JP2004276032A - Hydroforming method for component having both pipe expanding element and branch projecting element - Google Patents

Hydroforming method for component having both pipe expanding element and branch projecting element Download PDF

Info

Publication number
JP2004276032A
JP2004276032A JP2003066832A JP2003066832A JP2004276032A JP 2004276032 A JP2004276032 A JP 2004276032A JP 2003066832 A JP2003066832 A JP 2003066832A JP 2003066832 A JP2003066832 A JP 2003066832A JP 2004276032 A JP2004276032 A JP 2004276032A
Authority
JP
Japan
Prior art keywords
pressure
internal pressure
hydroforming
internal
smaller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066832A
Other languages
Japanese (ja)
Other versions
JP4077749B2 (en
Inventor
Hirotoshi Hishida
博俊 菱田
Itsuro Hiroshige
逸朗 弘重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003066832A priority Critical patent/JP4077749B2/en
Publication of JP2004276032A publication Critical patent/JP2004276032A/en
Application granted granted Critical
Publication of JP4077749B2 publication Critical patent/JP4077749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can hydroform a component, which has both a pipe expanding element and a branch projecting element, corresponding to a die shape with a series of processes. <P>SOLUTION: A material pipe P is set inside the die provided with a cavity 2 for molding a pipe expanding part and a cavity 3 for forming a branch projecting part. After that, at first the pipe expanding part is formed by axial pressing in a state of applying first inner pressure larger than the internal yield starting pressure and smaller than the burst pressure. Next, the branch projecting part is formed by axial pressing in a state of reducing the inner pressure to second inner pressure smaller than the first inner pressure and the general yielding pressure. The hydroforming is executed so as to execute both the pipe expansion and the branch projection with a series of the processes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のエギゾーストマニホールドのような拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法に関するものである。
【0002】
【従来の技術】
【特許文献1】特開2002−66648号公報
【0003】
ハイドロフォーミング方法は、鋼管やステンレス管などの素材管を金型の内部にセットし、素材管の端部から軸押しを行うとともに内部に高内圧を加え、素材管を金型の内面形状に沿って塑性変形させる加工方法であり、従来のバルジ加工方法(金属管を金型内部に配置して金型の形状的拘束を与え、金属管内部に圧力を加えて加工する方法)の発展した中空部品の成形方法として開発が進められている。このようなハイドロフォーミング方法においては、特許文献1に示されるように、所定内圧値になるまで内圧を徐々に上昇させるとともに軸押しを行い、所定内圧値に到達後は内圧を一定に保持した状態として軸押しを行うのが普通である(図3に示すグラフ中の破線参照)。
【0004】
一方、最近では例えば自動車のエギゾーストマニホールドのような中央部等に拡管部を有し、更に素材管の表面軸方向に対して垂直や斜め方向の枝張出部を持つ複雑な形状の部品の成形を、ハイドロフォーミングすることが検討されている。
ところが、ハイドロフォーミングの場合、加工要素としては「拡管要素」と「枝張出要素」に大別することができる。拡管要素は平面歪を伴いつつ加工するものであるのに対し、枝張出要素は主としてせん断歪を伴いつつ加工するもので両者は加工特性を異にするものである。従って、エギゾーストマニホールドのような拡管部と枝張出部を持つ複雑な形状の部品の成形を一連の工程のハイドロフォーミングで行うことは非常に困難であった。この結果、枝張出部を持つ複雑な形状の部品の場合は、多工程に分けて成形し、しかも焼鈍や後加工等を駆使して成形する必要があり成形効率に劣るという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、拡管要素と枝張出要素の両要素を有する複雑な形状の部品であっても多工程に分けることなく一連の工程で効率よくハイドロフォーミングすることができる拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法を提供することを目的として完成されたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法は、拡管部成形用のキャビティと枝張出部成形用のキャビティを備えた金型の内部に素材管をセットした後、先ず内面降伏開始圧力より大きくバースト圧力より小さい第1の内圧力をかけた状態で軸押して拡管部の成形を行い、次いで内圧を第1の内圧力より小さくかつ全面降伏圧力より小さい第2の内圧力まで下げた状態で軸押して枝張出部の成形を行い、一連の工程で拡管と枝張出の両方を行うようにハイドロフォーミングすることを特徴とするものである。
【0007】
ここで、第2の内圧力を内面降伏開始圧力より小さくすることが有効であることが多く、これを請求項2に係る発明とする。また、第1の内圧力を全面降伏圧力とし、第2の内圧力を内面降伏開始圧力の約90%とすることが好ましく、これを請求項3に係る発明とする。更に、第1の内圧力をかけた状態で軸押しする第1の軸押し量を枝張出成形が進まない量とし、第2の内圧力をかけた状態で軸押しする第2の軸押し量を枝張出成形に必要な量とすることが好ましく、これを請求項4に係る発明とする。加えて、内圧力が第1の内圧力に到達する前に枝張出部成形用のキャビティを封鎖し、その後拡管部の成形を行った後に枝張出部成形用のキャビティを開放することが有効であることが多く、これを請求項5に係る発明とする。
【0008】
本発明によれば、先ず内面降伏開始圧力より大きくバースト圧力より小さい内圧力をかけた状態で軸押しして、枝張出部を除き素材管を金型の内部に完全に密着させ、次いで内圧を第1の内圧力より小さくかつ全面降伏圧力より小さい第2の内圧力まで下げた状態で軸押して枝張出部を成形することで、一連の工程で拡管と枝張出の両方を行うようにハイドロフォーミングすることができる。
【0009】
【発明の実施の形態】
以下に図面を参照しつつ本発明の好ましい実施の形態を示す。
図1〜図2において、1はハイドロフォーミング用の金型であり、その内部には下方側に拡管部成形用のキャビティ2が、また上方側には枝張出部成形用のキャビティ3が形成されている。即ち、この金型1は拡管要素と枝張出要素の両要素を有する部品を成形するためのものである。
また、この金型1は一方だけに軸押し金具4を備えた片押し式のものであり、軸押し力は図面の右方向に作用するが、両側に軸押し金具を備えた両片押し式のものであってもよいことは勿論である。なお、5は軸押し金具4に設けられた高圧流体供給孔、Pは素材管である。
【0010】
