membrane resin Download PDF

Info

Publication number
JP2004279112A
JP2004279112A JP2003068402A JP2003068402A JP2004279112A JP 2004279112 A JP2004279112 A JP 2004279112A JP 2003068402 A JP2003068402 A JP 2003068402A JP 2003068402 A JP2003068402 A JP 2003068402A JP 2004279112 A JP2004279112 A JP 2004279112A
Authority
JP
Japan
Prior art keywords
exchange membrane
magnetic resonance
nuclear magnetic
ion
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003068402A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hashimoto
康博 橋本
Satoru Yamazaki
悟 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2003068402A priority Critical patent/JP2004279112A/en
Publication of JP2004279112A publication Critical patent/JP2004279112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for performing with high resolution,<SP>19</SP>F solid NMR measurement of an NMR spectrum which is an index of a chemical structure of an ion-exchange membrane resin, and evaluating the chemical structure from a specific signal in the acquired spectrum. <P>SOLUTION: This method for acquiring the spectrum which becomes the chemical structure index of the ion-exchange membrane resin by a solid nuclear magnetic resonance measuring device is characterized by performing<SP>19</SP>F solid nuclear magnetic resonance measurement by swelling the ion-exchange membrane resin in an oxygenated hydrocarbon-based compound having a dielectric constant over 5.0. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、イオン交換膜の化学構造を19F固体核磁気共鳴法(以下、19F固体NMR)で評価する方法に関するものである。
【0002】
【従来の技術】
従来、イオン交換膜として、フルオロカーボン系カチオン交換膜、すなわち下記[1]式で示される構造式を繰り返し単位とする、テトラフルオロエチレンと、側鎖の末端にカチオン交換基を有するビニルエーテルモノマーの共重合体が、燃料電池用、あるいは食塩電解用の電解質膜として使用され、良好な性能を発揮してきた。
【0003】
【化1】

Figure 2004279112
(式中、n=0〜2の整数、x=2〜3の整数、lとmはl≧1、m≧1、l/m=1〜10を満たす整数であり、Yはカチオン交換基である。)
【0004】
実際に、カチオン交換基としてスルホン酸基を有し、膜厚が10〜200um程度のフルオロカーボン系カチオン交換膜が市販されており、Nafion<登録商標>(米国DuPont社製)、Aciplex<登録商標>(旭化成株式会社製)、Flemion<登録商標>(旭硝子株式会社製)等がある。これらは近年とくに固体高分子型燃料電池の電解質膜としての需要がますます大きくなってきた。
【0005】
製造した該フルオロカーボン系カチオン交換膜の化学構造を詳細に評価することが、品質管理上必要である。例えば、側鎖構造、あるいは主鎖末端構造が挙げられる。側鎖の末端にイオン交換基が存在するが、これは膜のイオン交換能に関係する。一方、主鎖末端基については、その化学的安定性は末端基構造に依存するところが大きい。安定でない末端基を持つポリマーは、着色の原因となったり、あるいは劣化の原因となると一般的に考えられている。該フルオロカーボン系カチオン交換膜の場合、CF主鎖末端基は化学的に安定であると考えられている。したがって品質管理上、CF主鎖末端基の存在量を把握する必要があった。
【0006】
しかし、従来の方法では上記のような化学構造情報を得ることが困難であった。該フルオロカーボン系カチオン交換膜の難溶性のためである。側鎖構造や主鎖末端基構造を解析する場合は、NMR法が一般的には有効である。それぞれに由来する信号を検出できれば、定量も可能である。該フルオロカーボン系カチオン交換膜のような難溶性の樹脂の場合は、溶剤への溶解の必要がない固体NMRの測定を行う必要がある。とくに該フルオロカーボン系カチオン交換膜の場合はフッ素の信号を検出できる19F固体NMRの測定の必要がある。しかしながら19F固体NMRは得られたスペクトルのNMR信号幅がブロードになるという問題点があった。ブロードになることで感度が悪くなる結果、微量の主鎖末端基由来の信号が検出できなかったり、またあるいは側鎖由来の信号が他の信号と重なる結果、定量することができない場合もあった。
【0007】
