JP2004275951A - Hydrogen storing material - Google Patents

Hydrogen storing material Download PDF

Info

Publication number
JP2004275951A
JP2004275951A JP2003073410A JP2003073410A JP2004275951A JP 2004275951 A JP2004275951 A JP 2004275951A JP 2003073410 A JP2003073410 A JP 2003073410A JP 2003073410 A JP2003073410 A JP 2003073410A JP 2004275951 A JP2004275951 A JP 2004275951A
Authority
JP
Japan
Prior art keywords
hydrogen storage
porous body
metal
particles
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003073410A
Other languages
Japanese (ja)
Inventor
Yoshinari Fujiwara
良也 藤原
Hajime Goto
肇 後藤
Terumi Furuta
照実 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003073410A priority Critical patent/JP2004275951A/en
Publication of JP2004275951A publication Critical patent/JP2004275951A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storing material which hinders coagulation of metal ultrafine particles and has outstanding hydrogen storing capability. <P>SOLUTION: The hydrogen storing material comprises a porous body, metal ultrafine particles which are accommodated in a hole of the porous body and has hydrogen adsorption ability and a coating film which covers a surface of the porous body, intercepts oxygen and selectively passes hydrogen therethrough. The porous body is made of a metal oxide or zeolite having the hole of average diameter within a range of 5 to 200Å. The metal ultrafine particle consists of at least one kind of metal selected from the group consisting of transition metals, platinum group metals, Li, Be, Na, Mg, K and Ca. The coating film consists of a precious metal or carbon or a polymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵能を備える金属超微粒子を用いる水素貯蔵材料に関するものである。
【0002】
【従来の技術】
従来、燃料電池等の燃料に用いられる水素を貯蔵する手段として、水素吸蔵合金等の水素吸蔵能を備える金属を用いる水素貯蔵材料が提案されている。前記水素吸蔵合金を用いる水素貯蔵材料として、例えば、粉体状のZrMn合金を容器に収容したものがある(例えば特許文献1参照)。
【0003】
前記粉体状の水素吸蔵合金は、水素吸蔵/放出反応を繰り返すと、前記容器内部の圧力が上昇する一方、反応熱により温度が上昇するため、粉体粒子が相互に固着して焼結状態になるという問題がある。前記水素吸蔵合金は、粉体粒子が相互に焼結状態になると、活性な金属表面の面積が減少して水素の吸蔵/放出速度が低下したり、合金自体が変性して水素吸蔵量が低下する。そこで、前記水素貯蔵材料では、前記粉体状の水素吸蔵合金の表面に酸化被膜を形成し、粉体粒子が相互に焼結状態になることを防止するようにされている。
【0004】
一方、Ni、Co、Fe等の遷移金属、Pd、Pt等の白金族金属、Li、Be、Na、Mg、K、Ca等の金属は、平均粒子径が1〜10nm程度の超微粒子にすることにより、水素吸蔵能が向上することが知られている。前記金属の超微粒子は、水素の吸蔵/放出を高速で行うことができ、しかも低温で水素の吸蔵/放出を行うことができるという利点がある。
【0005】
しかしながら、前記金属の超微粒子は凝集しやすく、凝集すると比表面積が低減するために水素吸蔵能を失うという不都合がある。
【0006】
【特許文献1】
特開昭64−24001号公報
【0007】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、金属の超微粒子の凝集を妨げて、優れた水素貯蔵性能を備える水素貯蔵材料を提供することを目的とする。
【0008】
【課題を解決するための手段】
かかる目的を達成するために、本発明の水素貯蔵材料は、多孔質体と、該多孔質体の空孔内に保持された水素吸蔵能を備える金属超微粒子と、該多孔質体の表面を被覆して酸素を遮断し水素を選択的に透過する被膜とを備えることを特徴とする。
【0009】
本発明の水素貯蔵材料は、水素吸蔵能を備える金属超微粒子が、多孔質体の空孔内に保持されているので、該金属超微粒子が相互に凝集することを防止して、該金属超微粒子の比表面積を大きくし、優れた水素貯蔵性能を得ることができる。また、本発明の水素貯蔵材料は、前記多孔質体の表面が、酸素を遮断し水素を選択的に透過する被膜により被覆されているので、水素の吸蔵/放出を妨げることなく、前記金属超微粒子の酸化を阻止することができ、繰り返し使用による水素貯蔵性能の低下を防止することができる。
【0010】
前記多孔質体は、平均直径が5〜200オングストロームの範囲にある空孔を備えるものであれば、金属酸化物でもよく、ゼオライトであってもよい。
【0011】
前記金属超微粒子は、Ni、Co、Fe等の遷移金属、Pd、Pt等の白金族金属、Li、Be、Na、Mg、K、Caからなる群から選択される少なくとも1種の金属からなるものを用いることができる。
【0012】
また、前記被膜は、貴金属、炭素または高分子からなるものを用いることができる。
【0013】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本発明の一実施形態の水素貯蔵材料の水素貯蔵性能を示すグラフであり、図2は本発明の他の実施形態の水素貯蔵材料の水素貯蔵性能を示すグラフである。
【0014】
本実施形態の水素貯蔵材料は、金属超微粒子を、空孔内に保持した多孔質体の表面に酸素を遮断し水素を選択的に透過する被膜を備えるものである。
【0015】
前記多孔質体は、平均直径が5〜200オングストロームの範囲にある空孔を備えるものであればよく、金属酸化物、ゼオライト、炭素質材料等を挙げることができる。前記金属酸化物としては、アルミナ、シリカ等を挙げることができ、前記炭素質材料等としては、活性炭、カーボンナノチューブ等を挙げることができる。
【0016】
前記金属超微粒子とは、平均粒子径が1〜10nmの範囲にあるものをいう。このような金属超微粒子としては、Ni、Co、Fe等の遷移金属、Pd、Pt等の白金族金属、Li、Be、Na、Mg、K、Caからなる群から選択される少なくとも1種の金属からなるものを挙げることができる。
【0017】
また、前記被膜としては、Pd等の貴金属からなる被膜、フラーレン、ダイヤモンド等の炭素材料薄膜、分子ふるい炭素膜(MSCM)、ポリイミド系ナノ濾過膜等の適切な空孔を有する高分子からなるものを挙げることができる。また、前記被膜は、酸化物、窒化物、硼化物であってもよい。
【0018】
本実施形態の水素貯蔵材料を製造するには、まず、前記金属超微粒子と同一金属の塩を含む溶液を前記多孔質体に含浸せしめた後、前記多孔質体の空孔内で、前記塩を還元する。この結果、前記多孔質体の空孔内に前記金属超微粒子が析出し、空孔内に該金属超微粒子を保持した多孔質体が得られる。
【0019】
そこで、次に、空孔内に前記金属超微粒子を収容した多孔質体の表面に、前記被膜を形成する。前記被膜は、例えばPd膜の場合、前記多孔質体の表面にPVD法により、厚さ1〜10μm程度の膜を形成する。
【0020】
次に、本実施形態の実施例と比較例とを示す。
【0021】
【実施例1】
本実施例では、硫酸ニッケル(NiSO)結晶をエチレングリコールに溶解させた溶液(濃度0.4ミリモル/l)に、空隙率0.5(50%)、有効入口径6オングストロームの清浄なX型ゼオライトを浸漬し、該ゼオライトの空孔(平均直径9オングストローム)に該溶液を充填させた。このとき、減圧雰囲気に保持した前記ゼオライトに前記溶液を導入する差圧吸引方式を用いることにより、前記空孔に対する該溶液の充填を効率よく行うことができる。
【0022】
次に、前記溶液を、前記ゼオライトを浸漬したまま、200℃に加熱し、窒素ガス気流により生成水を除去しながら、3時間還流処理した。前記還流処理後、前記溶液から前記ゼオライトを取り出し、不活性ガス雰囲気の減圧下にて乾燥することにより、空孔内に平均粒子径5nmのNi超微粒子が保持されたゼオライトを得た。前記還流処理は、同時に超音波による撹拌を行うことにより、前記空孔内に前記Ni超微粒子が均一に保持されたゼオライトを得ることができる。
【0023】
次に、前記Ni超微粒子が保持されたゼオライトの表面に、PVD法によりPdからなる厚さ0.1μmの被膜を形成し、水素貯蔵材料を得た。前記被膜は、酸素を遮断し、水素を選択的に透過する機能を備えている。
【0024】
本実施例で得られた水素貯蔵材料の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0025】
【実施例2】
本実施例では、硫酸ニッケル(NiSO)結晶に代えて硫酸鉄(FeSO)結晶を用いた以外は、実施例1と全く同一にして水素貯蔵材料を得た。本実施例で得られた水素貯蔵材料の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0026】
【実施例3】
本実施例では、硫酸ニッケル(NiSO)結晶に代えて硫酸コバルト(CoSO)結晶を用いた以外は、実施例1と全く同一にして水素貯蔵材料を得た。本実施例で得られた水素貯蔵材料の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0027】
【比較例1】
本比較例では、平均直径5μmのNi粒子をゼオライトの空孔内に保持させることなく、該粒子自体を水素貯蔵材料とした。前記Ni粒子の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0028】
【比較例2】
本比較例では、平均直径32μmのFe粒子をゼオライトの空孔内に保持させることなく、該粒子自体を水素貯蔵材料とした。前記Fe粒子の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0029】
【比較例3】
本比較例では、平均直径120μmのCo粒子をゼオライトの空孔内に保持させることなく、該粒子自体を水素貯蔵材料とした。前記Co粒子の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0030】
【比較例4】
本比較例では、CVD法により合成した平均直径15nmのNi超微粒子をゼオライトの空孔内に保持させることなく、該超微粒子自体を水素貯蔵材料とした。前記Ni超微粒子は、合成直後にすでに凝集を生じていた。前記Ni超微粒子の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0031】
【比較例5】
本比較例では、CVD法により合成した平均直径20nmのFe超微粒子をゼオライトの空孔内に保持させることなく、該超微粒子自体を水素貯蔵材料とした。前記Fe超微粒子は、合成直後にすでに凝集を生じていた。前記Fe超微粒子の常温における水素貯蔵量と、圧力との関係を図1に示す。
【0032】
図1から、平均粒子径5nmの遷移金属超微粒子をゼオライトの空孔に収容した水素貯蔵材料(実施例1〜3)は、優れた水素吸蔵能を備えていることが明らかである。これに対して、平均粒子径5〜120μmの遷移金属粒子自体(比較例1〜3)、あるいは平均粒子径15〜20nmの遷移金属超微粒子自体(比較例4,5)は、常温、常圧の条件下で実質的に水素吸蔵能を備えていないことが明らかである。
【0033】
【実施例4】
本実施例では、塩化白金(PtCl)粉末を蒸留水に溶解させた溶液に、空隙率0.5(50%)、有効入口径8オングストロームの清浄なY型ゼオライトを浸漬し、該ゼオライトの空孔(平均直径8オングストローム)に該溶液を充填させた。このとき、減圧雰囲気に保持した前記ゼオライトに前記溶液を導入する差圧吸引方式を用いることにより、前記空孔に対する該溶液の充填を効率よく行うことができる。
【0034】
次に、前記溶液に、前記ゼオライトを浸漬したまま、塩化白金を還元するに足る無水エタノールを徐々に添加し、超音波等で十分に撹拌しつつ、エタノールの沸点以上の温度である80℃に保持して還流処理することにより、前記空孔中で白金を還元した。前記還流処理後、前記溶液から前記ゼオライトを取り出し、不活性ガス雰囲気の減圧下にて乾燥することにより、空孔内に平均粒子径3.2nmのPt超微粒子が保持されたゼオライトを得た。
【0035】
次に、前記Pt超微粒子が収容されたゼオライトの表面に、PVD法によりPdからなる厚さ0.1μmの被膜を形成し、水素貯蔵材料を得た。前記被膜は、酸素を遮断し、水素を選択的に透過する機能を備えている。
【0036】
本実施例で得られた水素貯蔵材料の常温における水素貯蔵量と、圧力との関係を図2に示す。
【0037】
【実施例5】
本実施例では、塩化白金(PtCl)水溶液に代えて、市販のパラジウム標準液(濃度0.6ミリモル/l)を用いた以外は、実施例4と全く同一にして、水素貯蔵材料を得た。本実施例で得られた水素貯蔵材料の常温における水素貯蔵量と、圧力との関係を図2に示す。
【0038】
【比較例6】
本比較例では、平均直径32μmのPt粒子をゼオライトの空孔内に保持させることなく、該粒子自体を水素貯蔵材料とした。前記Pt粒子の常温における水素貯蔵量と、圧力との関係を図2に示す。
【0039】
【比較例7】
本比較例では、平均直径100μmのPd粒子をゼオライトの空孔内に保持させることなく、該粒子自体を水素貯蔵材料とした。前記Pd粒子の常温における水素貯蔵量と、圧力との関係を図2に示す。
【0040】
図2から、平均粒子径3.2nmの白金族金属超微粒子をゼオライトの空孔に収容した水素貯蔵材料(実施例4,5)は、平均粒子径32〜100μmの白金族金属粒子自体(比較例6,7)に比較して、優れた水素吸蔵能を備えていることが明らかである。
【0041】
実施例1〜5の水素貯蔵材料は、前記のように優れた水素吸蔵能を備えているので、前記金属超微粒子による水素の吸蔵/放出を高速で行うことができ、しかも低温で水素の吸蔵/放出を行うことができるという特性を十分に利用できることが明らかである。さらに、実施例1〜5の水素貯蔵材料は、前記Pdからなる被膜を備えているので、前記金属超微粒子の酸化による水素吸蔵能の低下を防止して、繰り返し使用することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の水素貯蔵材料の水素貯蔵性能を示すグラフ。
【図2】本発明の他の実施形態の水素貯蔵材料の水素貯蔵性能を示すグラフ。
【符号の説明】
符号なし。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage material using ultrafine metal particles having a hydrogen storage ability.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a means for storing hydrogen used for fuel such as a fuel cell, a hydrogen storage material using a metal having a hydrogen storage ability such as a hydrogen storage alloy has been proposed. As a hydrogen storage material using the hydrogen storage alloy, for example, there is a material in which a powdery ZrMn 2 alloy is contained in a container (for example, see Patent Document 1).
[0003]
When the powdery hydrogen storage alloy repeats the hydrogen storage / release reaction, the pressure inside the container rises while the temperature rises due to the reaction heat, so that the powder particles adhere to each other and become sintered. Problem. In the hydrogen storage alloy, when the powder particles are mutually sintered, the area of the active metal surface decreases and the hydrogen storage / release rate decreases, or the alloy itself is denatured and the hydrogen storage amount decreases. I do. Therefore, in the hydrogen storage material, an oxide film is formed on the surface of the powdery hydrogen storage alloy, so that the powder particles are prevented from being mutually sintered.
[0004]
On the other hand, transition metals such as Ni, Co, and Fe, platinum group metals such as Pd and Pt, and metals such as Li, Be, Na, Mg, K, and Ca are formed into ultrafine particles having an average particle diameter of about 1 to 10 nm. It is known that this improves the hydrogen storage capacity. The ultrafine metal particles have an advantage that they can store and release hydrogen at a high speed and can store and release hydrogen at a low temperature.
[0005]
However, the ultrafine particles of the metal tend to agglomerate, and when agglomerated, the specific surface area is reduced, so that there is an inconvenience of losing hydrogen storage capacity.
[0006]
[Patent Document 1]
JP-A-64-24001
[Problems to be solved by the invention]
An object of the present invention is to provide a hydrogen storage material that solves such inconveniences, prevents aggregation of ultrafine metal particles, and has excellent hydrogen storage performance.
[0008]
[Means for Solving the Problems]
In order to achieve this object, the hydrogen storage material of the present invention comprises a porous body, metal ultrafine particles having a hydrogen storage ability held in pores of the porous body, and a surface of the porous body. A coating that blocks oxygen and selectively transmits hydrogen.
[0009]
In the hydrogen storage material of the present invention, since the metal ultrafine particles having hydrogen storage ability are held in the pores of the porous body, the metal ultrafine particles are prevented from aggregating with each other, and The specific surface area of the fine particles can be increased, and excellent hydrogen storage performance can be obtained. Further, in the hydrogen storage material of the present invention, since the surface of the porous body is coated with a film that blocks oxygen and selectively transmits hydrogen, the metal storage medium does not hinder the absorption / desorption of hydrogen. Oxidation of the fine particles can be prevented, and a decrease in hydrogen storage performance due to repeated use can be prevented.
[0010]
The porous body may be a metal oxide or zeolite as long as it has pores having an average diameter in a range of 5 to 200 angstroms.
[0011]
The ultrafine metal particles are composed of at least one metal selected from the group consisting of transition metals such as Ni, Co and Fe, platinum group metals such as Pd and Pt, Li, Be, Na, Mg, K and Ca. Can be used.
[0012]
Further, as the film, a film made of a noble metal, carbon or a polymer can be used.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a graph showing the hydrogen storage performance of a hydrogen storage material according to one embodiment of the present invention, and FIG. 2 is a graph showing the hydrogen storage performance of a hydrogen storage material according to another embodiment of the present invention.
[0014]
The hydrogen storage material of the present embodiment has a coating that blocks oxygen and selectively transmits hydrogen on the surface of a porous body that holds ultrafine metal particles in pores.
[0015]
The porous body has only to have pores having an average diameter in the range of 5 to 200 angstroms, and examples thereof include metal oxides, zeolites, and carbonaceous materials. Examples of the metal oxide include alumina and silica, and examples of the carbonaceous material include activated carbon and carbon nanotube.
[0016]
The ultrafine metal particles are particles having an average particle diameter in a range of 1 to 10 nm. Such metal ultrafine particles include at least one selected from the group consisting of transition metals such as Ni, Co and Fe, platinum group metals such as Pd and Pt, Li, Be, Na, Mg, K and Ca. Metals can be used.
[0017]
Examples of the coating include a coating made of a noble metal such as Pd, a thin film of a carbon material such as fullerene and diamond, a molecular sieve carbon film (MSCM), and a polymer having an appropriate pore such as a polyimide nanofiltration membrane. Can be mentioned. Further, the coating may be an oxide, a nitride, or a boride.
[0018]
To produce the hydrogen storage material of the present embodiment, first, after impregnating the porous body with a solution containing a salt of the same metal as the ultrafine metal particles, the salt is filled in the pores of the porous body. To reduce. As a result, the metal ultrafine particles precipitate in the pores of the porous body, and a porous body having the metal ultrafine particles held in the pores is obtained.
[0019]
Then, next, the coating is formed on the surface of the porous body containing the metal ultrafine particles in the pores. When the coating is, for example, a Pd film, a film having a thickness of about 1 to 10 μm is formed on the surface of the porous body by a PVD method.
[0020]
Next, examples of the present embodiment and comparative examples will be described.
[0021]
Embodiment 1
In this example, a solution of nickel sulfate (NiSO 4 ) dissolved in ethylene glycol (concentration: 0.4 mmol / l) was mixed with a clean X having a porosity of 0.5 (50%) and an effective inlet diameter of 6 Å. The zeolite was soaked, and the pores (average diameter 9 Å) of the zeolite were filled with the solution. At this time, by using a differential pressure suction system in which the solution is introduced into the zeolite held in a reduced pressure atmosphere, the pores can be efficiently filled with the solution.
[0022]
Next, the solution was heated to 200 ° C. while the zeolite was immersed, and refluxed for 3 hours while removing generated water by a nitrogen gas stream. After the reflux treatment, the zeolite was taken out of the solution and dried under reduced pressure in an inert gas atmosphere to obtain a zeolite having Ni ultrafine particles having an average particle diameter of 5 nm in pores. In the reflux treatment, zeolite in which the Ni ultrafine particles are uniformly held in the pores can be obtained by simultaneously performing stirring by ultrasonic waves.
[0023]
Next, a 0.1 μm-thick film made of Pd was formed on the surface of the zeolite holding the Ni ultrafine particles by a PVD method to obtain a hydrogen storage material. The coating has a function of blocking oxygen and selectively transmitting hydrogen.
[0024]
FIG. 1 shows the relationship between the hydrogen storage amount of the hydrogen storage material obtained in the present example at room temperature and the pressure.
[0025]
Embodiment 2
In this example, a hydrogen storage material was obtained in exactly the same manner as in Example 1 except that iron sulfate (FeSO 4 ) crystals were used instead of nickel sulfate (NiSO 4 ) crystals. FIG. 1 shows the relationship between the hydrogen storage amount of the hydrogen storage material obtained in the present example at room temperature and the pressure.
[0026]
Embodiment 3
In this example, a hydrogen storage material was obtained in exactly the same manner as in Example 1, except that cobalt sulfate (CoSO 4 ) crystals were used instead of nickel sulfate (NiSO 4 ) crystals. FIG. 1 shows the relationship between the hydrogen storage amount of the hydrogen storage material obtained in the present example at room temperature and the pressure.
[0027]
[Comparative Example 1]
In this comparative example, the Ni particles having an average diameter of 5 μm were used as the hydrogen storage material without holding them in the pores of the zeolite. FIG. 1 shows the relationship between the hydrogen storage amount of the Ni particles at normal temperature and the pressure.
[0028]
[Comparative Example 2]
In this comparative example, Fe particles having an average diameter of 32 μm were used as the hydrogen storage material without holding the particles in the pores of zeolite. FIG. 1 shows the relationship between the hydrogen storage amount of the Fe particles at room temperature and the pressure.
[0029]
[Comparative Example 3]
In this comparative example, the Co particles having an average diameter of 120 μm were used as the hydrogen storage material without holding the particles in the pores of the zeolite. FIG. 1 shows the relationship between the hydrogen storage amount of the Co particles at room temperature and the pressure.
[0030]
[Comparative Example 4]
In this comparative example, the ultrafine Ni particles having an average diameter of 15 nm synthesized by the CVD method were used as the hydrogen storage material without holding in the pores of the zeolite. The Ni ultrafine particles had already aggregated immediately after the synthesis. FIG. 1 shows the relationship between the hydrogen storage amount of the Ni ultrafine particles at room temperature and the pressure.
[0031]
[Comparative Example 5]
In this comparative example, ultrafine Fe particles having an average diameter of 20 nm synthesized by the CVD method were used as the hydrogen storage material without holding them in the pores of zeolite. The Fe ultrafine particles had already aggregated immediately after the synthesis. FIG. 1 shows the relationship between the hydrogen storage amount of the ultrafine Fe particles at room temperature and the pressure.
[0032]
From FIG. 1, it is clear that the hydrogen storage materials (Examples 1 to 3) in which ultrafine transition metal particles having an average particle diameter of 5 nm are accommodated in the pores of zeolite have excellent hydrogen storage capacity. On the other hand, the transition metal particles having an average particle diameter of 5 to 120 μm (Comparative Examples 1 to 3) or the ultrafine transition metal particles having an average particle diameter of 15 to 20 nm (Comparative Examples 4 and 5) are at room temperature and normal pressure. It is apparent that the composition does not have a hydrogen storage capacity substantially under the condition of (1).
[0033]
Embodiment 4
In this embodiment, a clean Y-type zeolite having a porosity of 0.5 (50%) and an effective inlet diameter of 8 Å is immersed in a solution of platinum chloride (PtCl 3 ) dissolved in distilled water, Voids (average diameter 8 Å) were filled with the solution. At this time, by using a differential pressure suction system in which the solution is introduced into the zeolite held in a reduced pressure atmosphere, the pores can be efficiently filled with the solution.
[0034]
Next, while the zeolite is immersed in the solution, anhydrous ethanol sufficient to reduce platinum chloride is gradually added, and while sufficiently stirring with ultrasonic waves or the like, the temperature is raised to 80 ° C., which is a temperature equal to or higher than the boiling point of ethanol. By holding and refluxing, platinum was reduced in the pores. After the reflux treatment, the zeolite was taken out of the solution, and dried under reduced pressure in an inert gas atmosphere to obtain zeolite having Pt ultrafine particles having an average particle size of 3.2 nm in pores.
[0035]
Next, a 0.1 μm-thick film made of Pd was formed on the surface of the zeolite containing the ultrafine Pt particles by a PVD method to obtain a hydrogen storage material. The coating has a function of blocking oxygen and selectively transmitting hydrogen.
[0036]
FIG. 2 shows the relationship between the hydrogen storage amount of the hydrogen storage material obtained in the present example at room temperature and the pressure.
[0037]
Embodiment 5
In this example, a hydrogen storage material was obtained in exactly the same manner as in Example 4, except that a commercially available palladium standard solution (concentration: 0.6 mmol / l) was used instead of the aqueous platinum chloride (PtCl 3 ) solution. Was. FIG. 2 shows the relationship between the hydrogen storage amount of the hydrogen storage material obtained in the present example at room temperature and the pressure.
[0038]
[Comparative Example 6]
In this comparative example, the Pt particles having an average diameter of 32 μm were used as the hydrogen storage material without holding them in the pores of the zeolite. FIG. 2 shows the relationship between the hydrogen storage amount of the Pt particles at room temperature and the pressure.
[0039]
[Comparative Example 7]
In this comparative example, the Pd particles having an average diameter of 100 μm were used as the hydrogen storage material without holding them in the pores of the zeolite. FIG. 2 shows the relationship between the hydrogen storage amount of the Pd particles at room temperature and the pressure.
[0040]
From FIG. 2, the hydrogen storage material (Examples 4 and 5) in which ultrafine platinum group metal particles having an average particle diameter of 3.2 nm are accommodated in the pores of zeolite is the platinum group metal particles having an average particle diameter of 32 to 100 μm (comparative). It is evident that it has an excellent hydrogen storage capacity as compared with Examples 6 and 7).
[0041]
Since the hydrogen storage materials of Examples 1 to 5 have the excellent hydrogen storage ability as described above, the storage / release of hydrogen by the ultrafine metal particles can be performed at high speed, and the hydrogen storage at low temperature can be performed. It is clear that the property of being able to perform / release can be fully utilized. Further, since the hydrogen storage materials of Examples 1 to 5 are provided with the coating made of the Pd, the hydrogen storage ability can be prevented from lowering due to oxidation of the ultrafine metal particles and can be used repeatedly.
[Brief description of the drawings]
FIG. 1 is a graph showing the hydrogen storage performance of a hydrogen storage material according to one embodiment of the present invention.
FIG. 2 is a graph showing hydrogen storage performance of a hydrogen storage material according to another embodiment of the present invention.
[Explanation of symbols]
No sign.

Claims (6)

多孔質体と、該多孔質体の空孔内に保持された水素吸蔵能を備える金属超微粒子と、該多孔質体の表面を被覆して酸素を遮断し水素を選択的に透過する被膜とを備えることを特徴とする水素貯蔵材料。A porous body, metal ultrafine particles having a hydrogen storage ability held in pores of the porous body, and a coating that covers the surface of the porous body, blocks oxygen, and selectively transmits hydrogen. A hydrogen storage material comprising: 前記多孔質体は、平均直径が5〜200オングストロームの範囲にある空孔を備えることを特徴とする請求項1記載の水素貯蔵材料。The hydrogen storage material according to claim 1, wherein the porous body has pores having an average diameter in a range of 5 to 200 angstroms. 前記多孔質体は金属酸化物であることを特徴とする請求項1または請求項2記載の水素貯蔵材料。The hydrogen storage material according to claim 1, wherein the porous body is a metal oxide. 前記多孔質体はゼオライトであることを特徴とする請求項1または請求項2記載の水素貯蔵材料。The hydrogen storage material according to claim 1, wherein the porous body is a zeolite. 前記金属超微粒子は、遷移金属、白金族金属、Li、Be、Na、Mg、K、Caからなる群から選択される少なくとも1種の金属からなることを特徴とする請求項1乃至請求項4のいずれかの項記載の水素貯蔵材料。The ultrafine metal particles are made of at least one metal selected from the group consisting of transition metals, platinum group metals, Li, Be, Na, Mg, K, and Ca. The hydrogen storage material according to any one of the above items. 前記被膜は、貴金属、炭素または高分子からなることを特徴とする請求項1乃至請求項5のいずれかの項記載の水素貯蔵材料。The hydrogen storage material according to any one of claims 1 to 5, wherein the coating is made of a noble metal, carbon, or a polymer.
JP2003073410A 2003-03-18 2003-03-18 Hydrogen storing material Withdrawn JP2004275951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073410A JP2004275951A (en) 2003-03-18 2003-03-18 Hydrogen storing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073410A JP2004275951A (en) 2003-03-18 2003-03-18 Hydrogen storing material

Publications (1)

Publication Number Publication Date
JP2004275951A true JP2004275951A (en) 2004-10-07

Family

ID=33289315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073410A Withdrawn JP2004275951A (en) 2003-03-18 2003-03-18 Hydrogen storing material

Country Status (1)

Country Link
JP (1) JP2004275951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015597A1 (en) * 2005-08-01 2007-02-08 Seoul National University Industry Foundation Hydrogen storage materials
JP2019085652A (en) * 2017-11-06 2019-06-06 キヤノンアネルバ株式会社 Heat generation method and heat generator
US20200001271A1 (en) * 2017-11-06 2020-01-02 Canon Anelva Corporation Structure and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015597A1 (en) * 2005-08-01 2007-02-08 Seoul National University Industry Foundation Hydrogen storage materials
JP2019085652A (en) * 2017-11-06 2019-06-06 キヤノンアネルバ株式会社 Heat generation method and heat generator
US20200001271A1 (en) * 2017-11-06 2020-01-02 Canon Anelva Corporation Structure and method of manufacturing the same
CN111295256A (en) * 2017-11-06 2020-06-16 佳能安内华股份有限公司 Structure and method for manufacturing same
US11103852B2 (en) 2017-11-06 2021-08-31 Canon Anelva Corporation Structure and method of manufacturing the same
CN111295256B (en) * 2017-11-06 2022-05-10 佳能安内华股份有限公司 Structure and method for manufacturing same
CN114799164A (en) * 2017-11-06 2022-07-29 佳能安内华股份有限公司 Structure and method for manufacturing same
JP7309376B2 (en) 2017-11-06 2023-07-18 キヤノンアネルバ株式会社 Heat generating method and apparatus
CN114799164B (en) * 2017-11-06 2024-05-14 佳能安内华股份有限公司 Structure and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3651799B2 (en) Catalyst material for fuel cell, method for producing catalyst material for fuel cell, and fuel cell
JP2008525638A (en) Metal deposition on palladium and palladium alloy particles induced by hydrogen absorption
JP5031168B2 (en) Catalyst body
JP3061138B2 (en) Supported catalysts for non-selective oxidation of organic compounds and methods of non-selective oxidation of organic compounds in particular
US9849445B2 (en) Subnanometer to nanometer transition metal CO oxidation catalysts
JP2002228097A (en) Reversible method for adsorbing and occluding gaseous hydrogen
JP6757726B2 (en) Base-integrated nanocrystalline metal oxide complex-containing catalyst, its manufacturing method, and catalyst parts
JPS6111130A (en) Novel minute aggregate of metal being not noble metal and its production
TW200844044A (en) Hydrogen refining method, hydrogen separating film and hydrogen refining apparatus
JP2003201108A (en) Carbon material
Dey et al. Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation
KR20110049707A (en) Metal dense membrane for hydrogen separation and preparation method thereof
JP2020171917A (en) Method of producing alloy catalyst and alloy catalyst
Butova et al. Cobalt nanoparticles embedded in porous N-doped carbon support as a superior catalyst for the p-nitrophenol reduction
Ren et al. Strained lattice platinum–palladium alloy nanowires for efficient electrocatalysis
JP2003164761A (en) Metal oxide sintered structure and method for manufacturing the same
JP5840475B2 (en) Porous oxide-coated particles, supported catalyst, and production method thereof
JP2005169236A (en) Fuel reforming catalyst
JP6230126B2 (en) Solid support-supported iron group solid solution type alloy composite and catalyst using the same
JP2004275951A (en) Hydrogen storing material
JP2001278656A (en) Method for manufacturing sintered metal oxide
JPH04135642A (en) Platinum alloy catalyst and its production
WO2008041969A2 (en) Gas-selective permeable membrane system, and method of its production
JP2003313011A (en) Method for producing metal oxide
KR20130135177A (en) Structure body for storage of hydrogen and method for the preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070131