JP2004278380A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2004278380A
JP2004278380A JP2003069490A JP2003069490A JP2004278380A JP 2004278380 A JP2004278380 A JP 2004278380A JP 2003069490 A JP2003069490 A JP 2003069490A JP 2003069490 A JP2003069490 A JP 2003069490A JP 2004278380 A JP2004278380 A JP 2004278380A
Authority
JP
Japan
Prior art keywords
lubricating oil
compressor
refrigerant
closed container
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003069490A
Other languages
Japanese (ja)
Inventor
Eiji Watanabe
英治 渡邊
Minoru Ishii
稔 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003069490A priority Critical patent/JP2004278380A/en
Publication of JP2004278380A publication Critical patent/JP2004278380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of generating a foaming sound and a shock by breaking through a lubricating oil phase when a refrigerant vaporized when staring a compressor passes still in large foam when a communicating hole is large when a conventional compressor has an oil shielding plate having the communicating hole in a sealed vessel. <P>SOLUTION: This compressor has a compression mechanism part and an electric motor part in the sealed vessel. The compressor sets the inside of the sealed vessel in a suction pressure atmosphere, and uses lubricating oil incompatible with the refrigerant. Foaming metal or a stainless mesh is arranged in a lubricating oil storage of a bottom part in the sealed vessel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍空調装置に用いる、圧縮機に関し、特に圧縮機起動時に底部の潤滑油から発泡する冷媒の発泡音に関するものである。
【0002】
【従来の技術】
従来の圧縮機は、圧縮要素を潤滑する潤滑油を密閉容器底部に貯留し、潤滑油を滞留させる油槽を形成するよう密閉容器の底部に固着された遮油板を備え、密閉容器内を油槽が連通する連通孔を遮油板に設け、密閉容器底部に設けた油槽内に潤滑油を封ずることにより圧縮機の再運転時に潤滑油に溶解した冷媒の発泡気化を遅延し始動負荷を軽減する(例えば、特許文献1参照。)。
【0003】
また、別の従来の圧縮機は、主軸が貫通する仕切板によって区画された上部に固定および揺動スクロールと、揺動スクロールおよび主軸の軸受とを収納し、下部に油溜めを有し、主軸に設けられた油穴により油溜めと軸受を連通させるスクロール圧縮機において、仕切板の底部に折り返しを有する穴あけ加工を施すことにより、仕切板の上面に堰を有する開口を設けた(例えば、特許文献2参照。)。
【0004】
【特許文献1】
実開平04−44485号公報(第6頁、第7頁、第1図、第2図)
【特許文献2】
実用新案第2524178号公報(第1頁〜第3頁、図1、図4)
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に示された従来の圧縮機においては、密閉容器1内に、連通孔を有した遮油板を有するが、この連通孔は孔が大きい場合、圧縮機の起動時に気化した冷媒は連通孔を大きな気泡のまま通過し、潤滑油相を突破り発泡音及び衝撃を生じさせていた。また、遮蔽板に連通孔が設けられているため、気化した大きな気泡が遮蔽板の下で破れる場合があり発泡音及び衝撃を生じさせていた。圧縮機内に貯留されている液冷媒の量が多いほど、また、密閉容器内の圧力低下速度が速いほど液冷媒の気化、発泡時に生ずる発泡音、衝撃は大きく、圧縮機の静音性、信頼性に問題が生じていた。
【0006】
また、特許文献2に示された従来の圧縮機においては、仕切板がシェルの横断面のほぼ全体に設けられているため、堰には上部の軸受を潤滑後に返油孔を経た潤滑油と吸入管からの液冷媒とが共に貯まり、更に、両者仕切板中央部の主軸との隙間から底部の油溜めに戻るので、堰には液冷媒を分離溜めることができない。そこで、圧縮機の起動時に気化した冷媒は、主軸に設けられた油穴及び仕切板に設けた底部に折り返しを有する穴を通過するが、その際、大きな気泡のまま潤滑油相を突破り発泡音及び衝撃を生じさせていた。
【0007】
本発明は、前記従来技術の課題を解消するためになされたものであり、圧縮機起動時の発泡に伴う発泡音及び衝撃を低減し、静音性の高い圧縮機を得ることを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る圧縮機は、密閉容器内に圧縮機構部と電動機部とを有し、密閉容器内を吸入圧力雰囲気とし、冷媒と相溶性のない潤滑油を用いた圧縮機において、密閉容器内の底部の潤滑油貯めに発泡金属又はステンレスメッシュを配設したものである。
【0009】
【発明の実施の形態】
実施の形態1.
