JP2004275964A - Device and method for producing visible-light-responsive titanium dioxide-based photocatalyst - Google Patents

Device and method for producing visible-light-responsive titanium dioxide-based photocatalyst Download PDF

Info

Publication number
JP2004275964A
JP2004275964A JP2003073972A JP2003073972A JP2004275964A JP 2004275964 A JP2004275964 A JP 2004275964A JP 2003073972 A JP2003073972 A JP 2003073972A JP 2003073972 A JP2003073972 A JP 2003073972A JP 2004275964 A JP2004275964 A JP 2004275964A
Authority
JP
Japan
Prior art keywords
photocatalyst
titanium dioxide
visible light
carrier
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073972A
Other languages
Japanese (ja)
Inventor
Yuji Hayashi
佑二 林
Naoki Takamoto
尚祺 高本
Akinori Ota
彰則 大田
Shoichi Anpo
正一 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Fujitsu Ltd
Original Assignee
Furukawa Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd, Fujitsu Ltd filed Critical Furukawa Co Ltd
Priority to JP2003073972A priority Critical patent/JP2004275964A/en
Publication of JP2004275964A publication Critical patent/JP2004275964A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce a visible-light-responsive titanium dioxide-based photocatalyst expressing high photocatalytic activity within a range from ultraviolet light to visible light. <P>SOLUTION: The device for producing a photocatalyst is provided with a housing 4 having an inlet 1 for a precursor of a titanium dioxide photocatalyst, an inlet 2 for a photocatalyst carrier substance and a carrier gas, and an outlet 3 for the prepared photocatalyst, and a center electrode 5 and an outer electrode 6 for plasma generation, wherein a forepart 5A of the center electrode 5 is coated with a transition metal such as Cr which is doped to a photocatalyst and causes the expression of photocatalytic activity in a visible light range. A sputter condition is set for plasma so as to cause cluster sputtering of the transition metal. A volatile titanium compound such as TiCl<SB>4</SB>is introduced as a photocatalyst precursor, a nano carbon material as a titanium dioxide photocatalyst carrier substance, and O<SB>2</SB>as a carrier gas. The carrier gas is plasma-excited and then utilized as an activated species. During TiO<SB>2</SB>generation, a photocatalyst wherein Cr or the like is substitutionally doped to a grid position is carried by a carrier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は可視光領域において高い光触媒機能を有する可視光応答型の二酸化チタン系光触媒の製造装置及び製造方法に関する。
【0002】
【従来の技術】
光触媒活性が高く安全性や安定性などの面から、最も優れた光触媒材料として二酸化チタンが広く使用されている。しかし、従来使用されている二酸化チタン光触媒は紫外光領域の光のみを吸収するものであって、可視光領域の光は吸収できないため利用できなく、屋外で使用する場合には、太陽光の全エネルギーに占める3〜5%の紫外光しか利用されない。したがって、室内もしくは装置内で使用する際には、水銀ランプ等の特殊な紫外光を放射する光源の設置を必要とし、有害な紫外光を使うことから実用化の面で用途が大きく制約される。
