JP2004278941A - Waste gasifying and melting device - Google Patents

Waste gasifying and melting device Download PDF

Info

Publication number
JP2004278941A
JP2004278941A JP2003072052A JP2003072052A JP2004278941A JP 2004278941 A JP2004278941 A JP 2004278941A JP 2003072052 A JP2003072052 A JP 2003072052A JP 2003072052 A JP2003072052 A JP 2003072052A JP 2004278941 A JP2004278941 A JP 2004278941A
Authority
JP
Japan
Prior art keywords
gas
combustion chamber
waste
gasifying
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072052A
Other languages
Japanese (ja)
Inventor
Hideji Mori
秀治 守
Tsuneo Oku
常雄 於久
Kazuki Kobayashi
和樹 小林
Hiroyasu Enomoto
博康 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003072052A priority Critical patent/JP2004278941A/en
Publication of JP2004278941A publication Critical patent/JP2004278941A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste gasifying and melting device capable of preventing the air pollution by controlling the concentration of a harmful gas included in an exhaust gas to be less than a predetermined value, even when the charging amount of the waste is suddenly increased in a short time. <P>SOLUTION: In this waste gasifying and melting device, a CO combustion chamber 7 for burning carbon monoxide included in the exhaust gas passing through a passage, is mounted in a smoke path led from a lower part of a slag tap 4, the exhaust gas including CO of high concentration and flowing in the smoke path 105 is completely burnt in the combustion chamber 7 when the charging amount of the waste into the gasifying furnace 1 is suddenly increased, an opening of a flow rate adjusting valve 13 is largely opened in advance, when a gas pressure in the gasifying furnace 1 detected by a pressure gauge 12 and the concentration of carbon monoxide detected by a CO analyzer mounted in the smoke path of a gas exhaust port of the gasifying furnace 1 are over predetermined values, to increase the flow rate of the hot air flowing into the gasifying furnace 1, a melting furnace 2, a secondary combustion chamber 3 and a CO combustion chamber 7. Further this waste gasifying melting device is constituted to close the flow rate adjusting valve 102 mounted in the smoke path 105. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はごみをガス化炉内で部分燃焼・熱分解させ、チャーを溶融炉で完全燃焼させると共に、スラグタップの下部から二次燃焼室内の燃焼ガスの一部を迂回して排出させるようにしたごみガス化溶融装置に関する。
【0002】
【従来の技術】
都市ごみの多くは焼却炉で焼却処分される。図2は従来例に係るごみ焼却装置の概略を示す構成図である。同図を参照してごみ処理の概略を説明する。ごみは先ずガス化炉1内に投入され、比較的低温で部分燃焼・熱分解せしめられ、生成した分解ガスとチャーは旋回式溶融炉2に導かれる。溶融炉2に導入されたチャーは十分な空気の供給を受けて1300°C以上の高温で燃焼し、含有した灰分が溶融して溶融スラグとなってスラグタップ4を流下し、水槽5内に落下して冷却・固化し、図示しないスラグコンベアで系外に排出される。
【0003】
一方、分解ガスは二次燃焼室3内で十分な空気の供給を受けてCO等の未燃焼ガスが完全燃焼し、排ガスは煙道103を経て空気予熱器6に送られ、風道151を経て送風された空気を約350°Cまで予熱して風道152に送り出す。空気予熱器6で熱交換され、約500°Cまで冷却された排ガスは煙道106を経て減温塔8に送られ、冷却水で約150°Cまで冷却され、さらに煙道107を経て集塵機9に送られて排ガス中に含まれる灰分が除去される。こうして清浄化された排ガスは煙道108を経て誘引通風機10により煙突11から大気中に放出される。
【0004】
スラグタップ4の下部には煙道106に至る煙道105の一端が開口しており、二次燃焼室3内で燃焼した分解ガスの排ガスの一部がスラグタップ4を経て煙道105の迂回路を通って煙道106に合流することにより、スラグタップ4近傍を高温に保ち、溶融スラグがスラグタップ4を円滑に流下できるようにしている。ガス化炉1内のガス圧は圧力計(PIC)12により検出されていて、このガス圧の値に応じて、煙道108に介装された流量調整弁13の開口量が制御されることにより、ガス化炉1内のガス圧が一定に保たれている。
【0005】
これらに関係する従来技術として、例えば下記の特許文献1,2を挙げることがてきる。
【0006】
【特許文献1】
特開平10−339420号公報
【0007】
【特許文献2】
特開平01−14515号公報
【0008】
【発明が解決しようとする課題】
ところで、ガス化炉1内に投入されるごみの量は必ずしも一定ではなく、時々に応じて変動する。そこで、二次燃焼室3のガス出口近傍およびスラグタップ4の下部に一酸化炭素(CO)分析計14,15を設けて、これらのCO分析計14,15が分析した当該箇所の一酸化炭素濃度が10ppm 以下となるように、風道152から分岐して風道153,154を通ってガス化炉1、溶融炉2および二次燃焼室3内に供給される空気の流量を制御している。
【0009】
しかしながら、ガス化炉1内に投入されるごみの量の変動が溶融炉2および二次燃焼室3内の一酸化炭素濃度に影響が及ぶまでには大分時間が掛かるため、ガス化炉1内に投入されるごみの急激な増量には機敏に対応することができない。このため、ごみのガス化炉1内への投入量が短時間に急激に増加すると、ガス化炉1および溶融炉2内での酸素不足による不完全燃焼により、二次燃焼室3中の一酸化炭素濃度が急増する(スパイク状CO)。一酸化炭素の発生とダイオキシンの発生が相関することが指摘されており、これらの有毒ガスは特に、煙道105の迂回路を通って煙突11から大気中に放出されることになり、重大な大気汚染を引き起こす。
【0010】