次に、本発明のハイドロフォーミング方法の手順を説明すると、図1に示すように、この金型1の内部に素材管Pをセットし、軸押し金具4の高圧流体供給孔5から素材管Pの内部に数十MPaの高圧流体を供給しながら軸押し金具4を図面の右方向に移動させ、ハイドロフォーミングを行う点は従来のハイドロフォーミング方法と基本的には同じである。
そして本発明では、先ず内面降伏開始圧力より大きくバースト圧力より小さい第1の内圧力をかけた状態で軸押して拡管部の成形を行い、次いで内圧を第1の内圧力より小さくかつ全面降伏圧力より小さい第2の内圧力まで下げた状態で軸押して枝張出部の成形を行い、一連の工程で拡管と枝張出の両方を行うようにハイドロフォーミングする点に特徴的構成を有する。
【0011】
つまり本発明では、図3に示されるように、先ず内面降伏開始圧力(P)より大きくバースト圧力(P)より小さい第1の内圧力(P1)をかけた状態で軸押して素材管Pを金型の内部に完全に密着させ、次いで内圧を第1の内圧力(P1)より小さくかつ全面降伏圧力(P)より小さい第2の内圧力(P2)まで下げた状態で軸押して枝張出成形を完成させることにより、金型1内において一連の工程で拡管と枝張出の両方を行うようにハイドロフォーミングを行い拡管要素と枝張出要素の両要素を有する部品を効率よく成形するのである。
【0012】
ここで、第1の内圧力(P1)を内面降伏開始圧力(P)より大きくバースト圧力(P)より小さい圧力としたのは、内面降伏開始圧力(P)に近づくと変形が進みにくくなり、バースト圧力(P)に近づくと当然割れを発生させる危険性が増すからである。本発明者の研究によれば、第1の内圧力(P1)は全面降伏圧力(P)程度が最もよいことを確認している。
【0013】
また、第2の内圧力(P2)を第1の内圧力(P1)より小さくかつ全面降伏圧力(P)より小さい圧力としたのは、金型と素材管との摩擦力を低減し、枝張出のために必要な軸押し力を枝張出個所まで伝達するためである。また、第2の内圧力(P2)を内面降伏開始圧力(P)より小さい圧力とすることで、摩擦力を極力低減することができる。ただし、下げすぎると座屈が発生するので、数値解析等で最適値を求める必要がある。本発明者の研究によれば、第2の内圧力(P2)は内面降伏開始圧力(P)の約90%とするのが好ましいことを確認している。ただし、材質の影響が大きいので、その都度、数値解析等で求めることが好ましい。
【0014】
第1の内圧力をかけた状態で軸押しする第1の軸押し量(δ1)は、枝張出成形が進まない量とする。第1の内圧力(P1)で軸押しするのは素材管Pを金型の内部に完全に密着させる(拡管成形)ためであるので、素材管Pのr値や塑性変形等を考慮して軸押部のシール性を保持しつつ枝張出成形が進まない程度の最少の軸押し量を求め、第1の軸押し量(δ1)とする。経験的には、素材管Pの直径の10%程度と考えられる。
【0015】
第2の内圧力をかけた状態で軸押しする第2の軸押し量(δ2)は、枝張出成形に必要な量とする。ここで、素材管Pの直径をD、枝張出量をh、枝部の直径をdとすると、第2の軸押し量(δ2)は少なくともh×d/Dより大きい必要があるが、具体的には設計条件に従って決定される。
加えて、図6〜図7に示すように、例えばカウンター6等の使用によって枝張出部成形用のキャビティを封鎖することで、枝張出部におけるバーストの危険性が低減できる。このキャビティの封鎖は、後続の枝張出成形の際には開放されていなければならないので、その後拡管部の成形を行った後にカウンター6等を取り除く等して枝張出部成形用のキャビティを開放する。
【0016】
このように、先ず内面降伏開始圧力(P)より大きくバースト圧力(P)より小さい第1の内圧力(P1)の内圧をかけた状態で軸押し、次いで内圧を第1の内圧力(P1)より小さくかつ全面降伏圧力(P)より小さい第2の内圧力(P2)まで下げた状態で軸押しすることにより、拡管要素と枝張出要素の両要素を有する複雑な形状からなる部品を、一連の工程で確実にハイドロフォーミングすることができることとなり、従来のように多工程に分けて成形する必要がなく、成形効率を大幅に向上できることとなる。
なお、図4に示すように、本発明のハイドロフォーミング方法により素材管Pの表面に拡管部11と枝張出部12を持つ成形品が得られるので、この枝張出部11の先端を部品切断面13で切断すれば完成品となる。
【0017】
ここで、本明細書中において使用した三つの圧力について説明しておく。
内面降伏開始圧力(P)とは、素材鋼管の内面において局所降伏が開始される圧力である。軸力がかからない場合の外周に拘束がない状態における内面降伏開始圧力(P)は、薄肉理想鋼管に関して、降伏応力(σys)、直径(D)、肉厚(t)とから、式1の内面降伏開始圧力計算式で計算できることが理論的に導かれている。
【数1】