【0003】
このため、太陽光の大分を占める可視光を吸収し、高効率に有害物質を分解無害化できる新規な可視光応答型の光触媒が現在強く求められている。
近年、二酸化チタン光触媒にCr、V、Ni、Fe等を微量イオン注入すると、二酸化チタンの吸収スペクトルが紫外から可視光領域へシフトすることが見出されており、二酸化チタン光触媒へCr、V等の遷移金属をイオン注入する可視光応答型の二酸化チタン光触媒の製造方法が提案されている(特許文献1参照)。
【0004】
Cr、V等の遷移金属イオンをイオン注入した二酸化チタン光触媒では、注入された遷移金属イオンは二酸化チタン表面の構造を変えることなく内部の適切な深さに均一に注入され格子の位置に置換型で存在しているため、注入前に備えていた二酸化チタン光触媒の高い紫外光領域における固有の光触媒活性を維持しながら、可視光領域においても高い光触媒活性が発現する。
【0005】
【特許文献1】
特開平9−262482号公報
【0006】
【発明が解決しようとする課題】
しかしながら、イオン注入する製造方法では、イオン注入を真空下で行うため、大規模な製造装置が必要で装置が高価となり、処理が複雑で厳密な製造工程管理を必要とし、大量処理が不可能で生産効率が高くないという問題がある。
本発明は、可視光応答型の二酸化チタン系光触媒の製造における上記問題を解決するものであって、真空処理の必要がなく、可視光応答型の二酸化チタン系光触媒を効率よく製造できる、簡単で安価な可視光応答型の二酸化チタン系光触媒の製造装置及び製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の可視光応答型の二酸化チタン系光触媒の製造装置は、二酸化チタン光触媒前駆物質とナノカーボン材などの光触媒担体物質とキャリアガスの入口及び調製された光触媒の出口を有するハウジングと、ハウジング内にプラズマを発生させる電極とを備え、キャリアガスをプラズマ励起して光触媒前駆物質を活性種として活用し、二酸化チタン光触媒をナノカーボン材などの光触媒担体に担持させる光触媒の製造装置において、少なくとも一方の電極の前段部分の表面と後段部分の表面とを異なる物質で構成している。
【0008】
この製造装置において、少なくとも一方の電極の前段部分の表面は、二酸化チタン光触媒にドープされ可視光領域における光触媒活性を発現させる注入物質で構成し、また、電極の前段部分の表面の注入物質がクラスタ飛散するように、プラズマがスパッタ条件に設定されることが好ましい。
本発明の可視光応答型の二酸化チタン系光触媒の製造方法では、上記製造装置のハウジングに、光触媒前駆物質としてTiClやチタニウムアルコキサイドないし有機チタニウム化合物など揮発性化合物、光触媒担体物質としてフラーレンやナノチューブ状のナノカーボン材、キャリアガスとしてOを導入し、キャリアガスをプラズマ励起して活性種として活用し、TiO創製中にドープ物質が二酸化チタンの格子の位置に置換型でドープされた二酸化チタン光触媒を光触媒担体に担持させる。
ドープ物質としては、二酸化チタンに可視光領域において光触媒活性を発現させるCr、V、NiまたはFe等の遷移金属を用いることが好ましい。
【0009】
【発明の実施の形態】
図1は本発明の可視光応答型の二酸化チタン系光触媒の製造装置の構成図である。
この可視光応答型の二酸化チタン系光触媒の製造装置は、二酸化チタン光触媒前駆物質の入口1、光触媒担体物質とキャリアガスの入口2、及び調製された光触媒の出口3を有するハウジング4と、ハウジング4内にプラズマを発生させるための電極である中心電極5と外部電極6とを備えている。
【0010】
中心電極5はハウジング4の中心にその内壁と所定の間隔を開けて設けられ、外部電極6は中心電極5を包囲するようにハウジング4の外壁上に設けられている。そして、ハウジング4の内壁と中心電極5との間には、外気から遮断されたプラズマ生成空間7が形成されている。
ハウジング4は石英ガラス等の誘電体で製作してもよく、金属または合金等の導電体で製作してもよい。
【0011】
なお、ハウジング4が導電体である場合には、ハウジング4の中心電極5と対向する部分を外部電極6として使用することもできる。
中心電極5は、Cu、Au、Pt、Pd、Fe、Ni等で製作される。
この中心電極5は、前段部分5Aの表面と後段部分5Bの表面とが異なる物質で構成されるようになっており、ここでは、二酸化チタンにドープされて可視光領域における光触媒活性を発現させるCrが、ドープ物質として前段部分5Aの表面にコートされている。
【0012】
中心電極5と外部電極6は電源8に接続されている。中心電極5の前段部分5Aと外部電極6の前段部分6Aは前段部分電源8A、中心電極5の後段部分5Bと外部電極6の後段部分6Bは後段部分電源8Bからそれぞれ高圧の交流電圧が印加される。
可視光応答型の二酸化チタン系光触媒を製造するときには、入口1から二酸化チタン光触媒前駆物質としてTiClやチタニウムアルコキサイドないし有機チタニウム化合物からなる少なくとも一種の揮発性チタニウム化合物、入口2から光触媒担体物質としてフラーレンやナノチューブ状のナノカーボン材、キャリアガスとしてOが導入される。導入されたこれらの原料は、プラズマ生成空間7を通って出口3へ誘導される。このとき、プラズマ生成空間7で反応が進行する。
【0013】
中心電極5と外部電極6には電源8から高圧の交流電圧(例えば10kV、1kHz)が印加されて、プラズマ生成空間7でキャリアガスをプラズマ励起する。
中心電極5は前段部分5Aの表面物質がCrであり、図2に示すグロー領域で電圧を印加しプラズマをスパッタ条件に設定することにより、プラズマ生成空間7中にCrのクラスタがプラズマ飛散する。また、光触媒前駆物質として、例えばTiClを使用した場合は、TiClはTiとClの結合が解離する。
【0014】
後段部分5Bでは、アーク領域で電圧を印加しプラズマを非スパッタ条件に設定することにより、周辺のプラズマ生成空間7において、次式に示すようにCrイオンが注入された酸化チタンが生成され、この酸化チタンがナノカーボン上に担持される。
【0015】
【化1】