信号幅が広いのは、固体状態における19F同士の強い磁気双極子相互作用によるものである。この相互作用を消去することが高分解能測定につながる。分子の運動性や流動性を上げることで双極子相互作用が平均化される結果、信号の先鋭化につながる。そのために、高温でフルオロカーボン系重合体を溶融させながら高分解能で19F固体NMR測定を行う方法が提案されている(JEOL application note,; JEOL NMR ユーザーズミーティング資料、1996年)。具体的には、特開平7−18026では、含フッ素ランダム共重合体における、共重合比率を求める方法ために、320℃での高温度測定を行っている。
【0008】
しかしながら、該フルオロカーボン系カチオン交換膜の場合は320℃の高温においても十分に溶融しない。したがって精密な構造解析に供するだけの高分解の19F固体NMRスペクトルが得ることができないという問題点があった。例えば、上述の特開平7−18026の方法では、主鎖の信号の解析には十分であるものの、主鎖末端基の定量など、より精密な解析を行ったりすることは出来ない。また、該フルオロカーボン系カチオン交換膜は300℃の高温では化学的な分解が起こる可能性が示唆されている。例えば該フルオロカーボン系カチオン交換膜の、カチオン交換膜としてスルホン酸基を有する場合は、270℃でスルホン酸基の脱離によるSO2ガスが発生する(第42回電池討論会要旨集 530頁)。したがって300℃付近の高い温度でのNMR分析は、該重合体の構造を正しく評価していることにならない。
【0009】
このように、従来の技術では該フルオロカーボン系カチオン交換膜の主鎖末端基の定量を行う方法が確立されていなかった。評価できなかったのは、主鎖末端基ばかりはない。上述のように化学構造解析する手段がないため、詳細な化学構造情報を得ることができなかった。例えば、カチオン交換基を有する側鎖構造などが挙げられ、いずれも品質管理上、あるいは新規イオン交換膜の開発上必須な構造情報であった。
【0010】
【発明が解決しようとする課題】
本発明の課題は、イオン交換膜樹脂の化学構造の指標であるNMRスペクトルを得るために高分解能で19F固体NMR測定を行うこと、そして得られたスペクトルのある特定の信号から、従来技術では困難であったイオン交換膜樹脂のCF主鎖末端基量や、側鎖スルホン酸基の定量を行う手段を提供することを目的課題とする。
【0011】
【課題を解決するための手段】
本発明者らは前記課題を解決するために鋭意研究した結果、特定の工夫を施すことにより、従来技術に比して飛躍的に高い分解能で19F固体NMRスペクトルを得ることを見出し、さらにはそのスペクトルから、従来技術では解析不能であったCF主鎖末端基や側鎖スルホン酸基の定量を行うことが可能となることを見出し本発明に至った。すなわち、本発明は以下(1)から(3)に係わる。
【0012】
(1)固体核磁気共鳴測定装置でイオン交換膜樹脂の化学構造指標となるスペクトルを得る方法において、イオン交換膜を5.0以上の比誘電率を持つ含酸素炭化水素系化合物に膨潤させて19F固体核磁気共鳴測定することを特徴とする核磁気共鳴スペクトル測定方法。
(2)イオン交換膜樹脂のCF主鎖末端基及び又は側鎖スルホン酸基を、上記(1)記載の方法の19F固体核磁気共鳴スペクトルで定量する方法。
【0013】
(3)燃料電池用フルオロカーボン系カチオン交換膜樹脂を上記(1)記載の方法で測定し、そのCF主鎖末端基及び又は側鎖スルホン酸基を上記(2)記載の方法を用いて定量する方法。
本発明者らは、樹脂で作られたイオン交換膜を溶剤で膨潤させて19F固体NMR測定することに着目した。その結果、ある特定の構造を持つ含酸素炭化水素系化合物がイオン交換基との親和性によって、該重合体をよく膨潤せしめることがわかった。この膨潤状態で19F固体NMR測定を行うと、驚くべきことに従来に比して飛躍的な分解能向上が得られた。さらなる利点は膨潤溶剤が非フッ素系化合物であるため19F固体NMRスペクトルにおいて、溶剤由来の信号が妨害信号となることが無いことである。その結果、詳細な化学構造情報、例えばCF主鎖末端基量や側鎖スルホン酸基量の情報が得られることがわかった。
【0014】
膨潤させるための含酸素炭化水素系化合物とは、比誘電率が5.0以上の高極性溶媒である。極性の指標として比誘電率が一般的に使用されるが、これは物質中における誘電率を真空中の誘電率で割った値であると定義される。比誘電率の値、およびその測定法は、CRC Handbook of Chemistry and Physics, 81st EDITION (CRC PRESS LLC, p6−149、Editor−in−Chief : D. R. Lide)や、化学便覧(改訂4版、基礎編II、498頁、日本化学会編、丸善株式会社)、あるいは実験化学講座(第4版、第9巻、216−236頁、日本化学会編、丸善株式会社)に詳しく記載されている。比誘電率の測定は市販の誘電率測定装置を用いてよい。まずコンデンサー極板の間にサンプルを満たして、静電容量Cを測定する。ついで、コンデンサー極板を空にして静電容量Cを測定する。比誘電率は以下の式から算出される。
【0015】
比誘電率=C/C
比誘電率は、その測定するときの温度により変化するが、本発明においては測定温度を20℃と定義する。また、測定時の交流周波数によっても比誘電率の値が変化することが知られているが、本発明においては、3kHzで測定するものと定義する。
【0016】
イオン交換膜に使用される樹脂のカチオン交換基含有フルオロカーボン重合体を良好に膨潤せしめるためには、比誘電率が5.0以上、望ましくは10.0以上、より望ましくは20.0以上である含酸素炭化水素系化合物が使用される。なお、良好な膨潤とは該重合体の体積膨潤率が2倍以上になることである。
含酸素炭化水素系化合物としてはフッ素を含まない化合物であることが望ましい。この好ましい含酸素炭化水素系化合物の例は、下式[2]で示される化合物が挙げられる。
【0017】
【化2】
Figure 2004279112
(式中、RおよびRはアルキル基である。)
