JP2004274979A - Controller for three-phase ac generator/motor - Google Patents

Controller for three-phase ac generator/motor Download PDF

Info

Publication number
JP2004274979A
JP2004274979A JP2003107101A JP2003107101A JP2004274979A JP 2004274979 A JP2004274979 A JP 2004274979A JP 2003107101 A JP2003107101 A JP 2003107101A JP 2003107101 A JP2003107101 A JP 2003107101A JP 2004274979 A JP2004274979 A JP 2004274979A
Authority
JP
Japan
Prior art keywords
phase
generator
battery
mos
potential side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107101A
Other languages
Japanese (ja)
Inventor
Tadashi Yamazaki
正 山嵜
Junichi Takahashi
純一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denso Co Ltd
Original Assignee
Toyo Denso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denso Co Ltd filed Critical Toyo Denso Co Ltd
Priority to JP2003107101A priority Critical patent/JP2004274979A/en
Publication of JP2004274979A publication Critical patent/JP2004274979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the charging efficiency of a battery while simplifying control by reducing rectification loss when the battery is charged with a voltage generated from a three-phase AC generator/motor. <P>SOLUTION: The controller for a three-phase AC generator/motor employs an MOS-FET as a control element of each phase in a control circuit serving as a three-phase inverter circuit when it is driven as an AC three-phase motor using a battery, and functioning as a three-phase rectification circuit for charging the battery with a power generation output when it is driven as an AC three-phase generator. When it is driven as an AC three-phase generator, synchronous rectification is effected using only an MOS-FET on the negative potential side of each phase in that control circuit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、バッテリを用いて三相交流電動機として駆動させる際の三相インバータ回路を兼ね、三相交流発電機として駆動させたときの発電出力によってバッテリを充電させる三相整流回路として機能する制御回路の通電制御を行わせる三相交流発電動機の制御装置に関する。
【0002】
【従来の技術】
一般に、三相交流発電動機を車両に搭載して、エンジンの始動時にはバッテリを電源に用いて三相インバータ回路を介して三相交流電動機として駆動させ、エンジンの始動後には三相交流発電機として駆動させて三相整流回路を介してバッテリの充電を行わせるようにしている。
【0003】
最近、このような三相交流発電動機を電動機として駆動するときの三相インバータ回路と三相交流発電動機を発電機として駆動するときの三相整流回路とを兼ねる制御回路にあっては、図1に示すように、U,V,W各相の制御素子にMOS・FET1〜6を用いて通電制御を行わせるようにしている。図中、M/Gは永久磁石式などによる三相交流発電動機、Battはバッテリ、DはMOS・FETの寄生ダイオードである。
【0004】
従来、このような三相交流発電動機の制御回路において、三相交流発電動機M/Gを発電機として駆動してその発電電圧によってバッテリBattの充電を行わせる場合、図示しないコントローラの制御下で、図2に示すように、各相における正電位側および負電位側ともにMOS・FET1〜6のゲートのオン、オフを行わせることによって通電制御を行わせるようにしている。
【0005】
【発明が解決しようとする課題】
解決しようとする問題点は、バッテリを用いて三相交流発電動機を電動機として駆動するときの三相インバータ回路と三相交流発電動機を発電機として駆動してバッテリを充電するときの三相整流回路とを兼ねる制御回路における各相の制御素子にMOS・FETを用いたものにあって、バッテリ充電時の三相整流回路として機能させるに際して、各相における正電位側および負電位側のMOS・FET1〜6のゲート制御を行わせるのでは、各相におけるMOS・FET1〜6の寄生ダイオードによる整流ロスが大きくて充電効率が悪くなり、またその制御が複雑になっていることである。
【0006】
【課題を解決するための手段】
本発明は、バッテリを用いて三相交流電動機として駆動させる際の三相インバータ回路を兼ね、三相交流発電機として駆動させたときの発電出力によってバッテリを充電させる際の三相整流回路として機能する制御回路における各相の制御素子にMOS・FETを用いた三相交流発電動機の制御装置にあって、整流ロスを低減してバッテリの充電効率を向上させるとともに、制御を簡単にするべく、三相交流発電機としての駆動時にその制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせる手段をとるようにしている。
【0007】
【実施例】
本発明による三相交流発電動機の制御装置は、図3に示す構成にあって、三相交流発電動機M/Gを発電機として駆動してその発電電圧によってバッテリBattの充電を行わせる場合、図示しないコントローラの制御下で、制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみの各ゲートをオン,オフすることによって三相整流のための通電制御を行せるようにしている。
【0008】
図4は、各相における負電位側の各MOS・FET2,4,6のオン,オフに応じた三相整流波形(a)、各MOS・FET2,4,6におけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形(c)をそれぞれ示している。なお、各相における正電位側の各MOS・FET1,3,5のゲートはオフ状態に維持されている。
【0009】
図5は、各相における正電位側および負電位側の全てのMOS・FET1〜6をオフ状態にして、各寄生ダイオードDによって三相整流を行わせたときの三相整流波形(a)、各MOS・FET2,4,6におけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示している。図6は、そのときの制御回路1の等価回路を示している。
【0010】
このように本発明によれば、三相交流発電動機M/Gの発電電圧によってバッテリBattを充電する際に、制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみを用いて同期整流を行わせることによって、整流ロスを低減して、バッテリBattの充電効率を有効に高めることができるようになる。また、従来のように各相における正電位側および負電位側ともにMOS・FET1〜6のゲートのオン、オフ制御を行わせる場合に比して、その制御が簡単になる。
【0011】
また、本発明によれば、三相交流発電動機M/Gの発電電圧によってバッテリBattを充電する際には制御回路1における各相の正電位側のMOS・FET1,3,5のゲートをオフ状態に維持するようにしているので、三相交流発電動機M/Gが電動機として誤作動することを防止できるようになる。
【0012】
図7は、本発明によって制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみを用いて同期整流を行わせたときの負荷電流に対する出力電圧の特性を示している。
【0013】
図7中、▲1▼は通常の通電タイミング時における特性を、▲2▼,▲3▼は通電タイミングを遅らせたときの各特性を、▲4▼,▲5▼は通電タイミングを早めたときの各特性をそれぞれ示している。また、図7中点線で示す特性は、各相における正電位側および負電位側ともにMOS・FET1〜6のゲートのオン、オフ制御を行わせたときの電流−電圧特性を示しており、▲1▼′〜▲5▼′は各相における負電位側のみを制御したときの特性▲1▼〜▲5▼にそれぞれ対応している。
【0014】
図8は、本発明によって制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみを用いて同期整流を行わせたときの電流−電力特性を示している。図8中点線で示す特性は、各相における正電位側および負電位側ともにMOS・FET1〜6のゲートのオン、オフ制御を行わせたときの負荷電流に対する出力特性を示している。
【0015】
図9は、本発明によって制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみを用いて同期整流を行わせたときの負荷電流に対するバッテリ充電効率の特性を示している。
【0016】
図10は、本発明によって制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみを用いて同期整流を行わせたときの負荷電流に対する整流損失の特性を示している。この特性からして、本発明によれば、整流損失を常に有効に低減できることが顕著である。
【0017】
【発明の効果】
以上、本発明は、バッテリを用いて三相交流電動機として駆動させる際の三相インバータ回路を兼ね、三相交流発電機として駆動させたときの発電出力によってバッテリを充電させる際の三相整流回路として機能する制御回路における各相の制御素子にMOS・FETを用いた三相交流発電動機の制御装置にあって、三相交流発電機としての駆動時にその制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせる手段をとるようにしたもので、整流ロスを低減してバッテリの充電効率を向上させるとともに、制御を簡単にすることができるという利点を有している。
【図面の簡単な説明】
【図1】バッテリを電源として三相交流発電動機を電動機として駆動するときの三相インバータ回路と三相交流発電動機を発電機として駆動してバッテリを充電するときの三相整流回路とを兼ねる各相の制御素子にMOS・FETを用いた制御回路を示す図である。
【図2】図1に示す制御回略においてバッテリ充電時に三相交流発電動機の出力電圧に応じて各相における正電位側および負電位側ともにMOS・FETのゲートのオン、オフ制御を行わせたときのタイミングチャートである。
【図3】図1に示す制御回路にあって、本発明によって各相の負電位側のMOS・FETのみの各ゲートをオン,オフすることによって三相整流のための通電制御を行せたときの電流の流れを示す図である。
【図4】図1に示す制御回路にあって、本発明によって各相の負電位側のMOS・FETのみの各ゲートをオン,オフしたときの各相における負電位側の各MOS・FETのオン,オフに応じた三相整流波形(a)、各MOS・FETにおけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形(c)をそれぞれ示す図である。
【図5】図1に示す制御回路にあって、各相における正電位側および負電位側の全てのMOS・FETをオフ状態にして、各寄生ダイオードDによって三相整流を行わせたときの三相整流波形(a)、各MOS・FETにおけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示す図である。
【図6】図1に示す制御回路にあって、各相における正電位側および負電位側の全てのMOS・FETをオフ状態にして、各寄生ダイオードDによって三相整流を行わせたときそのときの等価回路を示す図である。
【図7】本発明によって制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせたときの負荷電流に対する出力電圧の特性を示す図である。
【図8】本発明によって制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせたときの電流−電力特性を示す図である。
【図9】本発明によって制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせたときの負荷電流に対するバッテリ充電効率の特性を示す図である。
【図10】本発明によって制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせたときの負荷電流に対する整流損失の特性を示す図である。
【符号の説明】
1 制御回路
M/G 三相交流発電動機
Batt バッテリ
D 寄生ダイオード
[0001]
[Industrial applications]
The present invention relates to a control functioning as a three-phase rectifier circuit that also serves as a three-phase inverter circuit when driven as a three-phase AC motor using a battery and that charges a battery with a generated output when driven as a three-phase AC generator. The present invention relates to a control device for a three-phase alternating-current power generator for controlling power supply to a circuit.
[0002]
[Prior art]
In general, a three-phase AC generator is mounted on a vehicle, and when the engine is started, the battery is used as a power source and driven as a three-phase AC motor via a three-phase inverter circuit. When driven, the battery is charged via the three-phase rectifier circuit.
[0003]
Recently, a control circuit that functions as a three-phase inverter circuit for driving such a three-phase AC generator as a motor and a three-phase rectifier for driving the three-phase AC generator as a generator are shown in FIG. As shown in FIG. 1, the control elements of the U, V, and W phases are controlled to be energized by using MOSFETs 1-6. In the figure, M / G is a three-phase AC generator of a permanent magnet type or the like, Batt is a battery, and D is a parasitic diode of a MOS-FET.
[0004]
Conventionally, in such a control circuit of a three-phase AC generator, when the three-phase AC generator M / G is driven as a generator to charge the battery Batt with the generated voltage, the battery Batt is controlled under the control of a controller (not shown). As shown in FIG. 2, the energization control is performed by turning on and off the gates of the MOSFETs 1 to 6 on both the positive potential side and the negative potential side in each phase.
[0005]
[Problems to be solved by the invention]
The problems to be solved are a three-phase inverter circuit when driving a three-phase AC generator as a motor using a battery and a three-phase rectification when driving a three-phase AC generator as a generator to charge a battery. In the control circuit that also serves as a circuit, a MOS-FET is used as a control element for each phase, and when functioning as a three-phase rectifier circuit during battery charging, the MOS-FET on the positive potential side and the negative potential side in each phase is used. When the gates of the FETs 1 to 6 are controlled, the rectification loss due to the parasitic diodes of the MOSFETs 1 to 6 in each phase is large, the charging efficiency is deteriorated, and the control is complicated.
[0006]
[Means for Solving the Problems]
The present invention also functions as a three-phase inverter circuit when driven as a three-phase AC motor using a battery, and functions as a three-phase rectifier circuit when the battery is charged with a power output when driven as a three-phase AC generator. In the control device of the three-phase AC generator using a MOSFET for each phase control element in the control circuit to reduce the rectification loss and improve the charging efficiency of the battery, and to simplify the control, When driving as a three-phase AC generator, a means for performing synchronous rectification using only the MOS-FET on the negative potential side of each phase in the control circuit is employed.
[0007]
【Example】
The control device of the three-phase AC generator motor according to the present invention has the configuration shown in FIG. 3 and drives the three-phase AC generator motor M / G as a generator to charge the battery Batt with the generated voltage. Under the control of a controller (not shown), three-phase rectification is performed by turning on / off each gate of only the MOS-FET 2, MOS-FET 4, and MOS-FET 6 on the negative potential side of each of the U, V, and W phases in the control circuit 1. Power supply control can be performed.
[0008]
FIG. 4 shows a three-phase rectified waveform (a) corresponding to the on / off state of each of the MOS-FETs 2, 4, and 6 on the negative potential side in each phase, between the drain D and the source S in each of the MOS-FETs 2, 4, and 6. A voltage waveform (b) and an induced voltage waveform (c) of each phase with the U phase as a neutral point are shown. Note that the gates of the MOS-FETs 1, 3, and 5 on the positive potential side in each phase are kept off.
[0009]
FIG. 5 shows a three-phase rectified waveform (a) when all the MOSFETs 1 to 6 on the positive potential side and the negative potential side in each phase are turned off and three-phase rectification is performed by each parasitic diode D; The voltage waveform (b) between the drain D and the source S in each of the MOSFETs 2, 4, and 6 and the induced voltage waveform of each phase with the U phase as a neutral point are shown. FIG. 6 shows an equivalent circuit of the control circuit 1 at that time.
[0010]