Figure 2004275964
【0016】
上記の可視光応答酸化チタン系光触媒生成の化学反応は式(2)〜(5)に示される。
TiCl→Ti+2Cl・・・・・(2)
Ti+O→TiO・・・・・・・・(3)
TiO+Cr・・・・・・・・・・・(4)
TiO+Cr on NCTs・・・(5)
プラズマ生成空間7を通過した物質は、反応生成物、キャリアガス、未反応ガスの混合物として出口3から装置外へ排出される。この混合物から、目的とするCrイオンがドープされた二酸化チタンがナノカーボンに担持されている可視光応答型の二酸化チタン系光触媒を分離回収する。残余の生成物はキャリアガス、未反応ガスと共に入口1、2へ再投入される。
【0017】
このように、キャリアガスをプラズマ励起して活性種として活用し、TiOにCrなどがドープされた二酸化チタン光触媒をナノカーボンに担持させた、可視光応答型の二酸化チタン系光触媒は、紫外光から可視光領域において高い光触媒活性を発現する。
【0018】
【発明の効果】
以上説明したように、本発明の可視光応答型の二酸化チタン系光触媒の製造装置は、真空処理の必要がなく、構成が簡単で装置コストを低減でき、可視光応答型の二酸化チタン系光触媒を効率よく製造することができる。
また、本発明の可視光応答型の二酸化チタン系光触媒の製造方法により、可視光領域において極めて高い光触媒活性を発現する可視光応答型の二酸化チタン系光触媒が得られる。
【図面の簡単な説明】
【図1】図1は本発明の可視光応答型の二酸化チタン系光触媒の製造装置の構成図である。
【図2】電極に印加される電圧の説明図である。
【符号の説明】
1 入口
2 入口
3 出口
4 ハウジング
5 中心電極
5A 前段部分
5B 後段部分
6 外部電極
6A 前段部分
6B 後段部分
7 プラズマ生成空間
8 電源
8A 前段部分電源
8B 後段部分電源[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and method for producing a visible light responsive titanium dioxide photocatalyst having a high photocatalytic function in the visible light region.
[0002]
[Prior art]
Titanium dioxide is widely used as the most excellent photocatalytic material from the viewpoint of high photocatalytic activity, safety and stability. However, the titanium dioxide photocatalyst conventionally used absorbs only light in the ultraviolet light range, and cannot be used because it cannot absorb light in the visible light range. Only 3-5% of the energy in the ultraviolet light is used. Therefore, when used indoors or in equipment, it is necessary to install a light source that emits special ultraviolet light such as a mercury lamp, and the use of harmful ultraviolet light is greatly restricted in terms of practical use. .
[0003]
For this reason, a novel visible light responsive photocatalyst that absorbs visible light, which accounts for a large portion of sunlight, and can decompose and detoxify harmful substances with high efficiency is currently strongly demanded.
In recent years, it has been discovered that when a small amount of Cr, V, Ni, Fe, or the like is implanted into a titanium dioxide photocatalyst, the absorption spectrum of titanium dioxide shifts from ultraviolet to visible light. A method for producing a visible light responsive titanium dioxide photocatalyst in which a transition metal is ion-implanted has been proposed (see Patent Document 1).
[0004]
In a titanium dioxide photocatalyst in which transition metal ions such as Cr and V are ion-implanted, the implanted transition metal ions are uniformly implanted at an appropriate depth inside without changing the structure of the titanium dioxide surface, and are substituted at lattice positions. Therefore, while maintaining the inherent photocatalytic activity in the high ultraviolet light region of the titanium dioxide photocatalyst provided before injection, a high photocatalytic activity is also exhibited in the visible light region.
[0005]
[Patent Document 1]
JP-A-9-262482
[Problems to be solved by the invention]
However, in the manufacturing method in which the ion implantation is performed, since the ion implantation is performed in a vacuum, a large-scale manufacturing apparatus is required and the apparatus is expensive, the processing is complicated, and strict control of the manufacturing process is required. There is a problem that the production efficiency is not high.
The present invention solves the above-mentioned problem in the production of a visible light responsive titanium dioxide photocatalyst, which eliminates the need for vacuum treatment and can efficiently produce a visible light responsive titanium dioxide photocatalyst. An object of the present invention is to provide an inexpensive apparatus and method for producing a visible light responsive titanium dioxide photocatalyst.
[0007]
[Means for Solving the Problems]
An apparatus for manufacturing a visible light responsive titanium dioxide photocatalyst according to the present invention includes a housing having an inlet for a titanium dioxide photocatalyst precursor, a photocatalyst carrier material such as a nanocarbon material, an inlet for a carrier gas, and an outlet for a prepared photocatalyst; In the photocatalyst manufacturing apparatus that includes an electrode that generates plasma, excites a carrier gas by plasma and utilizes a photocatalyst precursor as an active species, and supports a titanium dioxide photocatalyst on a photocatalyst carrier such as a nanocarbon material. The surface of the former part and the surface of the latter part of the electrode are made of different materials.
[0008]
In this manufacturing apparatus, at least one of the front surfaces of the electrodes is formed of an injection material doped with titanium dioxide photocatalyst to exhibit photocatalytic activity in the visible light region, and the injection material on the front surface of the electrodes is clustered. Preferably, the plasma is set to sputtering conditions so that it is scattered.
In the method for producing a visible light responsive titanium dioxide photocatalyst of the present invention, a volatile compound such as TiCl 4 or titanium alkoxide or an organic titanium compound is used as a photocatalyst precursor, and a fullerene or nanotube nano carbon material, introducing O 2 as a carrier gas, utilizing the carrier gas as the active species by plasma excitation, dopant into TiO 2 created is doped with substituted to the position of the lattice of titanium dioxide A titanium dioxide photocatalyst is supported on a photocatalyst carrier.
As the doping substance, it is preferable to use a transition metal such as Cr, V, Ni, or Fe that causes titanium dioxide to exhibit photocatalytic activity in the visible light region.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram of an apparatus for producing a visible light responsive titanium dioxide photocatalyst according to the present invention.
This visible light responsive titanium dioxide photocatalyst manufacturing apparatus comprises a housing 4 having an inlet 1 for a titanium dioxide photocatalyst precursor, an inlet 2 for a photocatalyst carrier material and a carrier gas, and an outlet 3 for a prepared photocatalyst; A central electrode 5 which is an electrode for generating plasma therein and an external electrode 6 are provided.
[0010]
The center electrode 5 is provided at a predetermined distance from the inner wall of the housing 4 at the center thereof, and the outer electrode 6 is provided on the outer wall of the housing 4 so as to surround the center electrode 5. A plasma generation space 7 is formed between the inner wall of the housing 4 and the center electrode 5 and is shielded from the outside air.
The housing 4 may be made of a dielectric such as quartz glass or a conductor such as a metal or an alloy.
[0011]
When the housing 4 is a conductor, a portion of the housing 4 facing the center electrode 5 can be used as the external electrode 6.
The center electrode 5 is made of Cu, Au, Pt, Pd, Fe, Ni, or the like.
The center electrode 5 has a structure in which the surface of the front part 5A and the surface of the rear part 5B are made of different materials. In this case, the center electrode 5 is doped with titanium dioxide to exhibit photocatalytic activity in the visible light region. Is coated on the surface of the former part 5A as a doping substance.
[0012]
The center electrode 5 and the external electrode 6 are connected to a power supply 8. A high AC voltage is applied to the front part 5A of the center electrode 5 and the front part 6A of the external electrode 6 from the front part power supply 8A, and to the rear part 5B of the center electrode 5 and the back part 6B of the external electrode 6 from the rear part power supply 8B. You.
When producing a visible light responsive titanium dioxide photocatalyst, at least one volatile titanium compound made of TiCl 4 , titanium alkoxide or an organic titanium compound as a titanium dioxide photocatalyst precursor from the inlet 1, and a photocatalyst carrier material from the inlet 2. Fullerene or nanotube-like nanocarbon material, and O 2 as a carrier gas. These introduced raw materials are guided to the outlet 3 through the plasma generation space 7. At this time, the reaction proceeds in the plasma generation space 7.
[0013]
A high AC voltage (for example, 10 kV, 1 kHz) is applied from a power supply 8 to the center electrode 5 and the external electrode 6, and the carrier gas is plasma-excited in the plasma generation space 7.
The surface material of the center electrode 5 in the front part 5A is Cr. By applying a voltage in the glow region shown in FIG. 2 and setting the plasma to the sputtering condition, the clusters of Cr are scattered in the plasma generation space 7 by plasma. When TiCl 4 is used as the photocatalyst precursor, for example, the bond between Ti and Cl is dissociated in TiCl 4 .
[0014]
In the latter part 5B, by applying a voltage in the arc region and setting the plasma to a non-sputtering condition, titanium oxide into which Cr ions are implanted as shown in the following equation is generated in the peripheral plasma generation space 7, and this is generated. Titanium oxide is supported on the nanocarbon.
[0015]
Embedded image
Figure 2004275964
[0016]
The chemical reactions for producing the visible light-responsive titanium oxide-based photocatalyst are shown in equations (2) to (5).
TiCl 4 → Ti + 2Cl 2 (2)
Ti + O 2 → TiO 2 (3)
TiO 2 + Cr ・ ・ ・ (4)
TiO 2 + Cr on NCTs (5)
The substance that has passed through the plasma generation space 7 is discharged out of the apparatus from the outlet 3 as a mixture of a reaction product, a carrier gas, and an unreacted gas. From this mixture, a visible light responsive titanium dioxide-based photocatalyst in which titanium dioxide doped with a desired Cr ion is supported on nanocarbons is separated and recovered. The remaining products are recharged to the inlets 1 and 2 together with the carrier gas and the unreacted gas.
[0017]
As described above, the visible light responsive titanium dioxide photocatalyst in which the carrier gas is plasma-excited and used as an active species, and the titanium dioxide photocatalyst in which TiO 2 is doped with Cr or the like is supported on nanocarbon, is an ultraviolet light. To exhibit high photocatalytic activity in the visible light region.
[0018]
【The invention's effect】
As described above, the visible light responsive titanium dioxide photocatalyst manufacturing apparatus of the present invention does not require a vacuum treatment, is simple in configuration, can reduce the apparatus cost, and can provide a visible light responsive titanium dioxide photocatalyst. It can be manufactured efficiently.
Further, according to the method for producing a visible light responsive titanium dioxide photocatalyst of the present invention, a visible light responsive titanium dioxide photocatalyst exhibiting extremely high photocatalytic activity in the visible light region can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an apparatus for producing a visible light responsive titanium dioxide photocatalyst according to the present invention.
FIG. 2 is an explanatory diagram of a voltage applied to an electrode.
[Explanation of symbols]
Reference Signs List 1 inlet 2 inlet 3 outlet 4 housing 5 center electrode 5A front part 5B rear part 6 external electrode 6A front part 6B rear part 7 plasma generation space 8 power supply 8A front part power supply 8B rear part power supply

Claims (5)

二酸化チタン光触媒前駆物質とカーボンナノチューブなどの光触媒担体物質とキャリアガスの入口及び調製された光触媒の出口を有するハウジングと、ハウジング内にプラズマを発生させる電極とを備え、キャリアガスをプラズマ励起して活性種として活用し、二酸化チタン光触媒を光触媒担体に担持させる光触媒の製造装置であって、少なくとも一方の電極の前段部分の表面と後段部分の表面とを異なる物質で構成したことを特徴とする可視光応答型の二酸化チタン系光触媒の製造装置。Equipped with a housing having a titanium dioxide photocatalyst precursor, a photocatalyst carrier material such as carbon nanotubes, a carrier gas inlet and a prepared photocatalyst outlet, and an electrode for generating plasma in the housing. A photocatalyst manufacturing apparatus for utilizing a titanium dioxide photocatalyst on a photocatalyst carrier by utilizing as a seed, wherein at least one of the front surface and the rear surface of one of the electrodes is made of a different material. Responsive titanium dioxide photocatalyst manufacturing equipment. 少なくとも一方の電極の前段部分の表面を、二酸化チタンなどの酸化物の格子の位置に置換されてドープし、可視光領域における光触媒活性を発現させるドープ物質で構成したことを特徴とする請求項1記載の可視光応答型の二酸化チタン系光触媒の製造装置。2. The structure according to claim 1, wherein the surface of at least one of the electrodes is formed of a doping material that substitutes for an oxide lattice such as titanium dioxide and is doped to exhibit photocatalytic activity in the visible light region. An apparatus for producing a visible light responsive titanium dioxide photocatalyst according to the above. 電極の前段部分の表面の物質がクラスタ飛散するようプラズマがスパッタ条件に設定されることを特徴とする請求項1または2記載の可視光応答型の二酸化チタン系光触媒の製造装置。3. The apparatus for producing a visible-light-responsive titanium dioxide-based photocatalyst according to claim 1, wherein the plasma is set under sputtering conditions so that the material on the surface of the front part of the electrode is scattered in clusters. 請求項1、2または3記載の製造装置のハウジングに、二酸化チタン光触媒前駆物質としてTiClやチタニウムアルコキサイドないし有機チタニウム化合物など少なくとも一種の揮発性化合物、光触媒担体物質としてナノカーボン材、キャリアガスとしてOを導入し、キャリアガスをプラズマ励起して活性種として活用し、TiOが創製される時に格子の位置にドープする注入物質が置換された二酸化チタン光触媒を光触媒担体に担持させることを特徴とする可視光応答型の二酸化チタン系光触媒の製造方法。 4. The housing of the manufacturing apparatus according to claim 1, wherein at least one volatile compound such as TiCl 4 , titanium alkoxide or an organic titanium compound is used as a titanium dioxide photocatalyst precursor, a nanocarbon material is used as a photocatalyst carrier material, and a carrier gas is used. the O 2 was introduced as, utilizing a carrier gas as the active species by plasma excitation, that the injection material doped in the position of the grating is supported titanium dioxide photocatalyst which is substituted in the photocatalyst carrier when the TiO 2 is created A method for producing a visible light responsive type titanium dioxide photocatalyst. 注入物質がCr、V、NiまたはFe等の遷移金属であることを特徴とする請求項4記載の可視光応答型の二酸化チタン系光触媒の製造方法。5. The method for producing a visible light responsive titanium dioxide photocatalyst according to claim 4, wherein the injected substance is a transition metal such as Cr, V, Ni or Fe.
JP2003073972A 2003-03-18 2003-03-18 Device and method for producing visible-light-responsive titanium dioxide-based photocatalyst Pending JP2004275964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073972A JP2004275964A (en) 2003-03-18 2003-03-18 Device and method for producing visible-light-responsive titanium dioxide-based photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073972A JP2004275964A (en) 2003-03-18 2003-03-18 Device and method for producing visible-light-responsive titanium dioxide-based photocatalyst

Publications (1)

Publication Number Publication Date
JP2004275964A true JP2004275964A (en) 2004-10-07

Family

ID=33289736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073972A Pending JP2004275964A (en) 2003-03-18 2003-03-18 Device and method for producing visible-light-responsive titanium dioxide-based photocatalyst

Country Status (1)

Country Link
JP (1) JP2004275964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107681A1 (en) * 2008-02-25 2009-09-03 国立大学法人京都大学 Method for producing impurity-doped metal oxide by using microwave
JP2015008196A (en) * 2013-06-25 2015-01-15 東京エレクトロン株式会社 Processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107681A1 (en) * 2008-02-25 2009-09-03 国立大学法人京都大学 Method for producing impurity-doped metal oxide by using microwave
JPWO2009107681A1 (en) * 2008-02-25 2011-08-04 国立大学法人京都大学 Method for producing impurity-doped metal oxide using microwave
JP2015008196A (en) * 2013-06-25 2015-01-15 東京エレクトロン株式会社 Processing device

Similar Documents

Publication Publication Date Title
CN105772041B (en) A kind of Photocatalyzed Hydrogen Production co-catalyst, photocatalytic system and the method for producing hydrogen
Li et al. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis
Yan et al. Black titanium dioxide nanomaterials in photocatalysis
Li et al. Engineering of Gd/Er/Lu-triple-doped Bi2MoO6 to synergistically boost the photocatalytic performance in three different aspects: Oxidizability, light absorption and charge separation
Chen et al. Synergistic degradation performance and mechanism of 17β-estradiol by dielectric barrier discharge non-thermal plasma combined with Pt–TiO2
Lee et al. Diclofenac degradation properties of a La-doped visible light-responsive TiO2 photocatalyst
Yu et al. Microwave solvothermal-assisted calcined synthesis of Bi2WxMo1− XO6 solid solution photocatalysts for degradation and detoxification of bisphenol A under simulated sunlight irradiation
CN106582769A (en) Preparation method of noble metal-free composite optical catalytic material
CN107497427B (en) Preparation method of silver/graphene/zinc oxide composite material capable of degrading formaldehyde
JP2004275964A (en) Device and method for producing visible-light-responsive titanium dioxide-based photocatalyst
CN103981531B (en) A kind of preparation method of fluorescent carbon point
JP4529504B2 (en) Method and apparatus for producing endohedral fullerene
KR100514649B1 (en) A Shoe Tree Using Photocatalyst
Mali et al. Enhanced solar water splitting of electron beam irradiated titania photoanode by electrostatic spray deposition
JPH04157193A (en) Production of superfine metal grain
KR102329190B1 (en) A skin care apparatus and method using plasma discharge
CN209968113U (en) Heterogeneous discharge system for removing VOCs with different solubilities through catalysis and synergy
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
Xie et al. Five isomers of C60 generated in microwave plasma of chloroform
KR100514648B1 (en) An Apparatus for Skin Beauty Care Using Photocatalyst and Method Using Thereof
Shuaibov et al. Plasma reactor generating synchronous flows of bactericidal UV radiation and nanostructures of zinc, copper, iron oxides and chalcopyrite
CN107824228B (en) Solution plasma treatment method and device for improving activity of titanium dioxide (AB) photocatalyst
Lamichhane et al. Sustainable Plasma‐Catalytic Nitrogen Fixation with Pyramid Shaped μ‐Electrode DBD and Titanium Dioxide
KR200219735Y1 (en) Apparatus for preparing water solution of dissolved and decomposed ozone
KR20210044141A (en) high density fusion plasma sterilization and deodorizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331