以下、実施の形態1について図に基づいて説明する。図1はこの発明の実施の形態1のレシプロ型圧縮機の縦断面図である。
図1において、レシプロ型圧縮機は固定子4及び回転子6からなる電動機部a、及び電動機部aにより駆動される圧縮機構部bにより構成されている。
圧縮機構部bは、回転子6に固定された駆動軸7、駆動軸7を支持するシリンダブロック8に併設された軸受9、駆動軸7の偏芯部14に接続されたコンロッド10、コンロッド10に接続されたピストン11、ピストン11と圧縮室を構成するようにシリンダブロック8に併設されたシリンダ12、及びシリンダヘッド13から構成されている。
【0010】
これら電動機部a及び圧縮機構部bは密閉容器1内に弾性支持部材17により保持され収納されている。
また密閉容器1には、密閉容器1底部の潤滑油貯め5に固着された発泡金属18が配設される。
また、潤滑油5は冷媒と相溶性を有さない潤滑油が封入されている。例えば、冷媒はR134a、潤滑油はアルキルベンゼン油の組合せである。
【0011】
以上のように構成された密閉型圧縮機について、その動作について説明する。
電動機部aに通電され、回転子6が回転し、回転子6に固定された駆動軸7が回転し、コンロッド10を介しピストン11はシリンダ12内壁に沿って往復運動を行う。この往復運動により吸入管33から密閉容器1に吸入された冷媒ガスが、シリンダヘッド13に設けられた吸入口(図示しない)から吸入され、ついで、シリンダ12でピストン11により圧縮され、圧縮ガスはシリンダヘッド13に設けられた吐出口(図示しない)から密閉容器1内に開放されることなく、吐出管34により冷凍サイクルへ送り出される。
【0012】
このようなレシプロ型圧縮機において、停止時間が長い場合又は圧縮機の周囲の温度が低い場合などに、冷凍サイクル内の液冷媒が密閉容器1内に吸入管33より流入し、密閉容器1の底部に貯留される場合がある。このような状態で、圧縮機が起動されると、密閉容器1内が吸入圧力雰囲気であるため、圧縮機の起動に伴い密閉容器1内の圧力は低下し、密閉容器1の底部の潤滑油貯め5に貯留された液冷媒は気化、発泡する。
【0013】
本実施の形態では、密閉容器1の底部の潤滑油貯め5に発泡金属18が配設されているので、液冷媒の気化に際し生じる気泡は、発泡金属18の細かな孔により細かく分散され、細かな気泡となっており、潤滑油層を突破り、破れる時に生じる発泡音は極小に抑えられる。また、発泡音が発生する時に生じる衝撃も極小に抑えられ、静音性に優れ信頼性の高い圧縮機が得られることになる。
【0014】
更に冷媒の発泡音の発生メカニズムを詳細に記す。
液冷媒が密閉容器1の底部の潤滑油貯め5に滞留する場合、液冷媒と潤滑油とは相溶性を有さないため、2相分離しかつ冷媒が下層となる。この状態から密閉容器1内の圧力が低下すると、液冷媒の一部が気泡化する。この気泡化したガス冷媒は浮力により上昇し、潤滑油層に到達し、更に上昇し潤滑油層を突破り、気泡が破れる際に発泡音が生じる。
気泡が破れる際に発生する発泡音は、粘度が高い潤滑油を突破る場合の方が粘度の低い例えば、同じ冷媒を突破るよりも大きくなるとみなされる。気泡が破れる瞬間は粘度の高い潤滑油が気泡の膜となるため、破れる際のエネルギーが大きくなり、発泡音も大きくなる。
【0015】
従って、このような冷媒気泡の発泡音を小さくするために、潤滑油を突破り破れる際の気泡をできるだけ細かくする。
上記では、発泡金属18で液冷媒の気泡を小さくすることを記載したが、より望ましくは、密閉容器1の底部の潤滑油と液冷媒の2相界面より上の潤滑油層に発泡金属18が在るようにすれば、液冷媒の気泡はかならず発泡金属18を通過するため、確実に小さくできる。発泡金属18は密閉容器1の底部に設置し、高さを予想される2相界面以上にしてもいいし、また、2相界面より上の潤滑油層に適宜、設置してもよい。
この場合、図1に示すように、圧縮機機構部b等の潤滑のため、潤滑油を駆動軸7の油路等に供給する駆動軸7の下端部の近傍は発泡金属18を設置しないようにしてもよい。このようにすれば、発泡音低下の効果が得られるとともに、潤滑油の汲み上げに支障をきたさない。
【0016】
本実施の形態で、レシプロ型圧縮機について説明したが、圧縮の形態を問わず密閉容器1内が吸入圧力雰囲気とした圧縮機の密閉容器1の底部に発泡金属18を配設すれば同様に上記のような効果が得られる。
尚、冷媒と潤滑油の組合せはR134aとアルキルベンゼン油の組合せで説明したが、冷媒はR134a、R410a、R407C等のHFC系冷媒、潤滑油はアルキルベンゼン油、鉱油の冷媒と潤滑油との組合せであれば同様な効果が得られる。
【0017】
実施の形態2.
次に、実施の形態2について説明する。図2は実施の形態2のレシプロ型圧縮機の縦断面図である。
図2に示すように本実施の形態のレシプロ型圧縮機は、実施の形態1のレシプロ型圧縮機における密閉容器1の底部の潤滑油貯め5内の発泡金属18の替わりに、ステンレスメッシュ19が配設される。
その他の構成は、実施の形態1と同じである。また、液冷媒の気泡を小さくするために密閉容器1の底部にステンレスメッシュ19の設置方法についても、実施の形態1の発泡金属18と同様とする。
【0018】
本実施の形態においても、密閉容器1底部にステンレスメッシュ19が配設されているので、液冷媒が気化した際に生じる気泡は、ステンレスメッシュの細かな目により細かく分散され、潤滑油層を突破る時には細かな気泡となり、発泡音は極小に抑えられる。また、発泡音が発生する時に生じる衝撃も極小に抑えられ、静音性に優れ信頼性の高い圧縮機が得られる。
【0019】
レシプロ型圧縮機以外の圧縮機でも密閉容器内が吸入圧力雰囲気とした圧縮機の密閉容器底部にステンレスメッシュを配設すれば上記と同様な効果が得られる。
また、冷媒と潤滑油の組合せはR134aとアルキルベンゼン油の組合せで説明したが、冷媒はR134a,R410a、R407C等のHFC系冷媒、潤滑油はアルキルベンゼン油、鉱油の組合せであれば同様な効果が得られる。
【0020】
実施の形態1、2では密閉容器1内の底部に配設する部材を発泡金属、ステンレスメッシュで説明を行ったが、気化した冷媒の気泡を細かく分散させることができる多孔質体であれば同様な効果が得られる。
【0021】
実施の形態3.
次に実施の形態3について説明する。図3はこの発明の実施の形態3のレシプロ型圧縮機の縦断面図である。
図3のレシプロ型圧縮機は、実施の形態1または実施の形態2において、密閉容器1の底部の潤滑油貯め5の発泡金属18またはステンレスメッシュ19を取外し、密閉容器1の内壁1aで、吸入管33の密閉容器1内の開口部33aの直下に、吸入冷媒中の液冷媒を受ける受け部20をなす堰部20が設けられる。この堰部20は、底部の潤滑油貯め5の上方で、かつ、吸入管33の密閉容器1内の開口部33aの直下で、密閉容器1の内壁1aの一部に設けられ、上部の潤滑部からの潤滑油は受けずに、吸入管33の開口部33aからの液冷媒を受けるようにする。
その他の構成は、実施の形態1、2と同じである。
【0022】
本実施の形態においては、密閉容器1内の吸入管33の開口部33aの直下に吸入管33から流入した液冷媒を堰き止めるための堰部20が設けられていることにより、吸入管33から流入した液冷媒2は堰部20に貯留され、密閉容器1内の底部に貯留されている潤滑油5とは殆ど混在しないことになる。
このため、圧縮機の起動時の液冷媒2の気化は、ほとんど液冷媒のみの堰部20からの気化であるため、生じる気泡が冷媒と相溶性のない、かつ粘度の高い潤滑油の層を突破ることはなく、気泡が破れる瞬間は、粘度の低い液冷媒が気泡の膜となるため、潤滑油層を突破る時に生じる大きな発泡音は生じない。そのため、静音性に優れた圧縮機が得られる。
なお、液冷媒の気泡は、粘度の低い液冷媒を突破るため発生音は小さい。即ち、気泡が破れる瞬間は、粘度の低い液冷媒が気泡の膜となるため、容易に破れやすく、破れる際のエネルギーは小さいため、発泡音も小さい。
【0023】
本実施の形態のレシプロ型圧縮機は、堰部20を設けるとともに、実施の形態1の発泡金属18または実施の形態2のステンレスメッシュ19を潤滑油貯め5に併せて設ければ、少量の液冷媒が底部の潤滑油貯め5に混入しても、圧縮機の起動時に底部の潤滑油貯め5から気化する冷媒の冷媒音も防止でき、より発泡音の低下を図ることができる。
【0024】
本実施の形態のレシプロ型圧縮機も、密閉容器内が吸入圧力雰囲気とした圧縮機であればレシプロ型圧縮機以外でもよい。
また、冷媒と潤滑油の組合せはR134aとアルキルベンゼン油の組合せで説明したが、冷媒はR134a,R410a、R407C等のHFC系冷媒、潤滑油はアルキルベンゼン油、鉱油の組合せであれば同様な効果が得られる。
【0025】
【発明の効果】
本発明に係わる圧縮機によれば、密閉容器内に圧縮機構部と電動機部とを有し、密閉容器内を吸入圧力雰囲気とし、冷媒と相溶性のない潤滑油を用いた圧縮機において、密閉容器内の底部の潤滑油貯めに発泡金属又はステンレスメッシュを配設したので、気泡が潤滑油層を突破る時に生じる発泡音及び発泡に伴う衝撃を極小に抑えることが可能となる。従って、静音性が高い圧縮機を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるレシプロ圧縮機の縦断面図である。
【図2】本発明の実施の形態2におけるレシプロ圧縮機の縦断面図である。
【図3】本発明の実施の形態3におけるレシプロ圧縮機の縦断面図である。
1 密閉容器、1a 内壁、5 潤滑油貯め、18 発泡金属、19 ステンレスメッシュ、20 受け部、33 吸入管、33a 開口部、a 電動機部、b 圧縮機構部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compressor used for a refrigeration air conditioner, and more particularly to a foaming sound of a refrigerant foaming from a lubricating oil at a bottom portion when a compressor is started.
[0002]
[Prior art]
Conventional compressors have a lubricating oil that lubricates a compression element at the bottom of a closed container, and has an oil barrier plate fixed to the bottom of the closed container to form an oil tank for retaining the lubricating oil. A communication hole that communicates with the oil is provided in the oil shield plate, and the lubricating oil is sealed in the oil tank provided at the bottom of the sealed container, delaying the bubbling and vaporization of the refrigerant dissolved in the lubricating oil when the compressor is restarted, and reducing the starting load (For example, see Patent Document 1).
[0003]
Another conventional compressor houses a fixed and orbiting scroll, an orbiting scroll and a bearing of the main shaft at an upper portion defined by a partition plate through which the main shaft passes, and has an oil reservoir at a lower portion, and has a main shaft. In a scroll compressor in which an oil sump and a bearing communicate with each other by an oil hole provided in a partition plate, an opening having a weir is provided on an upper surface of the partition plate by performing a boring process having a turn on the bottom of the partition plate (for example, see Patent Reference 2).
[0004]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 04-44485 (Page 6, Page 7, FIG. 1, FIG. 2)
[Patent Document 2]
Utility Model No. 2524178 (Pages 1 to 3, FIGS. 1 and 4)
[0005]
[Problems to be solved by the invention]
However, in the conventional compressor disclosed in Patent Document 1, an oil barrier plate having a communication hole is provided in the hermetically sealed container 1, and when the communication hole has a large hole, the oil vaporized when the compressor was started. The refrigerant passed through the communicating holes as large bubbles, breaking through the lubricating oil phase and producing foaming noise and impact. Further, since the communication hole is provided in the shielding plate, large vaporized gas bubbles may be broken under the shielding plate, thereby generating foaming noise and impact. The greater the amount of liquid refrigerant stored in the compressor, and the faster the pressure drop rate in the closed container, the greater the sound and bubbling sound generated during vaporization and bubbling of the liquid refrigerant, and the quietness and reliability of the compressor. Had a problem.
[0006]
Further, in the conventional compressor disclosed in Patent Document 2, since the partition plate is provided on almost the entire cross section of the shell, the dam is lubricated with lubricating oil that has passed through the oil return hole after lubricating the upper bearing. The liquid refrigerant from the suction pipe is stored together, and further returns to the oil reservoir at the bottom from the gap between the main shaft at the center of the partition plate and the liquid refrigerant at the bottom, so that the liquid refrigerant cannot be separated and stored in the weir. Therefore, the refrigerant vaporized at the start of the compressor passes through an oil hole provided on the main shaft and a hole provided with a turn at the bottom provided on the partition plate. It caused sound and impact.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the related art, and an object of the present invention is to reduce a foaming sound and an impact caused by foaming at the time of starting the compressor, and to obtain a compressor with high noise reduction.
[0008]
[Means for Solving the Problems]
The compressor according to the present invention has a compression mechanism section and an electric motor section in a closed container, and sets the inside of the closed container to a suction pressure atmosphere, and uses a lubricating oil that is incompatible with a refrigerant. A foamed metal or stainless steel mesh is disposed in the lubricating oil reservoir at the bottom of the above.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a reciprocating compressor according to Embodiment 1 of the present invention.
In FIG. 1, the reciprocating compressor includes an electric motor section a including a stator 4 and a rotor 6, and a compression mechanism section b driven by the electric motor section a.
The compression mechanism b includes a drive shaft 7 fixed to the rotor 6, a bearing 9 attached to a cylinder block 8 supporting the drive shaft 7, a connecting rod 10 connected to an eccentric portion 14 of the drive shaft 7, a connecting rod 10. , A cylinder 12 and a cylinder head 13 which are provided in the cylinder block 8 so as to form a compression chamber with the piston 11.
[0010]
The electric motor section a and the compression mechanism section b are held and housed in the closed casing 1 by the elastic support member 17.
Further, in the closed container 1, a foam metal 18 fixed to the lubricating oil reservoir 5 at the bottom of the closed container 1 is provided.
The lubricating oil 5 is filled with a lubricating oil having no compatibility with the refrigerant. For example, the refrigerant is a combination of R134a and the lubricating oil is a combination of an alkylbenzene oil.
[0011]
The operation of the hermetic compressor configured as described above will be described.
Electric power is supplied to the motor unit a, the rotor 6 rotates, the drive shaft 7 fixed to the rotor 6 rotates, and the piston 11 reciprocates along the inner wall of the cylinder 12 via the connecting rod 10. By this reciprocating motion, the refrigerant gas drawn into the closed casing 1 from the suction pipe 33 is drawn through a suction port (not shown) provided in the cylinder head 13, and then compressed by the piston 11 in the cylinder 12, and the compressed gas is The liquid is sent out to the refrigeration cycle by the discharge pipe 34 without being opened into the closed container 1 from a discharge port (not shown) provided in the cylinder head 13.
[0012]
In such a reciprocating compressor, when the stop time is long or when the temperature around the compressor is low, the liquid refrigerant in the refrigeration cycle flows into the closed vessel 1 from the suction pipe 33, May be stored at the bottom. When the compressor is started in such a state, the pressure in the closed container 1 decreases with the start of the compressor because the inside of the closed container 1 is in the suction pressure atmosphere, and the lubricating oil at the bottom of the closed container 1 The liquid refrigerant stored in the storage 5 evaporates and foams.
[0013]
In the present embodiment, since the foam metal 18 is provided in the lubricating oil reservoir 5 at the bottom of the closed container 1, bubbles generated when the liquid refrigerant is vaporized are finely dispersed by the fine holes of the foam metal 18. The foaming sound breaks through the lubricating oil layer and the bubbling sound generated when it breaks is minimized. In addition, the shock generated when the foaming sound is generated is suppressed to a minimum, and a compressor with excellent silentness and high reliability can be obtained.
[0014]
Further, the generation mechanism of the foaming sound of the refrigerant will be described in detail.
When the liquid refrigerant stays in the lubricating oil reservoir 5 at the bottom of the closed container 1, the liquid refrigerant and the lubricating oil have no compatibility, so that they are separated into two phases and the refrigerant becomes a lower layer. When the pressure in the closed container 1 decreases from this state, a part of the liquid refrigerant becomes bubbles. The gasified gas refrigerant rises due to buoyancy, reaches the lubricating oil layer, further rises and breaks through the lubricating oil layer, and a foaming sound is generated when bubbles are broken.
The foaming sound generated when the air bubbles are broken is considered to be louder when breaking through a high-viscosity lubricating oil than when breaking through a low-viscosity lubricant, for example. At the moment when the bubble is broken, the high-viscosity lubricating oil becomes a film of the bubble, so that the energy at the time of breaking increases and the foaming sound also increases.
[0015]
Therefore, in order to reduce the foaming noise of the refrigerant bubbles, the bubbles when breaking through and breaking the lubricating oil are made as small as possible.
In the above description, the bubbles of the liquid refrigerant are reduced by the foam metal 18. However, more preferably, the foam metal 18 exists in the lubricating oil layer above the two-phase interface between the lubricating oil and the liquid refrigerant at the bottom of the closed container 1. By doing so, the bubbles of the liquid refrigerant always pass through the foam metal 18, so that the bubbles can be reliably reduced. The foamed metal 18 may be installed at the bottom of the closed vessel 1 and may have a height equal to or higher than the expected two-phase interface, or may be appropriately installed in a lubricating oil layer above the two-phase interface.
In this case, as shown in FIG. 1, in order to lubricate the compressor mechanism b and the like, the vicinity of the lower end of the drive shaft 7 for supplying the lubricating oil to the oil passage of the drive shaft 7 is not provided with the foam metal 18. It may be. In this case, the effect of reducing the foaming sound can be obtained, and the pumping of the lubricating oil is not hindered.
[0016]
In the present embodiment, the reciprocating compressor has been described. However, regardless of the type of compression, if the foamed metal 18 is disposed at the bottom of the closed vessel 1 of the compressor in which the inside of the closed vessel 1 has a suction pressure atmosphere. The effects described above can be obtained.
Although the combination of the refrigerant and the lubricating oil has been described by using the combination of R134a and the alkylbenzene oil, the refrigerant may be a combination of an RFC-based refrigerant such as R134a, R410a, and R407C, and the lubricating oil may be an alkylbenzene oil or a combination of a mineral oil refrigerant and a lubricating oil. A similar effect can be obtained.
[0017]
Embodiment 2 FIG.
Next, a second embodiment will be described. FIG. 2 is a longitudinal sectional view of the reciprocating compressor according to the second embodiment.
As shown in FIG. 2, the reciprocating compressor of the present embodiment has a stainless mesh 19 instead of the foam metal 18 in the lubricating oil reservoir 5 at the bottom of the closed vessel 1 in the reciprocating compressor of the first embodiment. Will be arranged.
Other configurations are the same as those of the first embodiment. Further, the method of installing the stainless steel mesh 19 on the bottom of the closed vessel 1 in order to reduce bubbles of the liquid refrigerant is the same as that of the foam metal 18 of the first embodiment.
[0018]
Also in the present embodiment, since the stainless steel mesh 19 is provided at the bottom of the closed container 1, bubbles generated when the liquid refrigerant is vaporized are finely dispersed by the fine mesh of the stainless steel mesh and break through the lubricating oil layer. Occasionally, it becomes fine bubbles and the foaming sound is suppressed to a minimum. In addition, the shock generated when the foaming sound is generated is suppressed to a minimum, and a compressor with excellent silentness and high reliability can be obtained.
[0019]
In a compressor other than the reciprocating compressor, the same effect as described above can be obtained by disposing a stainless steel mesh at the bottom of the closed vessel of the compressor in which the inside of the closed vessel has a suction pressure atmosphere.
Further, the combination of the refrigerant and the lubricating oil has been described by using the combination of R134a and the alkylbenzene oil. However, the same effect can be obtained if the refrigerant is an HFC-based refrigerant such as R134a, R410a, R407C, and the lubricating oil is a combination of the alkylbenzene oil and the mineral oil. Can be
[0020]
In the first and second embodiments, the member disposed at the bottom in the closed container 1 has been described as a foamed metal or a stainless steel mesh. However, the same applies to a porous body capable of finely dispersing bubbles of a vaporized refrigerant. Effects can be obtained.
[0021]
Embodiment 3 FIG.
Next, a third embodiment will be described. FIG. 3 is a longitudinal sectional view of a reciprocating compressor according to Embodiment 3 of the present invention.
In the reciprocating compressor shown in FIG. 3, the foam metal 18 or the stainless steel mesh 19 of the lubricating oil reservoir 5 at the bottom of the closed container 1 is removed in the first or second embodiment, and suction is performed on the inner wall 1a of the closed container 1. Immediately below the opening 33 a of the pipe 33 in the closed container 1, there is provided a weir section 20 which forms a receiving section 20 for receiving the liquid refrigerant in the suction refrigerant. The weir portion 20 is provided on a part of the inner wall 1 a of the sealed container 1 above the lubricating oil reservoir 5 at the bottom and directly below the opening 33 a of the suction pipe 33 in the sealed container 1. The liquid refrigerant is received from the opening 33a of the suction pipe 33 without receiving the lubricating oil from the section.
Other configurations are the same as those of the first and second embodiments.
[0022]
In the present embodiment, the dam 20 is provided immediately below the opening 33 a of the suction pipe 33 in the closed container 1 so as to stop the liquid refrigerant flowing from the suction pipe 33. The inflowing liquid refrigerant 2 is stored in the weir section 20, and hardly mixes with the lubricating oil 5 stored in the bottom of the closed vessel 1.
For this reason, since the vaporization of the liquid refrigerant 2 at the time of starting the compressor is almost the vaporization from the weir portion 20 containing only the liquid refrigerant, the generated bubbles form a layer of the lubricating oil that is not compatible with the refrigerant and has high viscosity. At the moment when the bubble breaks, the liquid refrigerant having a low viscosity becomes a film of the bubble at the moment when the bubble breaks, so that a loud bubbling sound generated when breaking through the lubricating oil layer does not occur. Therefore, a compressor excellent in noise reduction can be obtained.
In addition, since the bubbles of the liquid refrigerant break through the liquid refrigerant having a low viscosity, the generated sound is small. That is, at the moment when the bubble is broken, the liquid refrigerant having a low viscosity becomes a film of the bubble, so that it is easily broken, and the energy at the time of breaking is small.
[0023]
In the reciprocating compressor of the present embodiment, a small amount of liquid is provided by providing the weir portion 20 and providing the foam metal 18 of the first embodiment or the stainless steel mesh 19 of the second embodiment together with the lubricating oil reservoir 5. Even if the refrigerant is mixed into the lubricant oil reservoir 5 at the bottom, the noise of the refrigerant vaporized from the lubricant oil reservoir 5 at the start of the compressor can be prevented, and the foaming noise can be further reduced.
[0024]
The reciprocating compressor of the present embodiment may be other than the reciprocating compressor as long as the inside of the closed container has a suction pressure atmosphere.
Although the combination of the refrigerant and the lubricating oil has been described as the combination of R134a and the alkylbenzene oil, similar effects can be obtained if the refrigerant is an HFC-based refrigerant such as R134a, R410a, R407C, and the lubricating oil is a combination of alkylbenzene oil and mineral oil. Can be
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the compressor which concerns on this invention, it has a compression mechanism part and an electric motor part in a closed container, makes the inside of a closed container into a suction pressure atmosphere, and uses a lubricating oil incompatible with a refrigerant | coolant. Since the metal foam or the stainless steel mesh is disposed in the lubricating oil reservoir at the bottom of the container, it is possible to minimize the bubbling sound and the shock accompanying the bubbling generated when air bubbles break through the lubricating oil layer. Therefore, a compressor with high silence can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a reciprocating compressor according to Embodiment 1 of the present invention.
FIG. 2 is a longitudinal sectional view of a reciprocating compressor according to Embodiment 2 of the present invention.
FIG. 3 is a longitudinal sectional view of a reciprocating compressor according to Embodiment 3 of the present invention.
1 Closed container, 1a inner wall, 5 lubricating oil storage, 18 foam metal, 19 stainless steel mesh, 20 receiving part, 33 suction pipe, 33a opening, a electric motor part, b compression mechanism part.