アルキル基の炭素数は好ましくは3以下、より好ましくは2以下である化合物が選ばれる。好ましい例としてジメチルスルホキシドがあげられる。
もうひとつの含酸素炭化水素系化合物の例は、下式[3]で示される化合物である。
【0018】
【化3】
Figure 2004279112
(式中、R、R、R、R、R、およびRはアルキル基である。)
アルキル基の炭素数は好ましくは3以下、より好ましくは2以下である化合物が選ばれる。好ましい例としてヘキサメチルリン酸トリアミドが挙げられる。
またあるいは、好ましい含酸素炭化水素系化合物として、下式[4]で示されるようなアミド基を有する化合物が選ばれる。
【0019】
【化4】
Figure 2004279112
(式中、Xは水素又は炭素数4以下のアルキル基である。Y1およびY2は水素または炭素数2以下のアルキル基である。)
【0020】
アミド基を有する化合物の具体例としては、ホルムアミド、Nメチルホルムアミド、NNジメチルホルムアミド、Nエチルホルムアミド、NNジエチルホルムアミド、アセトアミド、Nメチルアセトアミド、NNジメチルアセトアミド、Nエチルホルムアミド、NNジエチルホルムアミド、プロピオンアミド、Nメチルプロピオンアミド、NNジメチルプロピオンアミド、Nエチルプロピオンアミド、NNジエチルプロピオンアミド等が挙げられるが、好ましくは一般式[4]中のXが水素又はメチルで、かつY1およびY2が水素又はメチルであることが望ましい。
【0021】
該重合体を膨潤させるときには、上記の高い比誘電率を示す含酸素炭化水素系化合物は、5.0より低い比誘電率を示す含酸素炭化水素系化合物と混合させながら用いても良い。
本発明において、含酸素炭化水素系化合物でイオン交換膜を膨潤させるためには、溶媒に浸漬される。膨潤を速めるために加熱をおこなう。温度は0〜240℃、好ましくは、20〜220℃、より好ましくは80℃以上200℃の範囲で膨潤させることができる。また、必要に応じて超音波処理を行ってもよい。好ましい発振周波数は1〜100kHzである。本発明の膨潤条件では膨潤性がきわめて高いために、900〜1300g/eqの高い当量重量を有する該重合体、あるいは分子間架橋処理を行ったイオン交換膜にも適用できる。
【0022】
19F固体NMR測定は、NMR試験管を外部静磁場に対して54°44’の角度高速回転させて測定を行う(以下、MAS法)。回転周波数は2kHz以上、好ましくは4kHz以上にて行う。0〜350℃で測定を行うことができるが、本発明の膨潤条件では、該フルオロカーボン系カチオン交換膜の膨潤性がきわめて高いために、かならずしも高い温度で測定する必要はない。より好ましい測定温度は80℃〜200℃である。
本発明で化学構造を評価されるイオン交換膜の例としては、下記[1]式で示される構造式を繰り返し単位とする、フルオロカーボン系カチオン交換膜が挙げられる。
【0023】
【化5】
Figure 2004279112
(式中、n=0〜2の整数、x=2〜3の整数、lとmはl≧1、m≧1、l/m=1〜10を満たす整数であり、Yはカチオン交換基である。)
【0024】
カチオン交換基の具体例としては、スルホン酸基、スルホンアミド基、スルホンイミド基、カルボン酸基などが挙げられる。形状は膜状、シート状または粒状のいずれでも良い。またイオン交換基は塩置換型になっていても良い。該イオン交換膜の用途としては、食塩電解用、あるいは燃料電池用電解質膜が挙げられる。
【0025】
【発明の実施の形態】
以下に発明の実施の形態について具体的に述べる。イオン交換膜として、市販のナフィオン117膜(デュポン社製)を用いた。
19F固体NMR測定は下記条件で行った。なおサンプルはNMR試験管内で膨潤溶剤に浸漬させながらNMR測定される。
・装置:ブルカーバイオスピン(株)製 DSX400
・温度:表1に記載
・MAS回転数:4.5kHz
・観測周波数:376.5MHz
・化学シフト基準:CFCOOH(−77ppm)
・膨潤、およびNMR測定温度:表1に記載
以下に実施例および比較例にもとづいて本発明について詳細に説明する。
【0026】
【実施例1】
膨潤剤としてNメチルアセトアミドでイオン交換膜樹脂のカチオン交換基含有フルオロカーボンのサンプルを180℃で膨潤させ、で19F固体NMR測定を行った(図1)。測定温度は180℃である。その結果、分解能が飛躍的に向上した。分解能向上の結果は、図1中のCF信号に明瞭に現れている。図中の信号▲1▼と▲2▼が分離されて観測されている。分解能が向上した結果、CF主鎖末端基量やスルホン酸基量を定量することができる。本発明におけるCF主鎖末端基量とは、主鎖のCFに対するCF主鎖末端基のモル比である。同様に本発明のスルホン酸基量とは主鎖CFに対する側鎖スルホン酸基のモル比である。
【0027】
算出方法を以下に示す。CF主鎖末端基は−79.7ppmに検出することができる(図2)。この信号の積分強度(A)と、主鎖のCFの信号(図中の▲1▼、▲2▼、および▲3▼)の積分強度(B)との比からCF主鎖末端基量を算出することができる。
CF主鎖末端基量 = (A/B)×(2/3)
その結果、CF主鎖末端基量は3.9×10−4であることがわかった。
【0028】
一方、側鎖スルホン酸基量は、−115.0ppmに観測される側鎖の−CFSOHのフッ素の信号の積分強度(C)と主鎖のCFの信号(図中の▲1▼、▲2▼、および▲3▼)の積分強度(B)との比から下記式にしたがって求めることができる。
側鎖スルホン酸基量 = C/B
算出した結果、7.3×10−2であることがわかった。
【0029】
【比較例1】
従来法である膨潤溶剤を用いずに180℃で19F固体NMR測定を行う他は実施例1と同様に操作した。その結果を図3に示す。得られて樹脂のスペクトルは分解能が低かった。そのため、CF主鎖末端基やスルホン酸基量の定量は行うことができなかった
【0030】
【実施例2〜4】
表1に示すように、膨潤溶剤としてヘキサメチルリン酸トリアミド、ジメチルスルホキシド、あるいはNNジメチルアセトアミドを用いる他は実施例1と同様に操作し19F固体NMR測定を行った結果、Nメチルアセトアミドを膨潤溶剤として使用するのと同様、高い分解能のスペクトルが得られた。その結果、CF主鎖末端基や側鎖スルホン酸基の定量を行うことができた。
【0031】
【比較例2】
膨潤溶剤を用いずに、300℃で19F固体NMR測定を行ったが、十分な分解能を得ることができず、 CF主鎖末端基や側鎖スルホン酸基の定量を行うことができなかった。
【0032】
【比較例3】
膨潤溶剤としてnヘキサンを用いて40℃で19F固体NMR測定を行ったが、十分な分解能を得ることができず、 CF主鎖末端基や側鎖スルホン酸基の定量を行うことができなかった。
【0033】
【表1】
Figure 2004279112
【0034】
【発明の効果】
イオン交換膜樹脂の化学構造の指標であるNMRスペクトルを高分解能で19F固体NMR測定を行うこと、そして得られたスペクトルのある特定の信号から、従来技術では困難であったイオン交換膜樹脂のCF主鎖末端基量や、側鎖スルホン酸基の定量を行うことができる。
【図面の簡単な説明】
【図1】19F固体NMRスペクトル。横軸は化学シフト。
【図2】図1の縦軸拡大図。
【図3】19F固体NMRスペクトル。横軸は化学シフト。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for evaluating the chemical structure of an ion exchange membrane by 19 F solid state nuclear magnetic resonance (hereinafter referred to as 19 F solid state NMR).
[0002]
[Prior art]
Conventionally, as an ion exchange membrane, a fluorocarbon-based cation exchange membrane, that is, a copolymer of tetrafluoroethylene and a vinyl ether monomer having a cation exchange group at a terminal of a side chain, having a repeating unit represented by the following formula [1] The coalescing has been used as an electrolyte membrane for fuel cells or salt electrolysis, and has exhibited good performance.
[0003]
Embedded image
Figure 2004279112
(Wherein, n is an integer of 0 to 2, x is an integer of 2 to 3, l and m are integers satisfying l ≧ 1, m ≧ 1, l / m = 1 to 10, and Y is a cation exchange group. Is.)
[0004]
Actually, a fluorocarbon-based cation exchange membrane having a sulfonic acid group as a cation exchange group and a film thickness of about 10 to 200 μm is commercially available, and Nafion <registered trademark> (manufactured by DuPont, USA) and Aciplex <registered trademark> (Made by Asahi Kasei Corporation) and Flemion (registered trademark) (made by Asahi Glass Co., Ltd.). In recent years, the demand for electrolyte membranes of polymer electrolyte fuel cells has been increasing.
[0005]
It is necessary for quality control to evaluate the chemical structure of the manufactured fluorocarbon cation exchange membrane in detail. For example, there are a side chain structure or a main chain terminal structure. There is an ion exchange group at the end of the side chain, which is related to the ion exchange capacity of the membrane. On the other hand, the chemical stability of the main chain terminal group largely depends on the terminal group structure. It is generally believed that polymers having terminal groups that are not stable cause coloration or cause degradation. In the case of the fluorocarbon cation exchange membrane, the CF 3 main chain terminal group is considered to be chemically stable. Therefore, for quality control, it was necessary to grasp the amount of the CF 3 main chain terminal group.
[0006]
However, it has been difficult to obtain such chemical structure information by the conventional method. This is due to the poor solubility of the fluorocarbon cation exchange membrane. When analyzing the side chain structure or the main chain terminal group structure, the NMR method is generally effective. Quantification is possible if signals derived from each can be detected. In the case of a hardly soluble resin such as the fluorocarbon-based cation exchange membrane, it is necessary to perform solid NMR measurement which does not require dissolution in a solvent. In particular, in the case of the fluorocarbon-based cation exchange membrane, it is necessary to measure 19 F solid-state NMR capable of detecting a fluorine signal. However, the 19 F solid-state NMR has a problem that the NMR signal width of the obtained spectrum becomes broad. As a result of poor sensitivity due to broadening, a small amount of signal derived from a main chain terminal group could not be detected, or a signal derived from a side chain overlapped with another signal, so that quantification was sometimes impossible. .
[0007]
The wide signal width is due to the strong magnetic dipole interaction between 19 F in the solid state. Eliminating this interaction leads to high resolution measurements. By increasing the mobility and mobility of the molecules, the dipole interactions are averaged, resulting in a sharper signal. Therefore, a method of performing 19 F solid state NMR measurement at high resolution while melting the fluorocarbon polymer at a high temperature has been proposed (JEOL application note ,; JEOL NMR User Meeting article 1996). Specifically, in Japanese Patent Application Laid-Open No. Hei 7-18026, a high temperature measurement at 320 ° C. is performed in order to determine a copolymerization ratio in a fluorine-containing random copolymer.
[0008]
However, the fluorocarbon-based cation exchange membrane does not sufficiently melt even at a high temperature of 320 ° C. Therefore, there has been a problem that a high-resolution 19 F solid-state NMR spectrum that can be used for precise structural analysis cannot be obtained. For example, the method of JP-A-7-18026 described above is sufficient for analyzing the signal of the main chain, but cannot perform more precise analysis such as quantification of the terminal group of the main chain. Further, it has been suggested that the fluorocarbon-based cation exchange membrane may be chemically decomposed at a high temperature of 300 ° C. For example, when the fluorocarbon-based cation exchange membrane has a sulfonic acid group as a cation exchange membrane, SO2 gas is generated at 270 ° C. due to the elimination of the sulfonic acid group (the 42nd Battery Symposium Abstracts, p. 530). Therefore, NMR analysis at a high temperature around 300 ° C. does not mean that the structure of the polymer has been correctly evaluated.
[0009]
As described above, a method for quantifying the main chain terminal group of the fluorocarbon cation exchange membrane has not been established in the conventional technology. Only the main chain terminal groups could not be evaluated. Since there is no means for analyzing the chemical structure as described above, detailed chemical structure information could not be obtained. For example, there is a side chain structure having a cation exchange group and the like, all of which are essential structural information for quality control or development of a new ion exchange membrane.
[0010]
[Problems to be solved by the invention]
An object of the present invention, it performs a 19 F solid state NMR measurements with high resolution in order to obtain the NMR spectrum is indicative of the chemical structure of the ion-exchange membrane resin, and from certain signals obtained spectrum, in the prior art It is an object of the present invention to provide means for quantifying the amount of CF 3 main chain terminal groups and side chain sulfonic acid groups of ion exchange membrane resins, which have been difficult.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that by applying a specific device, a 19 F solid-state NMR spectrum can be obtained at a remarkably high resolution as compared with the related art. From the spectrum, they found that it was possible to quantify the CF 3 main chain terminal group and the side chain sulfonic acid group, which could not be analyzed by the conventional technique, and reached the present invention. That is, the present invention relates to the following (1) to (3).
[0012]
(1) A method for obtaining a spectrum as a chemical structure index of an ion-exchange membrane resin using a solid-state nuclear magnetic resonance measurement apparatus, wherein the ion-exchange membrane is swollen with an oxygen-containing hydrocarbon compound having a relative dielectric constant of 5.0 or more. A method for measuring a nuclear magnetic resonance spectrum, comprising measuring 19 F solid state nuclear magnetic resonance.
(2) A method of quantifying the CF 3 main chain terminal group and / or the side chain sulfonic acid group of the ion exchange membrane resin by the 19 F solid state nuclear magnetic resonance spectrum of the method described in (1) above.
[0013]
(3) The fluorocarbon cation exchange membrane resin for a fuel cell is measured by the method described in (1) above, and the CF 3 main chain terminal group and / or side chain sulfonic acid group is quantified by the method described in (2) above. how to.
The present inventors have an ion exchange membrane made of resin focuses on measuring 19 F Solid State NMR swollen with a solvent. As a result, it was found that the oxygen-containing hydrocarbon compound having a specific structure swells the polymer well due to the affinity with the ion exchange group. When the 19 F solid state NMR measurement was performed in this swelling state, surprisingly, a remarkable improvement in resolution was obtained as compared with the conventional case. A further advantage is that in the 19 F solid state NMR spectrum, signals derived from the solvent do not become disturbing signals because the swelling solvent is a non-fluorinated compound. As a result, it was found that detailed chemical structure information, for example, information on the amount of CF 3 main chain terminal groups and the amount of side chain sulfonic acid groups could be obtained.
[0014]
The oxygen-containing hydrocarbon-based compound for swelling is a highly polar solvent having a relative dielectric constant of 5.0 or more. The relative permittivity is commonly used as an indicator of polarity, and is defined as the permittivity in a substance divided by the permittivity in a vacuum. The value of the relative dielectric constant and the measuring method thereof are described in CRC Handbook of Chemistry and Physics, 81st EDITION (CRC PRESS LLC, p. 6-149, Editor-in-Chief: D. R. Lide), and Chemical Handbook (4th Edition). Basic Edition II, p. 498, The Chemical Society of Japan, Maruzen Co., Ltd.) or Experimental Chemistry (4th edition, Volume 9, pages 216-236, The Chemical Society of Japan, Maruzen Co., Ltd.) I have. The relative permittivity may be measured using a commercially available permittivity measuring device. First, the sample is filled between the capacitor plates, and the capacitance C is measured. Then, measuring the capacitance C 0 and the capacitor electrode plate to empty. The relative permittivity is calculated from the following equation.
[0015]
Relative permittivity = C / C 0
Although the relative permittivity changes depending on the temperature at the time of measurement, the measurement temperature is defined as 20 ° C. in the present invention. It is known that the value of the relative permittivity also changes depending on the AC frequency at the time of measurement, but in the present invention, it is defined to be measured at 3 kHz.
[0016]
In order to swell the cation exchange group-containing fluorocarbon polymer of the resin used in the ion exchange membrane satisfactorily, the relative dielectric constant is 5.0 or more, preferably 10.0 or more, more preferably 20.0 or more. An oxygen-containing hydrocarbon compound is used. In addition, good swelling means that the volume swelling ratio of the polymer becomes twice or more.
The oxygen-containing hydrocarbon compound is preferably a compound containing no fluorine. Examples of the preferable oxygen-containing hydrocarbon-based compound include a compound represented by the following formula [2].
[0017]
Embedded image
Figure 2004279112
(In the formula, R 1 and R 2 are an alkyl group.)
A compound having preferably 3 or less, more preferably 2 or less carbon atoms of the alkyl group is selected. A preferred example is dimethyl sulfoxide.
Another example of the oxygen-containing hydrocarbon compound is a compound represented by the following formula [3].
[0018]
Embedded image
Figure 2004279112
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are alkyl groups.)
A compound having preferably 3 or less, more preferably 2 or less carbon atoms of the alkyl group is selected. A preferred example is hexamethylphosphoric triamide.
Alternatively, a compound having an amide group represented by the following formula [4] is selected as a preferable oxygen-containing hydrocarbon compound.
[0019]
Embedded image
Figure 2004279112
(In the formula, X is hydrogen or an alkyl group having 4 or less carbon atoms. Y1 and Y2 are hydrogen or an alkyl group having 2 or less carbon atoms.)
[0020]
Specific examples of the compound having an amide group include formamide, N-methylformamide, NN-dimethylformamide, N-ethylformamide, NN-diethylformamide, acetamide, N-methylacetamide, NN-dimethylacetamide, N-ethylformamide, NN-diethylformamide, propionamide, Examples include N-methylpropionamide, NN-dimethylpropionamide, N-ethylpropionamide, and NN-diethylpropionamide. Preferably, X in the general formula [4] is hydrogen or methyl, and Y1 and Y2 are hydrogen or methyl. Desirably.
[0021]
When the polymer is swelled, the oxygen-containing hydrocarbon compound having a high relative dielectric constant may be used while being mixed with the oxygen-containing hydrocarbon compound having a relative dielectric constant lower than 5.0.
In the present invention, the ion exchange membrane is immersed in a solvent in order to swell the ion exchange membrane with the oxygen-containing hydrocarbon compound. Heat is applied to accelerate swelling. Swelling can be performed at a temperature of 0 to 240 ° C, preferably 20 to 220 ° C, more preferably 80 ° C to 200 ° C. Moreover, you may perform an ultrasonic treatment as needed. A preferred oscillation frequency is 1 to 100 kHz. Since the swelling property is extremely high under the swelling conditions of the present invention, it can be applied to the polymer having a high equivalent weight of 900 to 1300 g / eq, or to an ion exchange membrane which has been subjected to an intermolecular crosslinking treatment.
[0022]
The 19 F solid-state NMR measurement is performed by rotating the NMR test tube at an angle of 54 ° 44 ′ at a high speed with respect to an external static magnetic field (hereinafter, MAS method). The rotation frequency is 2 kHz or more, preferably 4 kHz or more. The measurement can be performed at 0 to 350 ° C., but under the swelling conditions of the present invention, it is not always necessary to measure at a high temperature because the swellability of the fluorocarbon cation exchange membrane is extremely high. A more preferred measurement temperature is from 80C to 200C.
Examples of the ion exchange membrane whose chemical structure is evaluated in the present invention include a fluorocarbon-based cation exchange membrane having a structural formula represented by the following formula [1] as a repeating unit.
[0023]
Embedded image
Figure 2004279112
(Wherein, n is an integer of 0 to 2, x is an integer of 2 to 3, l and m are integers satisfying l ≧ 1, m ≧ 1, l / m = 1 to 10, and Y is a cation exchange group. Is.)
[0024]
Specific examples of the cation exchange group include a sulfonic acid group, a sulfonamide group, a sulfonimide group, and a carboxylic acid group. The shape may be any of a film shape, a sheet shape, and a granular shape. Further, the ion exchange group may be of a salt substitution type. Applications of the ion exchange membrane include electrolyte membranes for salt electrolysis and fuel cells.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described. A commercially available Nafion 117 membrane (manufactured by DuPont) was used as the ion exchange membrane.
The 19 F solid state NMR measurement was performed under the following conditions. The sample is subjected to NMR measurement while being immersed in a swelling solvent in an NMR test tube.
・ Apparatus: DSX400 manufactured by Bruker Bio Spin Co., Ltd.
・ Temperature: described in Table 1 ・ MAS rotation speed: 4.5 kHz
・ Observation frequency: 376.5MHz
And chemical shift standard: CF 3 COOH (-77ppm)
Swelling and NMR measurement temperature: described in Table 1. Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples.
[0026]
Embodiment 1
A cation exchange group-containing fluorocarbon sample of the ion exchange membrane resin was swelled at 180 ° C. with N-methylacetamide as a swelling agent, and subjected to 19 F solid-state NMR measurement (FIG. 1). The measurement temperature is 180 ° C. As a result, the resolution was dramatically improved. The result of the improvement in resolution is clearly shown in the CF 2 signal in FIG. The signals (1) and (2) in the figure are observed separately. As a result of the improved resolution, the amount of CF 3 main chain terminal groups and the amount of sulfonic acid groups can be quantified. In the present invention, the term "CF 3 main chain terminal group amount" refers to the molar ratio of CF 3 main chain terminal groups to CF 2 in the main chain. The amount of sulfonic acid group of the invention as well as the molar ratio of the side chain a sulfonic acid group with respect to the backbone CF 2.
[0027]
The calculation method is described below. The CF 3 main chain terminal group can be detected at -79.7 ppm (FIG. 2). From the ratio of the integrated intensity (A) of this signal to the integrated intensity (B) of the main chain CF 2 signal ((1), (2), and (3) in the figure), the CF 3 main chain terminal group was determined. The amount can be calculated.
CF 3 main chain terminal group amount = (A / B) × (2/3)
As a result, the amount of CF 3 main chain terminal groups was found to be 3.9 × 10 −4 .
[0028]
On the other hand, the amount of the side chain sulfonic acid group is the integrated intensity (C) of the fluorine signal of —CF 2 SO 3 H of the side chain observed at −115.0 ppm and the signal of the main chain CF 2 (in FIG. It can be obtained from the ratio of the integrated intensity (B) of (1), (2), and (3)) according to the following equation.
Side chain sulfonic acid group content = C / B
As a result of calculation, it was found to be 7.3 × 10 −2 .
[0029]
[Comparative Example 1]
The same operation as in Example 1 was carried out except that 19 F solid-state NMR measurement was performed at 180 ° C. without using a swelling solvent, which is a conventional method. The result is shown in FIG. The resulting resin spectrum had low resolution. For this reason, the amount of the CF 3 main chain terminal group or the amount of the sulfonic acid group could not be determined.
[Examples 2 to 4]
As shown in Table 1, the same operation as in Example 1 was performed except that hexamethylphosphoric acid triamide, dimethyl sulfoxide, or NN dimethylacetamide was used as the swelling solvent, and 19 F solid state NMR measurement was performed. A high resolution spectrum was obtained as in the case of using as a solvent. As a result, it was possible to quantify the CF 3 main chain terminal group and the side chain sulfonic acid group.
[0031]
[Comparative Example 2]
19 F solid-state NMR measurement was performed at 300 ° C. without using a swelling solvent. However, sufficient resolution could not be obtained, and it was not possible to quantify the CF 3 main chain terminal group or side chain sulfonic acid group. Was.
[0032]
[Comparative Example 3]
Although 19 F solid state NMR measurement was performed at 40 ° C. using n-hexane as a swelling solvent, sufficient resolution could not be obtained, and it was possible to quantify CF 3 main chain terminal groups and side chain sulfonic acid groups. Did not.
[0033]
[Table 1]
Figure 2004279112
[0034]
【The invention's effect】
Performing a 19 F solid-state NMR measurement of the NMR spectrum, which is an index of the chemical structure of the ion-exchange membrane resin, at a high resolution, and a specific signal of the obtained spectrum indicate that the ion-exchange membrane resin has been difficult with the prior art. The amount of CF 3 main chain terminal groups and side chain sulfonic acid groups can be determined.
[Brief description of the drawings]
FIG. 1. 19 F solid state NMR spectrum. The horizontal axis is the chemical shift.
FIG. 2 is an enlarged view of the vertical axis of FIG.
FIG. 3 is a 19 F solid-state NMR spectrum. The horizontal axis is the chemical shift.

Claims (3)

固体核磁気共鳴測定装置でイオン交換膜樹脂の化学構造指標となるスペクトルを得る方法において、イオン交換膜を5.0以上の比誘電率を持つ含酸素炭化水素系化合物に膨潤させて19F固体核磁気共鳴測定することを特徴とする核磁気共鳴スペクトル測定方法。A method of obtaining a spectrum in solid state nuclear magnetic resonance measurement apparatus becomes chemical structure index of the ion exchange membrane resin, ion-exchange membrane 5.0 or more swell the oxygenated hydrocarbon compounds having a relative dielectric constant 19 F solid A method for measuring a nuclear magnetic resonance spectrum, comprising measuring a nuclear magnetic resonance. イオン交換膜樹脂のCF主鎖末端基及び又は側鎖スルホン酸基を、請求項1記載の方法の19F固体核磁気共鳴スペクトルで定量する方法。A method for quantifying a CF 3 main chain terminal group and / or a side chain sulfonic acid group of the ion exchange membrane resin by a 19 F solid state nuclear magnetic resonance spectrum according to the method of claim 1. 燃料電池用フルオロカーボン系カチオン交換膜樹脂を請求項1記載の方法で測定し、そのCF主鎖末端基及び又は側鎖スルホン酸基を請求項2記載の方法で定量する方法。Fluorocarbon cation exchange membrane resin for a fuel cell measured by claim 1, wherein the method, a method of quantifying the CF 3 backbone end groups and or side chain a sulfonic acid group in the second aspect of the method.
JP2003068402A 2003-03-13 2003-03-13 19f solid nuclear magnetic resonance measuring method of ion-exchange membrane resin Pending JP2004279112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068402A JP2004279112A (en) 2003-03-13 2003-03-13 19f solid nuclear magnetic resonance measuring method of ion-exchange membrane resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068402A JP2004279112A (en) 2003-03-13 2003-03-13 19f solid nuclear magnetic resonance measuring method of ion-exchange membrane resin

Publications (1)

Publication Number Publication Date
JP2004279112A true JP2004279112A (en) 2004-10-07

Family

ID=33285747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068402A Pending JP2004279112A (en) 2003-03-13 2003-03-13 19f solid nuclear magnetic resonance measuring method of ion-exchange membrane resin

Country Status (1)

Country Link
JP (1) JP2004279112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115059A (en) * 2011-11-24 2013-06-10 Mitsubishi Chemicals Corp Fluorine-based resin film, laminate containing fluorine-based resin film and solar cell module
WO2020100684A1 (en) 2018-11-12 2020-05-22 旭化成株式会社 Positive ion exchange membrane, electrolytic bath, and positive ion exchange membrane production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115059A (en) * 2011-11-24 2013-06-10 Mitsubishi Chemicals Corp Fluorine-based resin film, laminate containing fluorine-based resin film and solar cell module
WO2020100684A1 (en) 2018-11-12 2020-05-22 旭化成株式会社 Positive ion exchange membrane, electrolytic bath, and positive ion exchange membrane production method

Similar Documents

Publication Publication Date Title
Chen et al. 19F and 13C NMR signal assignment and analysis in a perfluorinated ionomer (Nafion) by two-dimensional solid-state NMR
JP3521579B2 (en) Phosphate group-containing polymer
Park et al. Oriented morphology and anisotropic transport in uniaxially stretched perfluorosulfonate ionomer membranes
Essafi et al. Sulfonated polyimide ionomers: a structural study
He et al. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes
Page et al. Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers
Martinez et al. Proton-conducting ionic liquid-based Proton Exchange Membrane Fuel Cell membranes: The key role of ionomer–ionic liquid interaction
Li et al. Anisotropic diffusion and morphology in perfluorosulfonate ionomers investigated by NMR
Perrin et al. Water dynamics in ionomer membranes by field-cycling NMR relaxometry
Blachot et al. Anisotropy of structure and transport properties in sulfonated polyimide membranes
CN1882643A (en) Bromine, chlorine or iodine functional polymer electrolytes crosslinked by E-beam
Sun et al. Morphology and proton transport in humidified phosphonated peptoid block copolymers
Bostwick et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes
Lin et al. Properties of water in prestretched recast Nafion
Kins et al. Morphological anisotropy and proton conduction in multiblock copolyimide electrolyte membranes
Yun et al. Effect of pressure on through-plane proton conductivity of polymer electrolyte membranes
Kyritsis et al. Polymer-water interactions in poly (hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric and sorption isotherm measurements
JP6684356B2 (en) Solid polymer electrolyte membrane and method for producing the same
Lei et al. Counterion condensation or lack of solvation? Understanding the activity of ions in thin film block copolymer electrolytes
Black et al. FTIR characterization of water–polymer interactions in superacid polymers
Sinirlioglu et al. Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly (vinylphosphonic acid) with PVDF by means of poly (glycidyl methacrylate) grafts
Delhorbe et al. Fluorohexane network and sulfonated PEEK based semi-IPNs for fuel cell membranes
Pascual et al. Porous aromatic polyamides the easy and green way
Reiche et al. Gel electrolytes on the basis of oligo (ethylene glycol) n dimethacrylates—thermal, mechanical and electrochemical properties in relationship to the network structure
Wang et al. Structure and diffusion in cross-linked and sulfonated poly (1, 3-cyclohexadiene)/polyethylene glycol-based proton exchange membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080131

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401