本発明は従来技術におけるかかる不具合を解消すべく為されたものであり、ごみの投入量が短時間に急激に増加しても、排ガス中に含まれる有害ガスの濃度を所定値以下に抑えて、大気汚染を防止することができる、ごみガス化溶融装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上記課題を解決するために、スラグタップの下部から二次燃焼室の下流の煙道に至る迂回煙道に燃焼ガス中の有害ガスを燃焼させるガス燃焼室を介装したものであり、好ましくは、ガス化炉内のガス圧またはガス化炉のガス排出口での一酸化炭素濃度を測定し、該測定値が所定値を越えた時、溶融炉、二次燃焼室またはガス燃焼室に供給される空気の流量を予め増大させ、さらには、迂回煙道に介装された開閉弁を閉じる制御を行うようにしたものである。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の一実施例を詳細に説明する。図1は本発明の実施例に係るごみ焼却装置の概略を示す構成図である。同図において、7はスラグタップ4の下部から導出された煙道105に介装され、該通路を通る排ガス中に含まれる一酸化炭素を燃焼させるCO燃焼室、16はCO分析計14,15等からの一酸化炭素濃度データに基づいて後述する流量調整弁の開度を制御する制御装置、17はCO燃焼室7の下流側の煙道105中の排ガス中に含まれる一酸化炭素濃度を分析するCO分析計、155は風道153から分岐してCO燃焼室7に熱風を導く風道、101,102はそれぞれ風道155,105に介装されて通過する熱風の流量を調整する流量調整弁である。
【0013】
従来例と同一または同一と見做せる個所には同一の符号を付し、その重複する説明を省略する。制御装置16にはCO分析計14,15,17からの一酸化炭素濃度データが常に入力されていて、その値が10ppm 以下となるように、流量調整弁101,102の開度を制御する。また、風道153を経てガス化炉1内に流入する熱風の流量は、圧力計12が検出した内部のガスの圧力に基づいて、その空気比が約0.3となるように流量調整弁13の開口量が制御されている。
前述のように、ガス化炉1内に投入されるごみの量の影響はある時間遅れを以て溶融炉2および二次燃焼室3内のガスの状態に反映する。従って、単にCO分析計14,15,17が分析した対応箇所の一酸化炭素濃度データを収集しただけでは、スパイク状COに対する機敏な処置をとることができない。そこで、本実施例ではガス化炉1内にごみを投入する図示しない給塵機の電動機の電流値を検知していて、この電流値が急増した時に、ごみのガス化炉1内への投入量が急激に増加したものと判断するようにしている。
【0014】
つまり、給塵機の電動機の電流値が急増した時はスパイク状COの発生が予知できるから、流量調整弁13の開口量を予め大きく開いて、ガス化炉1、溶融炉2、二次燃焼室3およびCO燃焼室7に流入する熱風の流量を増加させるように制御する。これにより、スパイク状COの発生を事前に防止することができる。また、ガス化炉1や溶融炉2内で不完全燃焼が生じてCO濃度か上昇しても、それを二次燃焼室3およびCO燃焼室7内で燃焼させることができるから、排出ガス中に高濃度の有毒ガスが含まれるのを防止できる。
【0015】
ガス化炉1内に投入されるごみの量を検知する手段としては、上述の給塵機の電動機の電流値の外に、例えば、圧力計12が検出したガス化炉1内のガス圧やガス化炉1のガス排出口の煙道に設けたCO分析計が検出した一酸化炭素濃度データを採用しても良い。具体的には、ガス化炉1内のガス圧が通常圧、例えば、(−30mmAq)であったものが数秒中に正圧になった時や、上記一酸化炭素濃度データが通常濃度、例えば、6%であったものが数秒中に8%以上に急増した時は、ごみのガス化炉1内への投入量が急激に増加したものと判断できる。
【0016】
また、本実施例ではガス化炉1内に投入されるごみの急激な増量に機敏に対応するために、スラグタップ4の下部に設けたCO分析計15が検出した一酸化炭素濃度データが例えば、10ppm から1秒以内に50ppm 以上に急増した場合は、制御装置16は煙道105に介装された流量調整弁102を閉じて、高濃度のCOを含む排ガスがCO燃焼室7に流入するのを阻止して、CO燃焼室7の過熱を防止するようにしている。スパイク状COの継続時間は通常は1分以内位なので、スパイク状COの状態が解消したら、直ちに流量調整弁102を開くようにすれば、上記流量調整弁102の閉制御によるスラグタップ4の加熱停止で、溶融スラグの流下が妨げられる等の悪影響は生じない。
【0017】
【発明の効果】
以上説明したように請求項1記載の発明によれば、スラグタップの下部から二次燃焼室の下流の煙道に至る迂回煙道に燃焼ガス中の有害ガスを燃焼させるガス燃焼室を介装したので、ごみの投入量が短時間に急激に増加しても、迂回煙道を通って排出される排ガス中に含まれる有害ガスの濃度を所定値以下に抑えて、排ガスによる大気汚染を防止することができる。
【0018】
請求項2記載の発明によれば、ガス化炉内のガス圧またはガス化炉のガス排出口での一酸化炭素濃度を測定し、該測定値が所定値を越えた時、溶融炉、二次燃焼室またはガス燃焼室に供給される空気の流量を予め増大させるようにしたので、二次燃焼室またはガス燃焼室で予め増加した空気で有害ガスを完全燃焼させられるから、ごみの投入量が短時間に急激に増加しても、二次燃焼室またはガス燃焼室内での不完全燃焼の発生を抑えて排ガスによる大気汚染を防止することができる。
【0019】
請求項3記載の発明によれば、ガス化炉内のガス圧またはガス化炉のガス排出口での一酸化炭素濃度の測定値が所定値を越えた時、迂回煙道に介装した開閉弁を閉じるようにしたので、高濃度の一酸化炭素を含む有害排ガスがガス燃焼室に流入するのを阻止して、ガス燃焼室の過熱を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施例に係るごみ焼却装置の概略を示す構成図である。
【図2】従来例に係るごみ焼却装置の概略を示す構成図である。
【符号の説明】
1 ガス化炉
2 溶融炉
3 二次燃焼室
4 スラグタップ
5 水槽
6 空気予熱器
7 CO燃焼室
8 減温塔
9 集塵機
10 誘引通風機
12 圧力計
13,101,102 流量調整弁
14,15,17 CO分析計
16 制御装置
103,105〜108 煙道
151〜155 風道
[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, refuse is partially burned and pyrolyzed in a gasification furnace, and char is completely burned in a melting furnace, and a part of combustion gas in a secondary combustion chamber is discharged from a lower part of a slag tap by bypass. The present invention relates to a waste gasification and melting apparatus.
[0002]
[Prior art]
Most municipal solid waste is incinerated in incinerators. FIG. 2 is a configuration diagram schematically showing a waste incineration apparatus according to a conventional example. The outline of the garbage processing will be described with reference to FIG. The refuse is first introduced into the gasification furnace 1 and partially burned and pyrolyzed at a relatively low temperature. The generated cracked gas and char are led to the swirling melting furnace 2. The char introduced into the melting furnace 2 is supplied with sufficient air and burns at a high temperature of 1300 ° C. or higher, and the ash contained therein is melted to form molten slag, which flows down the slag tap 4 and enters the water tank 5. It falls, cools and solidifies, and is discharged out of the system by a slag conveyor (not shown).
[0003]
On the other hand, the decomposed gas receives a sufficient supply of air in the secondary combustion chamber 3 to completely burn unburned gas such as CO, and the exhaust gas is sent to the air preheater 6 via the flue 103 and the The air blown through is preheated to about 350 ° C. and sent out to the wind path 152. Exhaust gas that has undergone heat exchange in the air preheater 6 and has been cooled to about 500 ° C. is sent to the cooling tower 8 through a flue 106, cooled to about 150 ° C. with cooling water, and further passed through a flue 107 to a dust collector. The ash contained in the exhaust gas sent to the exhaust gas 9 is removed. The exhaust gas thus purified is discharged into the atmosphere from the chimney 11 by the induction ventilator 10 through the flue 108.
[0004]
One end of the flue 105 leading to the flue 106 is open at the lower part of the slag tap 4, and a part of the exhaust gas of the cracked gas burned in the secondary combustion chamber 3 bypasses the flue 105 via the slag tap 4. By joining the flue 106 through the path, the temperature in the vicinity of the slag tap 4 is kept high, so that the molten slag can flow down the slag tap 4 smoothly. The gas pressure in the gasification furnace 1 is detected by a pressure gauge (PIC) 12, and the opening amount of a flow control valve 13 provided in a flue 108 is controlled according to the value of the gas pressure. Thus, the gas pressure in the gasification furnace 1 is kept constant.
[0005]
For example, Patent Literatures 1 and 2 listed below can be cited as related arts related to these.
[0006]
[Patent Document 1]
JP 10-339420 A
[Patent Document 2]
Japanese Patent Application Laid-Open No. 01-14515
[Problems to be solved by the invention]
By the way, the amount of refuse introduced into the gasification furnace 1 is not always constant, but fluctuates from time to time. Accordingly, carbon monoxide (CO) analyzers 14 and 15 are provided near the gas outlet of the secondary combustion chamber 3 and below the slag tap 4, and the carbon monoxide analyzers 14 and 15 analyze the carbon monoxide at the corresponding location. By controlling the flow rate of air supplied to the gasification furnace 1, the melting furnace 2 and the secondary combustion chamber 3 through the wind paths 153 and 154 by branching from the wind path 152 so that the concentration becomes 10 ppm or less. I have.
[0009]
However, it takes a long time before the fluctuation of the amount of refuse introduced into the gasification furnace 1 affects the carbon monoxide concentration in the melting furnace 2 and the secondary combustion chamber 3. It is not possible to respond quickly to the rapid increase in the amount of garbage thrown into the area. For this reason, when the amount of the refuse charged into the gasification furnace 1 rapidly increases in a short time, the incomplete combustion due to the lack of oxygen in the gasification furnace 1 and the melting furnace 2 causes one of the wastes in the secondary combustion chamber 3. The carbon oxide concentration increases rapidly (spike CO). It has been pointed out that the generation of carbon monoxide and the generation of dioxin are correlated. Particularly, these toxic gases are released to the atmosphere from the chimney 11 through the bypass of the flue 105 to the atmosphere. Causes air pollution.
[0010]
The present invention has been made in order to solve such problems in the prior art, and even if the amount of garbage is rapidly increased in a short time, the concentration of harmful gas contained in exhaust gas is suppressed to a predetermined value or less. It is an object of the present invention to provide a refuse gasification and melting apparatus capable of preventing air pollution.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has a gas combustion chamber for burning harmful gas in combustion gas in a bypass flue from a lower portion of a slag tap to a flue downstream of a secondary combustion chamber. Preferably, the gas pressure in the gasifier or the concentration of carbon monoxide at the gas outlet of the gasifier is measured, and when the measured value exceeds a predetermined value, the melting furnace, the secondary combustion chamber or the gas combustion The flow rate of the air supplied to the chamber is increased in advance, and further, control is performed to close an on-off valve provided in the bypass flue.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram schematically showing a waste incineration apparatus according to an embodiment of the present invention. In the figure, reference numeral 7 denotes a CO combustion chamber which is interposed in a flue 105 led out from a lower part of the slag tap 4 and burns carbon monoxide contained in exhaust gas passing through the passage. Reference numeral 16 denotes CO analyzers 14 and 15. A control device for controlling the opening degree of a flow control valve, which will be described later, based on the carbon monoxide concentration data from, for example, The CO analyzer to be analyzed 155 is a wind path that branches from the wind path 153 and guides the hot air to the CO combustion chamber 7, and 101 and 102 are flow rates that are interposed in the wind paths 155 and 105 to adjust the flow rate of the hot wind passing therethrough. It is a regulating valve.
[0013]
The same reference numerals are given to portions which are the same as or can be regarded as the same as those in the conventional example, and redundant description thereof will be omitted. The carbon monoxide concentration data from the CO analyzers 14, 15, 17 is always input to the controller 16, and the opening of the flow control valves 101, 102 is controlled so that the value becomes 10 ppm or less. The flow rate of the hot air flowing into the gasification furnace 1 through the wind path 153 is adjusted based on the pressure of the internal gas detected by the pressure gauge 12 so that the air ratio becomes about 0.3. Thirteen openings are controlled.
As described above, the influence of the amount of refuse introduced into the gasification furnace 1 is reflected on the state of gas in the melting furnace 2 and the secondary combustion chamber 3 with a certain time delay. Therefore, it is not possible to take an agile treatment for spiky CO simply by collecting the carbon monoxide concentration data at the corresponding locations analyzed by the CO analyzers 14, 15, and 17. Therefore, in this embodiment, the current value of the electric motor of the dust feeder (not shown) for charging the dust into the gasification furnace 1 is detected, and when the current value increases rapidly, the dust is charged into the gasification furnace 1. It is determined that the amount has increased sharply.
[0014]
That is, when the current value of the electric motor of the dust feeder suddenly increases, the occurrence of spike-like CO can be predicted. Therefore, the opening of the flow control valve 13 is largely opened in advance, and the gasification furnace 1, the melting furnace 2, the secondary combustion Control is performed to increase the flow rate of the hot air flowing into the chamber 3 and the CO combustion chamber 7. Thereby, generation of spike-like CO can be prevented in advance. In addition, even if incomplete combustion occurs in the gasification furnace 1 or the melting furnace 2 and the CO concentration rises, the CO concentration can be burned in the secondary combustion chamber 3 and the CO combustion chamber 7. Can be prevented from containing a high concentration of toxic gas.
[0015]
As means for detecting the amount of refuse introduced into the gasification furnace 1, for example, in addition to the current value of the electric motor of the duster described above, for example, the gas pressure in the gasification furnace 1 detected by the pressure gauge 12 or the like. Carbon monoxide concentration data detected by a CO analyzer provided in a flue at a gas outlet of the gasifier 1 may be adopted. Specifically, when the gas pressure in the gasification furnace 1 becomes a normal pressure, for example, (-30 mmAq), the pressure becomes a positive pressure in a few seconds, or the carbon monoxide concentration data shows the normal concentration, for example, , 6% to 8% or more within a few seconds, it can be determined that the amount of refuse charged into the gasifier 1 has increased rapidly.
[0016]
Further, in this embodiment, in order to promptly respond to a rapid increase in the amount of refuse introduced into the gasification furnace 1, the carbon monoxide concentration data detected by the CO analyzer 15 provided below the slag tap 4 is, for example, In the case where the concentration suddenly increases from 10 ppm to 50 ppm or more within 1 second, the control device 16 closes the flow control valve 102 provided in the flue 105 and the exhaust gas containing high-concentration CO flows into the CO combustion chamber 7. To prevent overheating of the CO combustion chamber 7. Since the duration of the spike-shaped CO is usually within about one minute, if the state of the spike-shaped CO is eliminated, the flow control valve 102 is opened immediately, and the heating of the slag tap 4 by the close control of the flow control valve 102 is performed. Stopping does not cause adverse effects such as hindering the flow of molten slag.
[0017]
【The invention's effect】
As described above, according to the first aspect of the present invention, the gas combustion chamber for burning the harmful gas in the combustion gas is interposed in the bypass flue from the lower part of the slag tap to the flue downstream of the secondary combustion chamber. Therefore, even if the amount of garbage input increases rapidly in a short time, the concentration of harmful gas contained in the exhaust gas discharged through the bypass flue is kept below a specified value, preventing air pollution by the exhaust gas. can do.
[0018]
According to the invention described in claim 2, the gas pressure in the gasification furnace or the concentration of carbon monoxide at the gas outlet of the gasification furnace is measured, and when the measured value exceeds a predetermined value, the melting furnace, Since the flow rate of the air supplied to the secondary combustion chamber or the gas combustion chamber is increased in advance, the harmful gas can be completely burned with the air increased in the secondary combustion chamber or the gas combustion chamber. Even if increases rapidly in a short time, it is possible to suppress the occurrence of incomplete combustion in the secondary combustion chamber or the gas combustion chamber and to prevent air pollution by exhaust gas.
[0019]
According to the third aspect of the present invention, when the gas pressure in the gasification furnace or the measured value of the concentration of carbon monoxide at the gas discharge port of the gasification furnace exceeds a predetermined value, the opening and closing provided in the detour flue. Since the valve is closed, the harmful exhaust gas containing a high concentration of carbon monoxide is prevented from flowing into the gas combustion chamber, and overheating of the gas combustion chamber can be prevented.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing a refuse incineration apparatus according to an embodiment of the present invention.
FIG. 2 is a configuration diagram schematically showing a waste incineration apparatus according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Melting furnace 3 Secondary combustion chamber 4 Slag tap 5 Water tank 6 Air preheater 7 CO combustion chamber 8 Temperature reduction tower 9 Dust collector 10 Induced ventilator 12 Pressure gauges 13, 101, 102 Flow control valves 14, 15, 17 CO analyzer 16 Controller 103, 105 to 108 Flue 151 to 155 Wind

Claims (3)

給塵機によりガス化炉内にごみを投入して部分燃焼・熱分解させ、生成した分解ガスとチャーを溶融炉および二次燃焼室に導き、そこで完全燃焼させると共に、溶融スラグを流下させるために溶融炉の出口下方に設けたスラグタップの下部から前記二次燃焼室の下流の煙道に至る迂回煙道を通って前記二次燃焼室内の燃焼ガスの一部を迂回して排出させるようにしたごみガス化溶融装置において、前記迂回煙道に前記燃焼ガス中の有害ガスを燃焼させるガス燃焼室を介装したことを特徴とするごみガス化溶融装置。Injecting garbage into the gasifier with a dust collector to partially burn and thermally decompose, guiding the generated cracked gas and char to the melting furnace and secondary combustion chamber, where it is completely burned and the molten slag flows down A portion of the combustion gas in the secondary combustion chamber is bypassed and discharged through a bypass flue from a lower portion of a slag tap provided below an outlet of the melting furnace to a flue downstream of the secondary combustion chamber. In the refuse gasification and melting apparatus, a gas combustion chamber for burning harmful gas in the combustion gas is interposed in the bypass flue. ガス化炉内のガス圧またはガス化炉のガス排出口での一酸化炭素濃度を測定し、該測定値が所定値を越えた時、溶融炉、二次燃焼室またはガス燃焼室に供給される空気の流量を予め増大させる制御を行うことを特徴とする請求項1記載のごみガス化溶融装置。The gas pressure in the gasifier or the concentration of carbon monoxide at the gas outlet of the gasifier is measured, and when the measured value exceeds a predetermined value, the gas is supplied to the melting furnace, the secondary combustion chamber or the gas combustion chamber. The refuse gasification and melting apparatus according to claim 1, wherein control is performed to increase the flow rate of air in advance. 迂回煙道にガスの流路を開閉する開閉弁を介装し、ガス化炉内のガス圧またはガス化炉のガス排出口での一酸化炭素濃度の測定値が所定値を越えた時、前記開閉弁を閉じる制御を行うことを特徴とする請求項2記載のごみガス化溶融装置。An on-off valve that opens and closes the gas flow path in the bypass flue is interposed, and when the gas pressure in the gasifier or the measured value of the carbon monoxide concentration at the gas outlet of the gasifier exceeds a predetermined value, 3. The refuse gasification and melting apparatus according to claim 2, wherein control for closing the on-off valve is performed.
JP2003072052A 2003-03-17 2003-03-17 Waste gasifying and melting device Pending JP2004278941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072052A JP2004278941A (en) 2003-03-17 2003-03-17 Waste gasifying and melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072052A JP2004278941A (en) 2003-03-17 2003-03-17 Waste gasifying and melting device

Publications (1)

Publication Number Publication Date
JP2004278941A true JP2004278941A (en) 2004-10-07

Family

ID=33288348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072052A Pending JP2004278941A (en) 2003-03-17 2003-03-17 Waste gasifying and melting device

Country Status (1)

Country Link
JP (1) JP2004278941A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133660A (en) * 2008-12-05 2010-06-17 Nippon Steel Engineering Co Ltd Combustion control method of combustion chamber of waste melting treatment facility
JP2012516938A (en) * 2009-02-03 2012-07-26 シーメンス アクチエンゲゼルシヤフト Method and apparatus for controlling carbon monoxide emissions in an electric arc furnace
JP2014142156A (en) * 2013-01-25 2014-08-07 Kazunobu Sanada Incinerator for garbage or the like
CN112594711A (en) * 2020-12-08 2021-04-02 首钢集团有限公司 System and process for removing CO in sintering tail gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133660A (en) * 2008-12-05 2010-06-17 Nippon Steel Engineering Co Ltd Combustion control method of combustion chamber of waste melting treatment facility
JP2012516938A (en) * 2009-02-03 2012-07-26 シーメンス アクチエンゲゼルシヤフト Method and apparatus for controlling carbon monoxide emissions in an electric arc furnace
JP2014142156A (en) * 2013-01-25 2014-08-07 Kazunobu Sanada Incinerator for garbage or the like
CN112594711A (en) * 2020-12-08 2021-04-02 首钢集团有限公司 System and process for removing CO in sintering tail gas

Similar Documents

Publication Publication Date Title
JP4474429B2 (en) Waste incinerator and incineration method
JP2004278941A (en) Waste gasifying and melting device
JP3963925B2 (en) Secondary combustion method and apparatus in incineration system
JP4833270B2 (en) Operation control device for gasification melting furnace
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
JP3973071B2 (en) Gasification melting furnace
JP3944389B2 (en) Combustion air volume control system in pyrolysis gasification melting furnace
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP2004132648A (en) Combustion control method and combustion control device for gasification melting furnace
WO2021131089A1 (en) Exhaust gas treatment device for electric furnace
JP4966743B2 (en) Operation method and operation control apparatus for gasification melting furnace
JP4056189B2 (en) Exhaust gas treatment method and exhaust gas treatment device
JP5177839B2 (en) Exhaust gas treatment equipment for melting furnace
JP2005233501A (en) Combustion control method and waste treatment equipment
JP3461457B2 (en) Waste treatment equipment
JP2004271039A (en) Thermal decomposition gasifying melting system
JP4015887B2 (en) Method for treating molten exhaust gas
JP3916759B2 (en) Heat medium pressure control device for pyrolysis reactor
JPH11241815A (en) Waste gas treating method upon emergency stop of waste treating facility
JPH09229324A (en) Waste treatment device and operation method for the device
JP3621792B2 (en) Combustion control method for waste melting furnace generated gas combustion furnace
JP2000111030A (en) Refuse gasifying furnace and gasifying and melting apparatus
JP4233212B2 (en) High-temperature swirl combustion method and waste treatment apparatus
JP2004271085A (en) Waste treatment device