Figure 2004276032
例えば、D=42.7mm、t=1.8mmのフェライト系ステンレス鋼管(σys=540MPa)では、P=45.5MPaである。
全面降伏圧力(P)とは、素材鋼管の断面全域において降伏した時の圧力であり、理論的に求めることができないので、数値解析により求めることになる。例えば、軸力がかからない場合の外周に拘束がない状態における上記鋼管では、P=51.0MPaである。
バースト圧力(P)とは、素材鋼管がバーストする圧力であり、理論的に求めることができないので、数値解析により求めることになる。例えば、軸力がかからない場合の外周に拘束がない状態における上記鋼管では、P=57.0MPaである。
【0018】
【発明の効果】
以上に説明したように、本発明のハイドロフォーミング方法によれば、拡管要素と枝張出要素の両要素を有する複雑な形状の部品であっても多工程に分けることなく一連の工程で効率よくハイドロフォーミングすることができることとなる。このため本発明は自動車のエギゾーストマニホールドのような複雑な形状を持つ部品の製造に適したものである。
よって本発明は従来の問題点を一掃した拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法として、産業の発展に寄与するところは極めて大である。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す金型の断面図である。
【図2】図1の最終成形状態を示す金型の断面図である。
【図3】軸押し量と内圧の関係を示すグラフである。
【図4】本発明で得られる成形品を示す一部切欠断面図である。
【図5】本発明で得られる複雑な形状を持つ部品を示す一部切欠断面図である。
【図6】その他の実施の形態を示す金型とキャビティの封鎖機構の断面図である。
【図7】図6の最終成形状態を示す金型の断面図である。
【符号の説明】
1 金型
2 拡管部成形用のキャビティ
3 枝張出部成形用のキャビティ
4 軸押し金具
5 高圧流体供給孔
6 カウンター
P1 第1の内圧力
P2 第2の内圧力
内面降伏開始圧力
全面降伏圧力
バースト圧力
δ1 第1の軸押し量
δ2 第2の軸押し量[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for hydroforming a component having both a pipe expansion element and a branching element, such as an exhaust manifold of an automobile, for example.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-66648
In the hydroforming method, a material pipe such as a steel pipe or a stainless steel pipe is set inside the mold, and the material pipe is pressed axially from the end of the material pipe and a high internal pressure is applied inside, so that the material pipe follows the inner surface shape of the mold. This is a processing method of plastic deformation, which is a developed hollow method of the conventional bulge processing method (a method in which a metal pipe is placed inside a mold to give a shape constraint of the mold and pressure is applied to the inside of the metal pipe). It is being developed as a method for molding parts. In such a hydroforming method, as shown in Patent Document 1, the internal pressure is gradually increased until a predetermined internal pressure value is reached, and the shaft is pushed. After reaching the predetermined internal pressure value, the internal pressure is kept constant. Is usually performed (see the broken line in the graph shown in FIG. 3).
[0004]
On the other hand, recently, for example, molding of parts having a complicated shape having an expanded portion in a central portion, such as an exhaust manifold of an automobile, and a branch portion extending perpendicularly or obliquely to the surface axis direction of the material pipe. Is being studied for hydroforming.
However, in the case of hydroforming, processing elements can be roughly classified into “expanding elements” and “branching elements”. While the expansion element is processed with plane strain, the branching element is mainly processed with shear strain, and both have different processing characteristics. Therefore, it is very difficult to form a part having a complicated shape such as an exhaust manifold having an expanded portion and a protruding portion by hydroforming in a series of steps. As a result, in the case of a component having a complicated shape having a protruding portion, it is necessary to perform molding in multiple steps, and furthermore, to perform molding by making full use of annealing, post-processing, and the like, and there is a problem that molding efficiency is poor. .
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and enables efficient hydroforming in a series of steps without dividing into multiple steps even for parts having a complicated shape having both a pipe expanding element and a branching element. The present invention has been completed for the purpose of providing a method for hydroforming a component having both a pipe expansion element and a branching out element.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a method for hydroforming a part having both elements of a pipe expansion element and a branching element according to the present invention includes a cavity for forming a pipe expansion part and a cavity for forming a branch part. After setting the material pipe in the mold, firstly, the expanded portion is formed by axially pushing while applying a first internal pressure greater than the inner surface yield start pressure and smaller than the burst pressure, and then the internal pressure is reduced to the first internal pressure. It is characterized in that it is axially pressed to form the overhang portion while reducing to a second internal pressure smaller than the overall yield pressure and smaller than the overall yield pressure, and hydroforming so as to perform both expansion and overhang in a series of steps. It is assumed that.
[0007]
Here, it is often effective to make the second internal pressure smaller than the internal surface yielding starting pressure, and this is the invention according to claim 2. Further, it is preferable that the first internal pressure be the entire surface yield pressure and the second internal pressure be approximately 90% of the internal surface yield start pressure, and this is the invention according to claim 3. Further, the first axial pushing amount in which the first internal pressure is applied is set to an amount that does not advance the branching forming, and the second axial pushing in which the second internal pressure is applied is applied. It is preferable that the amount is an amount necessary for the overhang molding, and this is the invention according to claim 4. In addition, before the internal pressure reaches the first internal pressure, the cavity for forming the overhang portion is closed, and then, after forming the expanded portion, the cavity for forming the overhang portion is opened. It is often effective, and this is the invention according to claim 5.
[0008]
According to the present invention, first, the inner tube is axially pushed in a state where the inner pressure is larger than the inner surface yield start pressure and smaller than the burst pressure, so that the material tube is completely adhered to the inside of the mold except for the overhang portion, and then the inner pressure is applied. Is pressed down to a second internal pressure that is smaller than the first internal pressure and smaller than the overall yield pressure to form the overhang portion, thereby performing both pipe expansion and overhang in a series of steps. Can be hydroformed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1 and 2, reference numeral 1 denotes a mold for hydroforming, in which a cavity 2 for forming an expanded portion is formed on a lower side, and a cavity 3 for forming a branch portion is formed on an upper side. Have been. That is, the mold 1 is for molding a component having both the tube expansion element and the branching element.
The mold 1 is a single-pressing type having only one axial pressing fitting 4, and the axial pressing force acts rightward in the drawing. Of course, it may be. Reference numeral 5 denotes a high-pressure fluid supply hole provided in the shaft press fitting 4, and P denotes a material pipe.
[0010]
Next, the procedure of the hydroforming method of the present invention will be described. As shown in FIG. 1, a material pipe P is set inside the mold 1 and the material pipe P is inserted through a high-pressure fluid supply hole 5 of a shaft pushing fitting 4. This is basically the same as the conventional hydroforming method in that the axial pressing fitting 4 is moved to the right in the drawing while supplying a high-pressure fluid of several tens of MPa into the inside, and hydroforming is performed.
Then, in the present invention, firstly, the expanded portion is formed by axially pushing while applying a first internal pressure that is larger than the internal surface yield start pressure and smaller than the burst pressure, and then the internal pressure is set smaller than the first internal pressure and smaller than the overall yield pressure. It has a characteristic configuration in that the branch is formed by pushing the shaft while the pressure is reduced to a small second internal pressure, and hydroforming is performed so as to perform both expansion and branching in a series of steps.
[0011]
That is, in the present invention, as shown in FIG. 3, first, the raw material pipe P is pushed axially in a state where a first internal pressure (P1) which is larger than the internal surface yielding starting pressure (P i ) and smaller than the burst pressure (P b ) is applied. was completely adhered to the inside of the mold, and then press axis in a state where the internal pressure was reduced to less than the first inner pressure (P1) and the entire surface yield pressure (P g) is smaller than the second inner pressure (P2) branch By completing the bulging, hydroforming is performed in the mold 1 so as to perform both the bulging and the bulging in a series of steps to efficiently form a part having both the bulging element and the bulging element. You do it.
[0012]
Here, the reason why the first internal pressure (P1) is set to a pressure larger than the internal surface yield start pressure (P i ) and smaller than the burst pressure (P b ) is that the deformation proceeds as the internal surface yield start pressure (P i ) approaches. This is because it becomes difficult to increase the risk of cracking as the pressure approaches the burst pressure ( Pb ). According to the study of the present inventor, it has been confirmed that the first internal pressure (P1) is best about the overall yield pressure ( Pg ).
[0013]
Further, the second internal pressure (P2) is set to be smaller than the first internal pressure (P1) and smaller than the overall yield pressure ( Pg ) because the frictional force between the mold and the material pipe is reduced. This is for transmitting the axial pushing force necessary for branching to the branching portion. Further, by setting the second internal pressure (P2) to a pressure smaller than the internal surface yielding start pressure (P i ), the frictional force can be reduced as much as possible. However, if it is lowered too much, buckling occurs, so it is necessary to find the optimum value by numerical analysis or the like. According to the study of the present inventor, it has been confirmed that the second internal pressure (P2) is preferably set to be about 90% of the internal surface yielding starting pressure (P i ). However, since the influence of the material is great, it is preferable to obtain the value by numerical analysis or the like each time.
[0014]
The first axial pressing amount (δ1) for pressing the shaft while the first internal pressure is applied is set to an amount that does not allow the bulge forming to proceed. The axial pressing with the first internal pressure (P1) is for completely bringing the material pipe P into close contact with the inside of the mold (expansion molding), and therefore, the r value of the material pipe P, plastic deformation, and the like are taken into consideration. The minimum amount of axial pushing that does not allow the overhang forming to proceed while maintaining the sealing performance of the axial pushing portion is determined, and is defined as a first axial pushing amount (δ1). Empirically, it is considered to be about 10% of the diameter of the material pipe P.
[0015]
The second axial pushing amount (δ2) in which the shaft is pushed while the second internal pressure is applied is an amount necessary for the overhang forming. Here, assuming that the diameter of the material pipe P is D, the amount of branch protrusion is h, and the diameter of the branch portion is d, the second axial pushing amount (δ2) needs to be at least larger than h × d / D. Specifically, it is determined according to design conditions.
In addition, as shown in FIGS. 6 and 7, by closing the cavity for forming the overhang portion by using, for example, a counter 6 or the like, the risk of burst at the overhang portion can be reduced. Since the cavity must be closed at the time of the subsequent branch molding, the cavity for molding the branch is formed by removing the counter 6 or the like after molding the expanded portion. Open.
[0016]
Thus, the axial pressing in a state where the internal pressure was applied for first inner surface yield start pressure (P i) larger than the burst pressure (P b) is smaller than the first inner pressure (P1), then the pressure first inner pressure ( by pushing shaft in a state of lowered with up to less than P1) and the entire surface yield pressure (P g) is smaller than the second inner pressure (P2), it consists of complex shape with both elements of the expanded element and EdaCho out element The parts can be reliably hydroformed in a series of steps, and there is no need to form the parts in multiple steps as in the prior art, and the molding efficiency can be greatly improved.
As shown in FIG. 4, a molded product having the expanded portion 11 and the overhang portion 12 on the surface of the material pipe P can be obtained by the hydroforming method of the present invention. If it cuts by the cutting surface 13, it will be a completed product.
[0017]
Here, the three pressures used in the present specification will be described.
The inner surface yield start pressure (P i ) is the pressure at which local yield starts on the inner surface of the material steel pipe. The inner surface yield initiation pressure (P i ) in a state where there is no constraint on the outer circumference when no axial force is applied is obtained from the yield stress (σys), the diameter (D), and the wall thickness (t) with respect to the thin ideal steel pipe according to the formula (1). It has been theoretically derived that it can be calculated by the inner surface yield initiation pressure calculation formula.
(Equation 1)
Figure 2004276032
For example, for a ferritic stainless steel pipe (σys = 540 MPa) with D = 42.7 mm and t = 1.8 mm, P i = 45.5 MPa.
The overall yield pressure (P g ) is the pressure when yielding occurs in the entire cross section of the material steel pipe, and cannot be determined theoretically, and is determined by numerical analysis. For example, P g = 51.0 MPa in the above-mentioned steel pipe in a state where there is no constraint on the outer periphery when no axial force is applied.
The burst pressure (P b ) is a pressure at which the material steel pipe bursts and cannot be theoretically determined, and thus is determined by numerical analysis. For example, in the above-mentioned steel pipe in a state where there is no constraint on the outer circumference when no axial force is applied, P b = 57.0 MPa.
[0018]
【The invention's effect】
As described above, according to the hydroforming method of the present invention, even a part having a complicated shape having both a pipe expanding element and a branching element can be efficiently processed in a series of steps without being divided into multiple steps. Hydroforming can be performed. Therefore, the present invention is suitable for manufacturing a component having a complicated shape such as an exhaust manifold of an automobile.
Therefore, the present invention greatly contributes to industrial development as a hydroforming method for a component having both a tube expansion element and a branching element that has solved the conventional problems.
[Brief description of the drawings]
FIG. 1 is a sectional view of a mold showing an embodiment of the present invention.
FIG. 2 is a sectional view of a mold showing a final molding state of FIG.
FIG. 3 is a graph showing a relationship between an axial pressing amount and an internal pressure.
FIG. 4 is a partially cutaway sectional view showing a molded product obtained by the present invention.
FIG. 5 is a partially cutaway sectional view showing a part having a complicated shape obtained by the present invention.
FIG. 6 is a sectional view of a mold and a cavity closing mechanism according to another embodiment.
FIG. 7 is a sectional view of a mold showing a final molding state of FIG. 6;
[Explanation of symbols]
REFERENCE SIGNS LIST 1 mold 2 cavity for forming expanded portion 3 cavity for forming branch protrusion 4 axial press fitting 5 high-pressure fluid supply hole 6 counter P1 first internal pressure P2 second internal pressure P i internal surface yielding start pressure P g Overall yield pressure P b Burst pressure δ1 First axial pressing amount δ2 Second axial pressing amount