As described above, according to the present invention, when the battery Batt is charged by the generated voltage of the three-phase AC power generator M / G, the MOS • FET2 and the MOS2 on the negative potential side of each of the U, V and W phases in the control circuit 1 are used. By performing synchronous rectification using only the FET4 and the MOS-FET6, rectification loss can be reduced and the charging efficiency of the battery Batt can be effectively increased. In addition, the control is simpler than in the conventional case where the gates of the MOSFETs 1 to 6 are turned on and off on both the positive potential side and the negative potential side in each phase.
[0011]
Further, according to the present invention, when charging the battery Batt with the generated voltage of the three-phase AC generator motor M / G, the gates of the MOS-FETs 1, 3, and 5 on the positive potential side of each phase in the control circuit 1 are turned off. Since the state is maintained, it is possible to prevent the three-phase AC generator motor M / G from malfunctioning as an electric motor.
[0012]
FIG. 7 shows an output with respect to a load current when synchronous rectification is performed using only the MOS-FET 2, MOS-FET 4, and MOS-FET 6 on the negative potential side of each phase of U, V, and W in the control circuit 1 according to the present invention. This shows voltage characteristics.
[0013]
In FIG. 7, (1) indicates the characteristics at the time of normal energization timing, (2) and (3) indicate the respective characteristics when the energization timing is delayed, and (4) and (5) indicate the characteristics when the energization timing is advanced. Are shown, respectively. 7 indicate current-voltage characteristics when the gates of the MOSFETs 1 to 6 are turned on and off on both the positive potential side and the negative potential side in each phase. 1 'to 5' correspond to the characteristics 1 to 5 when only the negative potential side in each phase is controlled.
[0014]
FIG. 8 shows current-power characteristics when synchronous rectification is performed using only the MOS-FET 2, MOS-FET 4, and MOS-FET 6 on the negative potential side of each of the U, V, and W phases in the control circuit 1 according to the present invention. Is shown. The characteristic shown by the dotted line in FIG. 8 indicates the output characteristic with respect to the load current when the ON / OFF control of the gates of the MOSFETs 1 to 6 is performed on both the positive potential side and the negative potential side in each phase.
[0015]
FIG. 9 shows a battery with respect to a load current when synchronous rectification is performed using only the MOS.FET2, MOS.FET4, and MOS.FET6 on the negative potential side of each of the U, V, and W phases in the control circuit 1 according to the present invention. It shows the characteristics of charging efficiency.
[0016]
FIG. 10 shows rectification with respect to a load current when synchronous rectification is performed using only the MOS.FET2, MOS.FET4, and MOS.FET6 on the negative potential side of each phase of U, V, and W in the control circuit 1 according to the present invention. The loss characteristics are shown. From these characteristics, according to the present invention, it is remarkable that the rectification loss can always be effectively reduced.
[0017]
【The invention's effect】
As described above, the present invention also functions as a three-phase inverter circuit when driven as a three-phase AC motor using a battery, and a three-phase rectifier circuit when the battery is charged with a generated output when driven as a three-phase AC generator. A control device for a three-phase AC generator using a MOS-FET as a control element for each phase in a control circuit functioning as a three-phase AC generator. A means for performing synchronous rectification using only the MOS-FET is used. This has the advantage that the rectification loss is reduced, the charging efficiency of the battery is improved, and the control can be simplified. I have.
[Brief description of the drawings]
FIG. 1 shows a three-phase inverter circuit for driving a three-phase AC generator as a motor using a battery as a power source and a three-phase rectifier circuit for charging a battery by driving the three-phase AC generator as a generator. FIG. 3 is a diagram showing a control circuit using a MOS-FET as a control element for each phase.
FIG. 2 shows the control circuit shown in FIG. 1 in which the ON / OFF control of the gate of the MOSFET is performed on both the positive potential side and the negative potential side in each phase according to the output voltage of the three-phase AC generator during battery charging. It is a timing chart at the time of.
FIG. 3 is a circuit diagram showing the control circuit shown in FIG. 1. According to the present invention, the energization control for three-phase rectification can be performed by turning on / off each gate of only the MOS-FET on the negative potential side of each phase. FIG. 9 is a diagram showing a current flow at the time.
FIG. 4 is a circuit diagram of the control circuit shown in FIG. 1 in which the gates of only the MOS-FETs on the negative potential side of each phase are turned on and off according to the present invention; The three-phase rectified waveform (a) according to ON / OFF, the voltage waveform (b) between the drain D and the source S in each MOS • FET, and the induced voltage waveform (c) of each phase with the U phase as a neutral point are shown. FIG.
FIG. 5 is a diagram illustrating the control circuit shown in FIG. 1 in which all the MOSFETs on the positive potential side and the negative potential side in each phase are turned off, and three-phase rectification is performed by each parasitic diode D; It is a figure which shows the three-phase rectification waveform (a), the voltage waveform (b) between drain D-source S in each MOS.FET, and the induced voltage waveform of each phase which made U phase a neutral point.
FIG. 6 is a circuit diagram showing the control circuit shown in FIG. 1 in which all the MOSFETs on the positive potential side and the negative potential side in each phase are turned off and three-phase rectification is performed by each parasitic diode D; FIG. 9 is a diagram showing an equivalent circuit at the time.
FIG. 7 is a diagram showing a characteristic of an output voltage with respect to a load current when synchronous rectification is performed using only a MOS-FET on the negative potential side of each phase in a control circuit according to the present invention.
FIG. 8 is a diagram showing a current-power characteristic when synchronous rectification is performed using only the MOS-FET on the negative potential side of each phase in the control circuit according to the present invention.
FIG. 9 is a diagram illustrating characteristics of battery charging efficiency with respect to load current when synchronous rectification is performed using only the MOS-FET on the negative potential side of each phase in the control circuit according to the present invention.
FIG. 10 is a diagram showing characteristics of rectification loss with respect to load current when synchronous rectification is performed using only the MOS-FET on the negative potential side of each phase in the control circuit according to the present invention.
[Explanation of symbols]
1 Control circuit M / G Three-phase AC generator motor Batt Battery D Parasitic diode

Claims (1)

バッテリを用いて三相交流電動機として駆動させる際の三相インバータ回路を兼ね、三相交流発電機として駆動させたときの発電出力によってバッテリを充電させる際の三相整流回路として機能する制御回路における各相の制御素子にMOS・FETを用いた三相交流発電動機の制御装置にあって、三相交流発電機としての駆動時にその制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせる手段をとるようにしたことを特徴とする三相交流発電動機の制御装置。In a control circuit that also functions as a three-phase inverter circuit when driven as a three-phase AC motor using a battery, and that functions as a three-phase rectifier circuit when the battery is charged by the power output when driven as a three-phase AC generator In a control device for a three-phase AC generator using a MOSFET for each phase control element, only the negative-potential-side MOSFET for each phase in the control circuit is used when driving as a three-phase AC generator. 3. A control device for a three-phase AC generator motor, wherein means for performing synchronous rectification by means of a motor is provided.
JP2003107101A 2003-03-06 2003-03-06 Controller for three-phase ac generator/motor Pending JP2004274979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107101A JP2004274979A (en) 2003-03-06 2003-03-06 Controller for three-phase ac generator/motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107101A JP2004274979A (en) 2003-03-06 2003-03-06 Controller for three-phase ac generator/motor

Publications (1)

Publication Number Publication Date
JP2004274979A true JP2004274979A (en) 2004-09-30

Family

ID=33127957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107101A Pending JP2004274979A (en) 2003-03-06 2003-03-06 Controller for three-phase ac generator/motor

Country Status (1)

Country Link
JP (1) JP2004274979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534284A (en) * 2003-09-24 2007-11-22 ジョンソン コントロールズ オートモティブ エレクトロニクス Synchronous rectifier device and synchronous electric machine running the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534284A (en) * 2003-09-24 2007-11-22 ジョンソン コントロールズ オートモティブ エレクトロニクス Synchronous rectifier device and synchronous electric machine running the device

Similar Documents

Publication Publication Date Title
US6495985B1 (en) Operation of a switched reluctance machine from dual supply voltages
JP3465454B2 (en) Power generator
US20050001582A1 (en) Motor control device
US7969104B2 (en) Rotary electric system designed to utilize zero-phase circuit
US8975886B2 (en) Charging and distribution control
KR100799003B1 (en) Control system and controlling method for motor drive four wheel drive vehicle
WO2007041948A2 (en) An starting and generating multiplying control system, and a method for using the system, and an electromotion mixed dynamic vehicle which uses the system and the method
JP5571275B2 (en) Double voltage electrical system
WO2004055963A1 (en) Power unit for automobile
JPH04203471A (en) Engine type power generating device
JP2004007964A (en) Inverter circuit device for three-phase motor for vehicle
JP4175109B2 (en) Switching power supply
US11316457B2 (en) Inverter type engine generator
JP2004056881A (en) Controller for generator of vehicle, and power supply system for vehicle
JP4254544B2 (en) Battery charger
JP2001157497A (en) Power generation controller for synchronous generator
JP2004274979A (en) Controller for three-phase ac generator/motor
JP3110957U (en) Bidirectional AC / DC converter for combination of AC motor and generator
US11476787B2 (en) Inverter type engine generator
JP2000316298A (en) Starter generator
JP4306945B2 (en) Battery charger
US20060066271A1 (en) Control device for three phase ac generator-motor
JP4306946B2 (en) Battery charger
JP2004274978A (en) Controlling device for three-phase ac generator motor
JP2005065460A (en) Vehicular dynamotor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324