Claims (3)

密閉容器内に圧縮機構部と電動機部とを有し、前記密閉容器内を吸入圧力雰囲気とし、冷媒と相溶性のない潤滑油を用いた圧縮機において、
前記密閉容器内の底部の潤滑油貯めに発泡金属を配設したことを特徴とする圧縮機。
In a compressor using a lubricating oil having a compression mechanism part and an electric motor part in a closed container, making the closed container a suction pressure atmosphere, and having no compatibility with a refrigerant,
A compressor, wherein a foamed metal is disposed in a lubricating oil reservoir at a bottom portion in the closed container.
密閉容器内に圧縮機構部と電動機部とを有し、前記密閉容器内を吸入圧力雰囲気とし、冷媒と相溶性のない潤滑油を用いた圧縮機において、
前記密閉容器内の底部の潤滑油貯めにステンレスメッシュを配設したことを特徴とする圧縮機。
In a compressor using a lubricating oil having a compression mechanism part and an electric motor part in a closed container, making the closed container a suction pressure atmosphere, and having no compatibility with a refrigerant,
A compressor, wherein a stainless steel mesh is provided in a lubricating oil reservoir at a bottom portion in the closed container.
密閉容器内に圧縮機構部と電動機部とを有し、前記密閉容器内を吸入圧力雰囲気とし、冷媒と相溶性のない潤滑油を用いた圧縮機において、
前記密閉容器の内壁の一部で、冷媒の吸入管の前記密閉容器内の開口部の直下に、吸入冷媒中の液冷媒を受ける受け部を設けたことを特徴とする圧縮機。
In a compressor using a lubricating oil having a compression mechanism part and an electric motor part in a closed container, making the closed container a suction pressure atmosphere, and having no compatibility with a refrigerant,
A compressor provided with a receiving portion for receiving a liquid refrigerant in a suction refrigerant at a part of an inner wall of the airtight container and directly below an opening of the refrigerant suction pipe in the airtight container.
JP2003069490A 2003-03-14 2003-03-14 Compressor Pending JP2004278380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069490A JP2004278380A (en) 2003-03-14 2003-03-14 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069490A JP2004278380A (en) 2003-03-14 2003-03-14 Compressor

Publications (1)

Publication Number Publication Date
JP2004278380A true JP2004278380A (en) 2004-10-07

Family

ID=33286510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069490A Pending JP2004278380A (en) 2003-03-14 2003-03-14 Compressor

Country Status (1)

Country Link
JP (1) JP2004278380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132254A (en) * 2013-12-10 2015-07-23 三菱電機株式会社 compressor
CN111112584A (en) * 2020-01-03 2020-05-08 广州万宝集团压缩机有限公司 Cylinder block and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132254A (en) * 2013-12-10 2015-07-23 三菱電機株式会社 compressor
CN111112584A (en) * 2020-01-03 2020-05-08 广州万宝集团压缩机有限公司 Cylinder block and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4552388B2 (en) Compressor operation control method, control apparatus, refrigerant compressor, and refrigeration apparatus
JP2001073976A (en) Internal intermediate pressure type two-stage compression type rotary compressor
JP2004301092A (en) Scroll compressor
JP2020051662A (en) Refrigeration air conditioner and hermetic electric compressor used in the same
JPWO2017072867A1 (en) Rotary compressor
JP2004278380A (en) Compressor
JP2015132254A (en) compressor
WO2020157792A1 (en) Scroll compressor
JP2008169740A (en) Compressor
JP2004324507A (en) Horizontal rotary compressor
WO2021186499A1 (en) Compressor
JP2005139973A (en) Multistage compression type rotary compressor
JP2006348928A (en) Compressor
JP3593083B2 (en) Scroll compressor
JPH05223074A (en) Oil circulating mechanism of scroll type compressor
JPH1193869A (en) Scroll compressor
JP2000345965A (en) Hermetic compressor
JP2012057596A (en) Compressor and refrigeration apparatus
WO2023135731A1 (en) Compressor suction and oil-return pipe, scroll compressor, and refrigeration cycle device
JP3198576B2 (en) Scroll compressor
JP2005113866A (en) Hermetic electric compressor
JP2009052497A (en) Refrigerant compressor
JP2006329141A (en) Scroll compressor
JP2011185156A (en) Hermetic compressor
JP4396401B2 (en) Hermetic compressor