Claims (5)

拡管部成形用のキャビティと枝張出部成形用のキャビティを備えた金型の内部に素材管をセットした後、先ず内面降伏開始圧力より大きくバースト圧力より小さい第1の内圧力をかけた状態で軸押して拡管部の成形を行い、次いで内圧を第1の内圧力より小さくかつ全面降伏圧力より小さい第2の内圧力まで下げた状態で軸押して枝張出部の成形を行い、一連の工程で拡管と枝張出の両方を行うようにハイドロフォーミングすることを特徴とする拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法。After setting the material pipe inside a mold having a cavity for forming the expanded portion and a cavity for forming the overhang portion, a first internal pressure that is larger than the internal surface yield start pressure and smaller than the burst pressure is applied first. To form the expanded portion, and then press the shaft while the internal pressure is reduced to a second internal pressure smaller than the first internal pressure and smaller than the overall yield pressure to form a branch extension, and a series of steps are performed. A hydroforming method for a part having both an expanding element and a branching element by hydroforming so as to perform both expanding and branching. 内面降伏開始圧力より小さい第2の内圧力まで下げた状態で軸押しする請求項1に記載の拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法。The method of hydroforming a part having both a pipe expansion element and a branching out element according to claim 1, wherein the axial pushing is performed in a state where the pressure is reduced to a second internal pressure smaller than the internal surface yield start pressure. 第1の内圧力を全面降伏圧力とし、第2の内圧力を内面降伏開始圧力の約90%とする請求項1または2に記載の拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法。3. The hydrodynamic component according to claim 1, wherein the first internal pressure is a total yield pressure and the second internal pressure is about 90% of the internal yield start pressure. Forming method. 第1の内圧力をかけた状態で軸押しする第1の軸押し量を枝張出成形が進まない量とし、第2の内圧力をかけた状態で軸押しする第2の軸押し量を枝張出成形に必要な量とする請求項1〜3のいずれかに記載の拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法。The first amount of axial pressing in which the first internal pressure is applied is set to an amount that does not allow the branch extrusion to proceed, and the second amount of axial pressing in which the second internal pressure is applied is set as the second amount of axial pressing. The method for hydroforming a part having both a tube expansion element and a branching element according to any one of claims 1 to 3, the amount being required for branching molding. 内圧力が第1の内圧力に到達する前に枝張出部成形用のキャビティを封鎖し、その後拡管部の成形を行った後に枝張出部成形用のキャビティを開放する請求項1〜4のいずれかに記載の拡管要素と枝張出要素の両要素を有する部品のハイドロフォーミング方法。5. The bulge-forming cavity is closed before the internal pressure reaches the first internal pressure, and the bulge-forming cavity is opened after the expansion of the expanded portion. A method for hydroforming a component having both a tube expansion element and a branching element according to any one of the above.
JP2003066832A 2003-03-12 2003-03-12 Hydroforming method for parts having both expansion and branching elements Expired - Fee Related JP4077749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066832A JP4077749B2 (en) 2003-03-12 2003-03-12 Hydroforming method for parts having both expansion and branching elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066832A JP4077749B2 (en) 2003-03-12 2003-03-12 Hydroforming method for parts having both expansion and branching elements

Publications (2)

Publication Number Publication Date
JP2004276032A true JP2004276032A (en) 2004-10-07
JP4077749B2 JP4077749B2 (en) 2008-04-23

Family

ID=33284620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066832A Expired - Fee Related JP4077749B2 (en) 2003-03-12 2003-03-12 Hydroforming method for parts having both expansion and branching elements

Country Status (1)

Country Link
JP (1) JP4077749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171769B2 (en) 2009-01-27 2012-05-08 Ford Global Technologies Method of forming a flanged tubular member in hydroforming
CN114273859A (en) * 2021-12-23 2022-04-05 福建同越管件有限公司 Manufacturing method of welding-free integrally-formed air conditioner branch pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171769B2 (en) 2009-01-27 2012-05-08 Ford Global Technologies Method of forming a flanged tubular member in hydroforming
CN114273859A (en) * 2021-12-23 2022-04-05 福建同越管件有限公司 Manufacturing method of welding-free integrally-formed air conditioner branch pipe
CN114273859B (en) * 2021-12-23 2022-12-06 福建同越管件有限公司 Manufacturing method of welding-free integrally-formed air conditioner branch pipe

Also Published As

Publication number Publication date
JP4077749B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP3509217B2 (en) Forming method and forming apparatus for deformed cross-section pipe
EP1389497A1 (en) HYDROFORM PROCESS&amp;comma; AND HYDROFORM PRODUCT FORMED BY THE PROCESS
JP2010188420A (en) Method for manufacturing hollow body having flange
JP5009363B2 (en) Hydroform processing method
JP2010029937A (en) Hydroforming method and hydroformed component
JP2006061944A (en) Hydrostatic bulging method, hydrostatically bulged product and hydrostatic bulging die
JP2832702B2 (en) Double pipe manufacturing method
JP2007105788A (en) Piercing method and counterpunch used therefor
JP5783073B2 (en) Hydroform processing method
WO2008130056A1 (en) Hydroformed article
JP2004276032A (en) Hydroforming method for component having both pipe expanding element and branch projecting element
US10279386B2 (en) Method and arrangement for manufacturing of tubes by continuous hydraulic expansion
JP2006043738A (en) Fuel feed pipe manufacturing method
JP2002153917A (en) Bulging method
JP4939706B2 (en) Hydroforming method for metal pipe
JP2005279666A (en) Cylindrical body manufacturing method
JP4319115B2 (en) Method for forming metal molded body
JP5299936B2 (en) Method and apparatus for molding hollow molded body and hollow molded body
JP2005081432A (en) Valve housing manufacturing method, and valve manufacturing method
JP4060723B2 (en) Hydraulic bulge processing apparatus and hydraulic bulge processing method
JP2004330231A (en) Hydroforming method for component having both element of pipe expanding element and branch projecting element
WO2024111215A1 (en) Method and device for performing extrusion molding of different-thickness pipe having solid portion
JPWO2007132799A1 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
US7059033B2 (en) Method of forming thickened tubular members
JP3839787B2 (en) Manufacturing method of double wall hollow metal parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

R151 Written notification of patent or utility model registration

Ref document number: 4077749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees