JP2004278581A - Constant flow valve - Google Patents

Constant flow valve Download PDF

Info

Publication number
JP2004278581A
JP2004278581A JP2003068031A JP2003068031A JP2004278581A JP 2004278581 A JP2004278581 A JP 2004278581A JP 2003068031 A JP2003068031 A JP 2003068031A JP 2003068031 A JP2003068031 A JP 2003068031A JP 2004278581 A JP2004278581 A JP 2004278581A
Authority
JP
Japan
Prior art keywords
valve
support member
flow path
constant flow
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003068031A
Other languages
Japanese (ja)
Other versions
JP4348972B2 (en
Inventor
Ryoichi Koga
良一 古閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003068031A priority Critical patent/JP4348972B2/en
Publication of JP2004278581A publication Critical patent/JP2004278581A/en
Application granted granted Critical
Publication of JP4348972B2 publication Critical patent/JP4348972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable constant flow valve preventing generation of noise even when controlling flow in a region of a considerably small flow rate. <P>SOLUTION: A throttle channel 16 which makes communication between an outer periphery of a valve disc 12 and a channel 14 of a support member 13 from an outer periphery toward a center is arranged to an abut surface between the valve disc 12 provided so as to have a predetermined gap with respect to an inner diameter of piping 11 and the support member 13 elastically supporting the valve disc 12 and having the channel 14 in the vicinity of its center. A length in a flowing direction of the throttle channel 16 is ensured, and a pressure drop is generated in the length. Therefore, in a flow rate setting, by adjusting the length of the throttle channel 16, stable control is enabled even when the flow control is performed in the region of a considerably small flow rate. Further, since the pressure drop is generated slowly, the noise such as cavitation is not generated, whereby an operating characteristic becomes excellent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、給水源と直結して使用する温水洗浄便座などの機器における定流量弁に関するもので、特に定流量の特性が少ない流量設定に適するものである。
【0002】
【従来の技術】
従来、温水洗浄便座など給水源と直結して使用する機器においては、給水源の元圧変動による吐出流量の変化を抑えるため、定流量弁が組み込まれている(例えば、特許文献1参照)。
【0003】
この定流量弁は、図22、図23に示すように、器状の弁体1と、弁体1と当接する支持部材2、および弁体1と支持部材2の間に挿入されるスプリング3から主として構成されている。そして、弁体1の側壁部にはスリット4よる絞り流路が構成され、流体圧力によりスリット4の面積を徐々に変化させ、定流量特性が出せるようにしている。すなわち、このスリット4による絞り流路は、低圧動作時に面積が多く、高圧動作時に面積が小さな領域で動作するよう設定されているため、流体圧力上昇に対応して流路面積が減少され、流体圧力の変動による流量変化を抑え、定流量特性を発揮するものであった。
【0004】
【特許文献1】
実用新案登録第2596767号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の定流量弁は、簡単な構成で形状も小さく、簡易的な流量制御の目的のために、広く使用されているが、給水源の元圧が0.75MPaで流量を1.5L/min以下に制御するような場合、すなわち、非常に流量が少ない領域で流量制御する場合、流体の通過する隙間は0.1mm程度のオーダて制御する必要があるが、構成上、1mmのオーダで精度保証することは困難であり、流量のバラツキが大きいという課題があった。また、元圧が0.75MPaで流量を1.5L/min以下に絞る場合、絞り量が非常に大きくなり、絞り部分でキャビテーションなど流体の不安定現象が発生しやすく、通水騒音が発生する課題があった。
【0006】
本発明は、前記従来の課題を解決するもので、非常に流量が少ない領域で流量制御する場合でも、安定しかつ騒音発生のない定流量弁を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明の定流量弁は、配管の内径に対して所定の隙間を有して設けた弁体と、弁体を弾性支持し、かつ中央付近に流路を有する支持部材との当接面間に、外周より中心に向けて弁体の外周と支持部材の流路とを連通させる絞り流路を構成したものである。
【0008】
これにより、絞り流路の流れ方向の長さが確保され、この長さの中で圧力降下も生ずるため、流量設定はこの絞り流路の長さを調整することにより、非常に流量が少ない領域で流量制御する場合でも、安定して制御することが可能であり、また圧力降下がゆっくりと生ずるためキャビテーションなど騒音発生もなく動作特性の優れた定流量弁が得られる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、給水源と直結して使用する機器に内蔵され給水源と接続された配管と、この配管の内径に対して所定の隙間を有して設けた弁体と、この弁体の後流側の配管内にあり、流れ方向に力を受ける弁体を弾性支持し、かつ中央付近に流路を有する支持部材とを備え、前記弁体と支持部材との当接面間に、外周より中心に向けて弁体の外周と支持部材の流路とを連通させる絞り流路を構成した定流量弁とすることにより、絞り流路の流れ方向の長さが確保され、この長さの中で圧力降下も生ずるため、流量設定はこの絞り流路の長さを調整することにより、非常に流量が少ない領域で流量制御する場合でも、安定して制御することが可能であり、また圧力降下がゆっくりと生ずるためキャビテーションなど騒音発生もなく動作特性の優れた定流量弁が得られる。
【0010】
請求項2に記載の発明は、弁体と支持部材とのいずれか一方の当接面に、外周より中心に向けて凹み部を設けて他の当接面との間に絞り流路を構成した請求項1に記載の定流量弁とすることにより、絞り流路を簡単に構成でき、動作特性の優れた定流量弁が得られる。
【0011】
請求項3に記載の発明は、絞り流路の流れ方向の長さを、絞り流路の断面の有効長さより長くした請求項1または2に記載の定流量弁とすることにより、より安定した流量制御と、キャビテーションなどの騒音抑制が可能で、動作特性の優れた定流量弁が得られる。
【0012】
請求項4に記載の発明は、弁体と支持部材とのいずれか一方の当接面に、支持部材の流路を囲み、外周に達する一対の突起を設けて他の当接面間に弁体の外周と支持部材の流路とを連通させる絞り流路を構成した請求項1に記載の定流量弁とすることにより、流体圧力により突起部分が変位するため、初期変位量が大きくとれ、定流量弁の立ち上がり特性を改善することができる。また突起により、高圧部と低圧部とが仕切られシールすることになるため、確実にシールされ定流量弁を安定して動作させることができる。
【0013】
請求項5に記載の発明は、絞り流路内に、さらに弁体の外周と支持部材の流路とを連通させる溝を形成した請求項4に記載の定流量弁とすることにより、突起の変位による絞り流路の絞りと、突起が完全に変位した後は、溝で絞りを形成する2段の絞りができ、立ち上がり特性の改善は変位しやすい突起の変位で対応し、高圧時の安定動作は溝による絞りで安定して動作させるものである。
【0014】
請求項6に記載の発明は、突起の形状を先端の幅が小さく、根本の形状の幅を大きく設定した請求項4〜6のいずれか1項に記載の定流量弁とすることにより、低圧時に突起の変位量を大きくでき、定流量弁の立ち上がり特性をさらに改善したものである。
【0015】
請求項7に記載の発明は、溝の断面積より絞り流路の断面積を大きく設定した請求項5または6に記載の定流量弁とすることにより、絞り流路の断面積が多く必要な定流量弁の立ち上がり特性が良くなり、さらに、高圧時の安定性もよい定流量弁を構成することができる。
【0016】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0017】
(実施例1)
図1〜図3は本発明の実施例1における定流量弁を示すものである。
【0018】
図において、10は温水洗浄便座などの機器に直結した給水源を示す。11は前記機器に内蔵され、給水源10と接続された配管である。配管11には、配管11の内径に対して側壁が所定の隙間を有する器状の弁体12と、この弁体12の後流側の配管11内に流れ方向に力を受ける弁体12を弾性支持する円板状の支持部材13とを備えている。支持部材13はゴムなどの弾性体で形成され、中央付近に流路14を有するものであり、配管11に設けられた固定部15により配管11内に固定されている。
【0019】
そして、前記弁体11の外底面と支持部材13の上面との当接面間には、外周より中心に向けて弁体11の外周と支持部材13の流路14とを連通させる絞り流路17を構成している。この絞り流路17は、本実施例では、弁体12の外底面である支持部材13との当接面に、弁体12の外周より弁体12の中心を通って凹み部16を横断するように設けて構成している。また、絞り流路17は、その流れ方向の長さLを、絞り流路17の断面の有効長さWより長く設定しているものである。
【0020】
以上のように構成された定流量弁について、以下その動作、作用について説明する。
【0021】
まず、給水源10より供給された水は、配管11と弁体12の側壁との隙間を通って弁体12の凹み部16と支持部材13とで構成される絞り流路17を通過し、流路14より配管11をさらに流れて行く。給水源10の圧力が上昇すると、弁体12に作用する流体圧力が上昇するため、弁体12が支持部材13に圧接する力が強くなり、支持部材13が弾性変形する。これにより、支持部材13の一部が、弁体12の凹み部16に変形して入り込み、絞り流路17の流路面積が減少する。絞り流路17の流路面積が減少すると、絞り流路17の圧力損失が大きくなり、給水源10の圧力が高くなっても、流量は一定になるよう制御される。
【0022】
定流量弁での減圧は、主としてこの絞り流路17で生ずるが、絞り流路17の流れ方向の長さが確保され、この長さの中で圧力降下も生ずるため、流量設定はこの絞り流路17の長さを調整することにより、非常に流量が少ない領域で流量制御する場合でも、安定して制御することが可能であり、また圧力降下がゆっくりと生ずるためキャビテーションなど騒音発生もなく動作特性の優れた定流量弁が得られる。特に、絞り流路17が断面の有効長さWより、流れ方向の長さLを長く設定しているため、より安定した流量制御と、キャビテーションなどの騒音抑制が可能で、動作特性の優れた定流量弁が得られる。
【0023】
このように、本実施例では、従来例における課題を解決し、非常に流量が少ない領域で流量制御する場合でも、安定しかつ騒音発生のない定流量弁を提供するすることができる。
【0024】
(実施例2)
次に、図4〜図6により本発明の実施例2における定流量弁について説明する。実施例1との相違は、絞り流路17の構成の仕方にあり、他は同じである。
【0025】
すなわち、本実施例では、支持部材13の弁体12との当接面に、支持部材13の外周より支持部材13の中心を通って凹み部16を横断するように設けて絞り流路17を構成しているものである。実施例1とは、凹み部16を設ける部材が逆である。
【0026】
以上のように構成された定流量弁は、給水源10の圧力上昇により、支持部材13が弾性変形して、支持部材13の凹み部16の断面積が減少し、絞り流路17の流路面積が減少する。これにより、実施例1と同様、流量は一定になるよう制御されるものである。
【0027】
(実施例3)
次に、図7〜図9により本発明の実施例3における定流量弁について説明する。実施例1との相違は、絞り流路17の構成の仕方にあり、他は同じである。
【0028】
すなわち、本実施例では、弁体12の外底面である支持部材13との当接面に、支持部材13の流路14を囲み、外周に達する一対の円弧状の突起19を設け、これにより、支持部材13の当接面との間に弁体12の外周と支持部材13の流路14とを連通させる絞り流路17を構成したものである。さらに説明すると、円弧状の突起19の両端部は、平行して対向しており、ここに絞り流路17が構成されているものである。
【0029】
以上のように構成された定流量弁は、給水源10の圧力上昇により、弁体12に作用する流体圧力が上昇するため、弁体12が支持部材13に圧接する力が強くなり、一対の突起19の圧接で支持部材13が弾性変位する。その結果、弁体12に設けた突起19と支持部材13が圧接することで構成される絞り流路17の断面積が減少する。これにより、実施例1と同様、流量は一定になるよう制御されるものである。
【0030】
また、本実施例では、流体圧力により突起19が支持部材13の中に入り込み突起19部分が変位するため、初期変位量が大きくとれ、定流量弁の立ち上がり特性を改善することができる。さらに、突起19により高圧部と低圧部とが仕切られシールすることになるため、確実にシールされ定流量弁を安定して動作させることができるものである。
【0031】
(実施例4)
次に、図10〜図12により本発明の実施例4における定流量弁について説明する。実施例3との相違は、絞り流路17の構成の仕方にあり、他は同じである。
【0032】
すなわち、本実施例では、支持部材13の弁体12との当接面に、支持部材13の流路14を囲み、外周に達する一対の円弧状の突起19を設け、これにより、弁体12の当接面との間に弁体12の外周と支持部材13の流路14とを連通させる絞り流路17を構成したものである。実施例3とは、突起19を設ける部材が逆である。
【0033】
以上のように構成された定流量弁は、給水源10の圧力上昇により、弁体12に作用する流体圧力が上昇するため、弁体12が支持部材13に圧接する力が強くなり、一対の突起19自体が弾性変位する。その結果、絞り流路17の断面積が減少し、実施例1と同様、流量は一定になるよう制御されるものである。
【0034】
また、、本実施例では、流体圧力により突起19自体が弾性変位するため、実施例3と同様、定流量弁の立ち上がり特性の改善とシール効果が得られるものである。
【0035】
(実施例5)
次に、図13〜図15により本発明の実施例5における定流量弁について説明する。実施例3との相違は、弁体12に設けた一対の突起19の内側、すなわち、絞り流路17内に、さらに弁体12の外周と支持部材13の流路14とを連通させる溝20を形成し、この溝20の流れ方向の長さLを、溝20の断面の有効長さWより長くしたことにある。他は同じである。
【0036】
以上のように構成された定流量弁は、給水源10の圧力上昇により、弁体12に作用する流体圧力が上昇するため、弁体12が支持部材13に圧接する力が強くなり、一対の突起19の圧接で支持部材13が弾性変位する。その結果、弁体12に設けた突起19と支持部材13が圧接することで構成される絞り流路17の断面積が減少する。これにより、実施例1と同様、流量は一定になるよう制御されるものである。
【0037】
さらに、給水源10の圧力が上昇すると、弁体12の一対の突起19は支持部材13への受圧面積が小さいため、低圧領域でも比較的容易に変位し、支持部材13の中に吸収され、絞り流路17の面積はほぼ零となり、絞り流路17は閉塞される。この所定の圧力以後は、一対の突起19の内側に設けた、溝20が第2の絞り流路として機能する。この溝20は、高圧時の流路面積の変化は少ないが、流路断面の有効長さWに対して、流れ方向の長さLを長く設定しているため、第2の絞り流路の長さで圧力を低減して流量制御を行い、絞り作用の安定化を実現し、またキャビテーションなどの騒音を防止することができる。
【0038】
(実施例6)
次に、図16〜図18により本発明の実施例6における定流量弁について説明する。実施例4との相違は、支持部材13に設けた一対の突起19の内側、すなわち、絞り流路17内に、さらに弁体12の外周と支持部材13の流路14とを連通させる溝20を形成し、この溝20の流れ方向の長さLを、溝20の断面の有効長さWより長くしたことにある。他は同じである。
【0039】
以上のように構成された定流量弁は、給水源10の圧力上昇により、弁体12に作用する流体圧力が上昇するため、弁体12が支持部材13に圧接する力が強くなり、一対の突起19自体が弾性変位する。その結果、支持部材13に設けた突起19と弁体12が圧接することで構成される絞り流路17の断面積が減少する。これにより、実施例1と同様、流量は一定になるよう制御されるものである。
【0040】
さらに、給水源10の圧力が上昇することによる、絞り流路17と、第2の絞り流路として機能する溝20との動作、作用は実施例5と同様である。
【0041】
(実施例7)
次に、図19、図20により本発明の実施例7における定流量弁について説明する。
【0042】
本実施例においては、弁体12あるいは支持部材13に設ける突起19の形状を、先端の幅が小さく、根本の形状の幅を大きく設定したものである。図19は弁体12の突起19の断面形状を半円状とした例を示し、図20は同じく突起19の断面形状を台形状とした例を示している。しかし、前記趣旨に沿う突起形状であれば、例示以外の形状であっても何ら構わない。
【0043】
以上のように構成された定流量弁は、その突起19の形状により、低圧時に弁体12が変位する時のシール性を確保し、高圧時には突起19が根本側で幅を大きく設定しているため、変位量が抑えられて、定流量特性を改善することができるものである。特に、低圧時に突起19の変位量を大きくでき、定流量弁の立ち上がり特性をさらに改善したものである。
【0044】
(実施例8)
次に、図21により本発明の実施例8における定流量弁について説明する。
【0045】
本実施例では、実施例5、6における溝20の断面積Saより、絞り流路17の断面積Sbを大きく設定したものである。
【0046】
以上のように構成された定流量弁における流量面積の変化を、図の構成の場合で説明すると、絞り流路17の断面積Sbと溝20の断面積Saの和が初期値となり、立ち上がり特性が良くなる。また、水道元圧が低圧時は、流路面積の変化は主として断面積Sbで生じ、断面積Sbの通路面積の変化は一対の突起19と支持部材13で生ずるため、バネ定数は低く、圧力の変化により断面積Sbは大きく変化し、低圧時の定流量特性を確保することができる。また、断面積Saの変化は高圧時にも少なく、安定して流量制御を行うことができる。また、断面積Sbが断面積Saよりも大きな構成となっているため、低圧時の圧力損失の低下と高圧時の定流量特性の安定化が実現できる。
【0047】
【発明の効果】
以上のように、本発明の定流量弁によれば、配管の内径に対して所定の隙間を有して設けた弁体と、弁体を弾性支持し、かつ中央付近に流路を有する支持部材との当接面間に、外周より中心に向けて弁体の外周と支持部材の流路とを連通させる絞り流路を構成したものであり、絞り流路の流れ方向の長さが確保され、この長さの中で圧力降下も生ずるため、流量設定はこの絞り流路の長さを調整することにより、非常に流量が少ない領域で流量制御する場合でも、安定して制御することが可能であり、また圧力降下がゆっくりと生ずるためキャビテーションなど騒音発生もなく動作特性の優れた定流量弁が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1における定流量弁の断面図
【図2】同定流量弁の弁体を示す平面図
【図3】同弁体の側面図
【図4】本発明の実施例2における定流量弁の断面図
【図5】同定流量弁の支持部材を示す平面図
【図6】同支持部材の側面図
【図7】本発明の実施例3における定流量弁の断面図
【図8】同定流量弁の弁体を示す平面図
【図9】同弁体の側面図
【図10】本発明の実施例4における定流量弁の断面図
【図11】同定流量弁の支持部材を示す平面図
【図12】同支持部材の側面図
【図13】本発明の実施例5における定流量弁の断面図
【図14】同定流量弁の弁体を示す平面図
【図15】同弁体の側面図
【図16】本発明の実施例6における定流量弁の断面図
【図17】同定流量弁の支持部材を示す平面図
【図18】同支持部材の側面図
【図19】本発明の実施例7における定流量弁の突起形状を示す断面図
【図20】同他の突起形状を示す断面図
【図21】本発明の実施例8における定流量弁の絞り流路の説明図
【図22】従来の定流量弁示す断面図
【図23】同定流量弁の弁体を示す斜視図
【符号の説明】
10 給水源
11 配管
12 弁体
13 支持部材
14 流路
16 凹み部
17 絞り流路
19 突起
20 溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a constant flow valve in a device such as a hot water flush toilet seat that is used in direct connection with a water supply source, and is particularly suitable for a flow setting with a small constant flow characteristic.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in equipment used in direct connection with a water supply source such as a hot water flush toilet seat, a constant flow valve is incorporated in order to suppress a change in a discharge flow rate due to a change in a source pressure of the water supply source (for example, see Patent Document 1).
[0003]
As shown in FIGS. 22 and 23, the constant flow valve includes a container-shaped valve 1, a support member 2 in contact with the valve 1, and a spring 3 inserted between the valve 1 and the support member 2. Mainly consisting of A throttle flow path is formed by a slit 4 on the side wall of the valve element 1, and the area of the slit 4 is gradually changed by the fluid pressure so that a constant flow characteristic can be obtained. That is, since the throttle channel formed by the slit 4 is set to operate in a region having a large area at the time of low-pressure operation and a small area at the time of high-pressure operation, the channel area is reduced in response to a rise in fluid pressure, and The flow rate change due to the pressure fluctuation was suppressed, and the constant flow rate characteristics were exhibited.
[0004]
[Patent Document 1]
Japanese Utility Model Registration No. 2596767
[Problems to be solved by the invention]
However, the conventional constant flow valve has a simple configuration and a small shape, and is widely used for the purpose of simple flow control. However, when the source pressure of the water supply source is 0.75 MPa and the flow rate is 1. In the case where the flow rate is controlled to 5 L / min or less, that is, when the flow rate is controlled in a region where the flow rate is extremely small, the gap through which the fluid passes needs to be controlled on the order of about 0.1 mm. It is difficult to guarantee the accuracy on the order, and there is a problem that the flow rate varies widely. When the original pressure is 0.75 MPa and the flow rate is reduced to 1.5 L / min or less, the amount of restriction is very large, and unstable phenomena such as cavitation are likely to occur in the restricted portion, and water flow noise is generated. There were challenges.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a constant flow valve which is stable and does not generate noise even when the flow rate is controlled in a region where the flow rate is extremely small.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the constant flow valve of the present invention has a valve element provided with a predetermined gap with respect to the inner diameter of the pipe, the valve element elastically supports the valve element, and has a flow path near the center. A throttle flow path is provided between the contact surface with the support member and communicates the flow path of the support member with the outer circumference of the valve body from the outer circumference toward the center.
[0008]
As a result, the length of the throttle channel in the flow direction is ensured, and a pressure drop also occurs within this length. Therefore, the flow rate is set by adjusting the length of the throttle channel so that the flow rate is extremely small. In the case of controlling the flow rate by using the above method, stable control can be performed, and a constant flow rate valve having excellent operation characteristics without noise such as cavitation can be obtained because the pressure drop occurs slowly.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a pipe which is built in a device directly connected to a water supply source and is connected to the water supply source, a valve body provided with a predetermined gap with respect to the inner diameter of the pipe, A support member, which is provided in a pipe on the downstream side of the valve body and elastically supports the valve body that receives a force in the flow direction, and has a flow passage near the center thereof, wherein the valve body contacts the support member. By providing a constant flow valve between the surfaces, which constitutes a throttle flow path that connects the outer circumference of the valve body and the flow path of the support member toward the center from the outer circumference, the flow direction length of the throttle flow path is ensured. Since the pressure drop occurs within this length, the flow rate can be controlled stably by adjusting the length of the throttle flow path, even when controlling the flow rate in an area where the flow rate is extremely small. In addition, since the pressure drop occurs slowly, it operates without generating noise such as cavitation. Excellent constant flow valve characteristics can be obtained.
[0010]
According to the second aspect of the present invention, one of the contact surfaces of the valve element and the support member is provided with a recess toward the center from the outer periphery to form a throttle channel between the other contact surface. With the constant flow valve according to the first aspect of the present invention, the throttle flow path can be simply configured, and a constant flow valve with excellent operation characteristics can be obtained.
[0011]
According to a third aspect of the present invention, the flow rate of the throttle channel in the flow direction is made longer than the effective length of the cross section of the throttle channel, thereby providing the constant flow valve according to the first or second aspect. It is possible to control the flow rate and suppress noise such as cavitation, and obtain a constant flow rate valve with excellent operation characteristics.
[0012]
According to a fourth aspect of the present invention, one of the contact surfaces of the valve element and the support member surrounds the flow path of the support member and is provided with a pair of projections reaching the outer periphery. The constant flow valve according to claim 1, wherein the restricting flow path communicates the outer periphery of the body with the flow path of the support member, the projection portion is displaced by fluid pressure, so that a large initial displacement amount can be obtained. The rising characteristics of the constant flow valve can be improved. In addition, the high pressure section and the low pressure section are separated and sealed by the projection, so that the constant flow rate valve can be stably operated by being reliably sealed.
[0013]
According to a fifth aspect of the present invention, the constant flow valve according to the fourth aspect further includes a groove formed in the throttle flow path to communicate the outer periphery of the valve body and the flow path of the support member. After the protrusion is completely displaced by the displacement, the diaphragm becomes a two-stage diaphragm that forms a diaphragm with a groove. The rise characteristics are improved by the displacement of the easily displaceable protrusion, and stable at high pressure. The operation is to stably operate with the aperture by the groove.
[0014]
According to a sixth aspect of the present invention, the constant flow valve according to any one of the fourth to sixth aspects, wherein the shape of the protrusion is set to have a small width at the tip and a large width at the root, thereby reducing the pressure. In some cases, the amount of displacement of the projection can be increased, and the rising characteristics of the constant flow valve are further improved.
[0015]
According to a seventh aspect of the present invention, the cross-sectional area of the throttle channel is set to be larger than the cross-sectional area of the groove. The rising characteristics of the constant flow valve are improved, and a constant flow valve with good stability at high pressure can be configured.
[0016]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
(Example 1)
1 to 3 show a constant flow valve according to a first embodiment of the present invention.
[0018]
In the figure, reference numeral 10 denotes a water supply source directly connected to a device such as a warm water flush toilet seat. Reference numeral 11 denotes a pipe built in the equipment and connected to the water supply source 10. The pipe 11 includes a vessel-shaped valve body 12 having a predetermined gap in the side wall with respect to the inner diameter of the pipe 11, and a valve body 12 that receives a force in the flow direction in the pipe 11 on the downstream side of the valve body 12. And a disk-shaped support member 13 for elastically supporting. The support member 13 is formed of an elastic body such as rubber, has a flow path 14 near the center, and is fixed in the pipe 11 by a fixing portion 15 provided in the pipe 11.
[0019]
A throttle channel that connects the outer periphery of the valve body 11 and the flow path 14 of the support member 13 from the outer periphery toward the center between the contact surfaces between the outer bottom surface of the valve body 11 and the upper surface of the support member 13. 17. In this embodiment, the throttle channel 17 traverses the recess 16 through the center of the valve body 12 from the outer periphery of the valve body 12 on the contact surface with the support member 13 which is the outer bottom surface of the valve body 12. It is configured in such a manner. The throttle channel 17 has a length L in the flow direction longer than the effective length W of the cross section of the throttle channel 17.
[0020]
The operation and operation of the constant flow valve configured as described above will be described below.
[0021]
First, water supplied from the water supply source 10 passes through a gap between the pipe 11 and the side wall of the valve body 12, passes through a throttle flow path 17 formed by the concave portion 16 of the valve body 12 and the support member 13, It flows further through the pipe 11 from the flow path 14. When the pressure of the water supply source 10 increases, the fluid pressure acting on the valve body 12 increases, so that the force with which the valve body 12 presses against the support member 13 increases, and the support member 13 is elastically deformed. As a result, a part of the support member 13 is deformed and enters the concave portion 16 of the valve body 12, and the flow path area of the throttle flow path 17 decreases. When the flow path area of the throttle flow path 17 decreases, the pressure loss in the throttle flow path 17 increases, and the flow rate is controlled to be constant even when the pressure of the water supply source 10 increases.
[0022]
Although the pressure reduction by the constant flow valve mainly occurs in the throttle flow path 17, the flow direction of the throttle flow path 17 is secured, and a pressure drop occurs within this length. By adjusting the length of the passage 17, even when the flow rate is controlled in an area where the flow rate is extremely small, it is possible to control the flow rate stably, and the pressure drop occurs slowly, so that there is no noise such as cavitation. A constant flow valve with excellent characteristics can be obtained. In particular, since the throttle channel 17 is set to have a length L in the flow direction longer than the effective length W of the cross section, more stable flow control and suppression of noise such as cavitation are possible, and the operation characteristics are excellent. A constant flow valve is obtained.
[0023]
As described above, the present embodiment can solve the problem in the conventional example, and can provide a constant flow valve that is stable and does not generate noise even when the flow rate is controlled in a region where the flow rate is extremely small.
[0024]
(Example 2)
Next, a constant flow valve according to a second embodiment of the present invention will be described with reference to FIGS. The difference from the first embodiment lies in the configuration of the throttle channel 17, and is otherwise the same.
[0025]
That is, in the present embodiment, the throttle channel 17 is provided on the contact surface of the support member 13 with the valve body 12 so as to cross the recess 16 through the center of the support member 13 from the outer periphery of the support member 13. What constitutes. The first embodiment is different from the first embodiment in the member provided with the concave portion 16.
[0026]
In the constant flow valve configured as described above, the supporting member 13 is elastically deformed by the increase in the pressure of the water supply source 10, the cross-sectional area of the concave portion 16 of the supporting member 13 is reduced, The area is reduced. Thus, similarly to the first embodiment, the flow rate is controlled to be constant.
[0027]
(Example 3)
Next, a constant flow valve according to a third embodiment of the present invention will be described with reference to FIGS. The difference from the first embodiment lies in the configuration of the throttle channel 17, and is otherwise the same.
[0028]
That is, in the present embodiment, a pair of arc-shaped projections 19 that surround the flow path 14 of the support member 13 and reach the outer periphery are provided on the contact surface of the valve body 12 with the support member 13 which is the outer bottom surface. A throttle channel 17 is provided between the contact surface of the support member 13 and the outer periphery of the valve body 12 and the channel 14 of the support member 13. More specifically, both ends of the arc-shaped projection 19 are opposed to each other in parallel, and the throttle channel 17 is formed here.
[0029]
In the constant flow valve configured as described above, the fluid pressure acting on the valve body 12 increases due to the increase in the pressure of the water supply source 10, so that the force with which the valve body 12 comes into pressure contact with the support member 13 increases. The support member 13 is elastically displaced by the pressing of the projection 19. As a result, the cross-sectional area of the throttle channel 17 formed by pressing the projection 19 provided on the valve body 12 and the support member 13 is reduced. Thus, similarly to the first embodiment, the flow rate is controlled to be constant.
[0030]
Further, in this embodiment, since the projection 19 enters the support member 13 due to the fluid pressure and the projection 19 is displaced, the initial displacement amount can be increased, and the rising characteristic of the constant flow valve can be improved. Further, since the high pressure portion and the low pressure portion are partitioned and sealed by the projection 19, the sealing is reliably performed, and the constant flow valve can be operated stably.
[0031]
(Example 4)
Next, a constant flow valve according to a fourth embodiment of the present invention will be described with reference to FIGS. The difference from the third embodiment lies in the configuration of the throttle channel 17, and is otherwise the same.
[0032]
That is, in the present embodiment, a pair of arc-shaped projections 19 that surround the flow path 14 of the support member 13 and reach the outer periphery are provided on the contact surface of the support member 13 with the valve body 12. Between the contact surface of the valve member 12 and the flow path 14 of the support member 13. The third embodiment is different from the third embodiment in the member on which the protrusion 19 is provided.
[0033]
In the constant flow valve configured as described above, the fluid pressure acting on the valve body 12 increases due to the increase in the pressure of the water supply source 10, so that the force with which the valve body 12 comes into pressure contact with the support member 13 increases. The projection 19 elastically displaces. As a result, the cross-sectional area of the throttle passage 17 is reduced, and the flow rate is controlled to be constant as in the first embodiment.
[0034]
Further, in the present embodiment, since the protrusion 19 itself is elastically displaced by the fluid pressure, as in the third embodiment, the improvement of the rising characteristic of the constant flow valve and the sealing effect can be obtained.
[0035]
(Example 5)
Next, a constant flow valve according to a fifth embodiment of the present invention will be described with reference to FIGS. The difference from the third embodiment is that a groove 20 for communicating the outer periphery of the valve body 12 and the flow path 14 of the support member 13 inside the pair of projections 19 provided on the valve body 12, that is, in the throttle flow path 17. Is formed, and the length L of the groove 20 in the flow direction is longer than the effective length W of the cross section of the groove 20. Others are the same.
[0036]
In the constant flow valve configured as described above, the fluid pressure acting on the valve body 12 increases due to the increase in the pressure of the water supply source 10, so that the force with which the valve body 12 comes into pressure contact with the support member 13 increases. The support member 13 is elastically displaced by the pressing of the projection 19. As a result, the cross-sectional area of the throttle channel 17 formed by pressing the projection 19 provided on the valve body 12 and the support member 13 is reduced. Thus, similarly to the first embodiment, the flow rate is controlled to be constant.
[0037]
Further, when the pressure of the water supply source 10 rises, the pair of projections 19 of the valve body 12 have a small pressure receiving area on the support member 13, and therefore are relatively easily displaced even in a low-pressure region, and are absorbed in the support member 13. The area of the throttle channel 17 becomes substantially zero, and the throttle channel 17 is closed. After this predetermined pressure, the groove 20 provided inside the pair of projections 19 functions as a second throttle channel. Although the groove 20 has a small change in the flow path area at high pressure, the length L in the flow direction is set to be longer than the effective length W of the flow path cross section. By controlling the flow rate by reducing the pressure by the length, it is possible to stabilize the throttling action and to prevent noise such as cavitation.
[0038]
(Example 6)
Next, a constant flow valve according to a sixth embodiment of the present invention will be described with reference to FIGS. The difference from the fourth embodiment is that a groove 20 for communicating the outer periphery of the valve body 12 and the flow path 14 of the support member 13 inside the pair of projections 19 provided on the support member 13, that is, in the throttle flow path 17. Is formed, and the length L of the groove 20 in the flow direction is longer than the effective length W of the cross section of the groove 20. Others are the same.
[0039]
In the constant flow valve configured as described above, the fluid pressure acting on the valve body 12 increases due to the increase in the pressure of the water supply source 10, so that the force with which the valve body 12 comes into pressure contact with the support member 13 increases. The projection 19 elastically displaces. As a result, the cross-sectional area of the throttle channel 17 formed by pressing the projection 19 provided on the support member 13 and the valve body 12 is reduced. Thus, similarly to the first embodiment, the flow rate is controlled to be constant.
[0040]
Further, the operation and action of the throttle channel 17 and the groove 20 functioning as the second throttle channel when the pressure of the water supply source 10 increases are the same as those in the fifth embodiment.
[0041]
(Example 7)
Next, a constant flow valve according to a seventh embodiment of the present invention will be described with reference to FIGS.
[0042]
In this embodiment, the shape of the projection 19 provided on the valve body 12 or the support member 13 is such that the width of the tip is small and the width of the root shape is large. 19 shows an example in which the cross-sectional shape of the projection 19 of the valve body 12 is semicircular, and FIG. 20 shows an example in which the cross-sectional shape of the projection 19 is also trapezoidal. However, any shape other than the illustrated one may be used as long as the shape is a projection along the above-mentioned purpose.
[0043]
In the constant flow valve configured as described above, the shape of the projection 19 ensures the sealing performance when the valve element 12 is displaced at low pressure, and the projection 19 has a large width on the root side at high pressure. Therefore, the displacement amount is suppressed, and the constant flow rate characteristics can be improved. In particular, the displacement of the projection 19 can be increased at low pressure, and the rising characteristic of the constant flow valve is further improved.
[0044]
(Example 8)
Next, a constant flow valve according to an eighth embodiment of the present invention will be described with reference to FIG.
[0045]
In this embodiment, the sectional area Sb of the throttle channel 17 is set to be larger than the sectional area Sa of the groove 20 in the fifth and sixth embodiments.
[0046]
The change in the flow area in the constant flow valve configured as described above will be described in the case of the configuration shown in the drawing. The sum of the cross-sectional area Sb of the throttle passage 17 and the cross-sectional area Sa of the groove 20 becomes the initial value, and the rising characteristic is obtained. Will be better. Further, when the tap water source pressure is low, the change in the flow path area mainly occurs in the cross-sectional area Sb, and the change in the passage area of the cross-sectional area Sb occurs in the pair of projections 19 and the support member 13. Therefore, the spring constant is low and the pressure is low. , The cross-sectional area Sb greatly changes, and a constant flow rate characteristic at low pressure can be secured. Further, the change in the cross-sectional area Sa is small even at high pressure, and the flow rate can be controlled stably. Further, since the cross-sectional area Sb is configured to be larger than the cross-sectional area Sa, reduction in pressure loss at low pressure and stabilization of constant flow rate characteristics at high pressure can be realized.
[0047]
【The invention's effect】
As described above, according to the constant flow valve of the present invention, a valve body provided with a predetermined gap with respect to the inner diameter of the pipe, a support that elastically supports the valve body and has a flow path near the center Between the contact surfaces with the members, a throttle flow path is formed to communicate the outer circumference of the valve body and the flow path of the support member from the outer circumference toward the center, and the length of the throttle flow path in the flow direction is ensured. Since the pressure drop occurs within this length, the flow rate can be set stably by adjusting the length of the throttle flow path, even when the flow rate is controlled in an area where the flow rate is extremely small. It is possible to obtain a constant flow valve having excellent operating characteristics without generating noise such as cavitation since the pressure drop occurs slowly.
[Brief description of the drawings]
1 is a cross-sectional view of a constant flow valve according to a first embodiment of the present invention; FIG. 2 is a plan view showing a valve body of an identification flow valve; FIG. 3 is a side view of the valve body; FIG. FIG. 5 is a plan view showing a support member of the identified flow valve. FIG. 6 is a side view of the support member. FIG. 7 is a cross-sectional view of the constant flow valve in Embodiment 3 of the present invention. FIG. 8 is a plan view showing a valve element of the identified flow valve. FIG. 9 is a side view of the valve element. FIG. 10 is a cross-sectional view of a constant flow valve according to a fourth embodiment of the present invention. FIG. 12 is a side view of the support member. FIG. 13 is a cross-sectional view of a constant flow valve according to a fifth embodiment of the present invention. FIG. 14 is a plan view showing a valve element of an identification flow valve. FIG. 16 is a side view of a valve body. FIG. 16 is a cross-sectional view of a constant flow valve according to Embodiment 6 of the present invention. FIG. 17 is a plan view showing a support member of the identified flow valve. FIG. 19 is a cross-sectional view showing a projection shape of a constant flow valve according to a seventh embodiment of the present invention. FIG. 20 is a cross-sectional view showing another projection shape. FIG. FIG. 22 is a cross-sectional view showing a conventional constant flow valve. FIG. 23 is a perspective view showing a valve element of an identification flow valve.
DESCRIPTION OF SYMBOLS 10 Water supply source 11 Piping 12 Valve element 13 Support member 14 Flow path 16 Depression 17 Restricted flow path 19 Projection 20 Groove

Claims (7)

給水源と直結して使用する機器に内蔵され給水源と接続された配管と、この配管の内径に対して所定の隙間を有して設けた弁体と、この弁体の後流側の配管内にあり、流れ方向に力を受ける弁体を弾性支持し、かつ中央付近に流路を有する支持部材とを備え、前記弁体と支持部材との当接面間に、外周より中心に向けて弁体の外周と支持部材の流路とを連通させる絞り流路を構成した定流量弁。A pipe built in equipment used directly connected to the water supply source and connected to the water supply source, a valve element provided with a predetermined gap with respect to the inner diameter of the pipe, and a pipe downstream of the valve element And a support member elastically supporting the valve body receiving a force in the flow direction, and having a flow path near the center, between the contact surfaces of the valve body and the support member, from the outer periphery toward the center. A constant flow valve that forms a throttle flow path that connects the outer periphery of the valve body to the flow path of the support member. 弁体と支持部材とのいずれか一方の当接面に、外周より中心に向けて凹み部を設けて他の当接面との間に絞り流路を構成した請求項1に記載の定流量弁。2. The constant flow rate according to claim 1, wherein a concave portion is provided on one of the contact surfaces of the valve body and the support member from the outer periphery toward the center to form a throttle channel between the contact surface and the other contact surface. valve. 絞り流路の流れ方向の長さを、絞り流路の断面の有効長さより長くした請求項1または2に記載の定流量弁。3. The constant flow valve according to claim 1, wherein a length of the throttle channel in the flow direction is longer than an effective length of a cross section of the throttle channel. 弁体と支持部材とのいずれか一方の当接面に、支持部材の流路を囲み、外周に達する一対の突起を設けて他の当接面間に弁体の外周と支持部材の流路とを連通させる絞り流路を構成した請求項1に記載の定流量弁。One of the contact surfaces of the valve element and the support member surrounds the flow path of the support member, and a pair of projections reaching the outer periphery are provided, and the outer periphery of the valve element and the flow path of the support member are provided between the other contact surfaces. The constant flow valve according to claim 1, wherein a throttle flow path configured to communicate with the valve is configured. 絞り流路内に、さらに弁体の外周と支持部材の流路とを連通させる溝を形成した請求項4に記載の定流量弁。5. The constant flow valve according to claim 4, wherein a groove for communicating the outer periphery of the valve body with the flow path of the support member is further formed in the throttle flow path. 突起の形状を先端の幅が小さく、根本の形状の幅を大きく設定した請求項4〜6のいずれか1項に記載の定流量弁。The constant flow valve according to any one of claims 4 to 6, wherein the shape of the projection has a small width at the tip and a large width at the root. 溝の断面積より絞り流路の断面積を大きく設定した請求項5または6に記載の定流量弁。7. The constant flow valve according to claim 5, wherein a sectional area of the throttle passage is set larger than a sectional area of the groove.
JP2003068031A 2003-03-13 2003-03-13 Constant flow valve Expired - Fee Related JP4348972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068031A JP4348972B2 (en) 2003-03-13 2003-03-13 Constant flow valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068031A JP4348972B2 (en) 2003-03-13 2003-03-13 Constant flow valve

Publications (2)

Publication Number Publication Date
JP2004278581A true JP2004278581A (en) 2004-10-07
JP4348972B2 JP4348972B2 (en) 2009-10-21

Family

ID=33285473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068031A Expired - Fee Related JP4348972B2 (en) 2003-03-13 2003-03-13 Constant flow valve

Country Status (1)

Country Link
JP (1) JP4348972B2 (en)

Also Published As

Publication number Publication date
JP4348972B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4798987B2 (en) Flow control valve
JP6542373B2 (en) Flow regulator unit
JP4352879B2 (en) Connector with built-in valve
US20060086397A1 (en) Insertion part for inserting into a gas or liquid line
JP4360108B2 (en) Constant flow valve
JP2007148465A (en) Pressure reducing valve
JP2004278581A (en) Constant flow valve
JP2005042919A (en) Pressure control valve
CN104565460A (en) Pressure-stabilizing valve
JPWO2006100973A1 (en) Constant flow valve
JP7390701B2 (en) constant flow valve
JP2001141083A (en) Fixed pressure regulator
JP2012021551A (en) Relief valve
JPH11325285A (en) Direct acting relief valve
JP5648180B2 (en) Pilot flow control valve device
KR101793791B1 (en) Pressure regulate valve device having a flow blocking function
JP2009250290A (en) Constant flow rate valve
JP2006010046A (en) Solenoid valve
DE60219485D1 (en) APPLICATION FOR DYNAMIC RIVER CONTROL
JP2006057819A (en) Electromagnetic proportional valve
WO2002077737A1 (en) Liquid control valve
JP5356854B2 (en) Solenoid control valve
CN214947288U (en) Wide water pressure flow stabilizer
CN113574303A (en) Expansion valve
TW200717211A (en) Variable capillary groove membrane throttle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4348972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140731

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees