JP2004274946A - Manufacturing method for three-phase ac motor - Google Patents

Manufacturing method for three-phase ac motor Download PDF

Info

Publication number
JP2004274946A
JP2004274946A JP2003065439A JP2003065439A JP2004274946A JP 2004274946 A JP2004274946 A JP 2004274946A JP 2003065439 A JP2003065439 A JP 2003065439A JP 2003065439 A JP2003065439 A JP 2003065439A JP 2004274946 A JP2004274946 A JP 2004274946A
Authority
JP
Japan
Prior art keywords
phase coil
phase
neutral
coil
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003065439A
Other languages
Japanese (ja)
Other versions
JP4265242B2 (en
Inventor
Kenichiro Fukumaru
健一郎 福丸
Kazumichi Okada
一路 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003065439A priority Critical patent/JP4265242B2/en
Publication of JP2004274946A publication Critical patent/JP2004274946A/en
Application granted granted Critical
Publication of JP4265242B2 publication Critical patent/JP4265242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a three-phase AC motor, capable of surely detecting the deterioration of an insulating property between three-phase coils. <P>SOLUTION: The manufacturing method for the three-phase AC motor includes an installation process for installing the three-phase coils to a stator core, a forming process for finishing the coil ends of the three-phase coils, a power line caulking process for installing the terminal to the end of the power line side of the three-phase coils, a first lacing process for winding the coil ends with a thread, an inter-coil partial discharge test process for performing a partial discharge test between the three-phase coils, a neutral point caulking process for connecting the ends of a neutral point lead wire of the three-phase coils with the terminal, an insulating-tape winding process for winding exposed parts of the neutral point connected with the terminal and the lead wire with an insulating tape, and a second lacing process for bending the neutral point lead wire of the three-phase coils, arranging it on the coil ends and winding the bent part with a thread. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は自動車等の車輌に使用して好適な3相交流電動機の製造方法に関し、特に、そのステータの製造方法に関する。
【0002】
【従来の技術】
電気自動車、ハイブリット電気自動車等には3相交流電動機が使用される。3相交流電動機は中心のロータと該ロータを囲むように配置されたステータとを有する。ステータは、円筒状のステータコアを有し、該ステータコアの円筒状の内面には、軸線方向に延びる複数のスロットが等角度間隔にて形成されている。スロットは、ステータコアの一方の端面から他方の端面まで、延びている。
【0003】
ステータコアの円筒状の内面には、分布巻型の3相コイル、即ち、U相コイル、V相コイル及びW相コイルが装着されている。各コイルは略矩形に形成され、互いに平行な軸線部分と互いに平行な円周部分とからなり、各コイルの軸線部分はスロット内に配置され、円周部分は、ステータコアの端面に露出して配置される。
【0004】
図7を参照して3相交流電動機の製造方法、特に、ステータ構造の組み立て工程を説明する。ステップS201にて、ステータコアの内面に3相コイルを装着する。先ず、U相コイルを装着し、U相コイルの円周部分を半径方向外方に拡大する。次に、U−V相間紙を配置する。次に、V相コイルを装着し、V相コイルの円周部分を半径方向外方に拡大する。次に、V−W相間紙を配置する。最後に、W相コイルを配置する。ステップS202にて、各相コイルの端部及び中性点側の端部のリード線に絶縁スリーブを挿入する。
【0005】
ステップS203にて、動力線かしめを行う。絶縁スリーブから露出した各相コイルの動力線側の端部のエナメル皮膜を除去し、銅製の端子を装着する。この端子をかしめ機によってかしめる。それによって、各相コイルの動力線側の端部に端子が装着される。
【0006】
ステップS204にて、3相コイル間の部分放電試験を行う。U相コイルとV相コイルの間、V相コイルとW相コイルの間、及びW相コイルとU相コイルの間の部分放電開始電圧を検査する。
【0007】
ステップS205にて、中性点かしめを行う。絶縁スリーブから露出した中性点リード線の先端のエナメル皮膜を除去し、銅製の端子を装着する。この端子をかしめ機によってかしめる。それによって、3相コイルの中性点は、電気的に接続される。ステップS206にて、絶縁スリーブから露出した中性点リード線の先端に装着された銅製の端子を絶縁テープによって巻く。
【0008】
ステップS207にて、コイルエンドの仕上げ成形を行う。ステップS201の3相コイルの装着工程にて、U相コイル及びV相コイルの円周部分を半径方向外方に拡大した。ここでは、U相コイル及びV相コイルの円周部分を半径方向内方に変形し、元の形状に戻す。ステップS208にて、レーシングを行う。ステータコアの端面に露出して配置された、3相コイルの円周部分を糸で巻き、コイルが解けることを防止する。
【0009】
ステップS209にて、コアと3相コイル間の部分放電試験を行う。各相コイルとステータコアの間の部分放電開始電圧を検査する。ステップS210にて、総合絶縁試験を行う。各相コイルの抵抗、各相コイルとステータコアの間の抵抗及び漏れ電流、2相のコイル間の抵抗及び短絡等を検査する。ステップS211にて、ワニス含浸を行う。ワニスをステータコアの端面に露出した3相コイルに滴下する。こうしてステータの組み立て工程が完了する。ステップS212にて、ステータは、モータ組み立て工程に搬送される。
【0010】
【特許文献1】
特開昭55−166467号公報
【特許文献2】
特開2002−218689号公報
【0011】
【発明が解決しようとする課題】
従来のステータの組み立て工程では、3相コイル間の部分放電試験の後に、コイルエンドの仕上げ成形及びレーシングを行う必要があった。コイルエンドの仕上げ成形及びレーシングによって、通常の負荷電圧であれば3相コイルの絶縁性が劣化することはないが、高電圧印加時には絶縁劣化の可能性がある。従来のステータ組み立て工程では、このような、高電圧に対する絶縁特性の劣化・低下を検出することができなかった。
【0012】
本発明の目的は、3相コイル間の絶縁特性の劣化・低下を確実に検出することができる3相交流電動機の製造方法を提供することにある。
本発明の目的は、特に、高電圧に対する3相コイル間の絶縁特性の劣化・低下を確実に検出することができる3相交流電動機の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明によると、3相交流電動機の製造方法は、ステータコアに3相コイルを装着する装着工程と、該3相コイルのコイルエンドを仕上げ成形する仕上げ成形工程と、3相コイルの動力線側の端部に端子を装着する動力線かしめ工程と、ステータコアの端面上の3相コイルに糸を巻く第1レーシング工程と、3相コイル間の部分放電試験を行うコイル間部分放電試験工程と、3相コイルの中性点リード線の端部を端子によって接続する中性点かしめ工程と、該端子によって接続された中性点を絶縁テープによって巻く絶縁テープ巻工程と、3相コイルの中性点リード線を折り曲げてステータコアの上に配置し、この折り曲げた部分に糸を巻く第2レーシング工程と、を含む。
【0014】
本発明によると、コイル間部分放電試験工程の前に、3相コイルのコイルエンドを仕上げ成形する仕上げ成形工程と、ステータコアの端面上の3相コイルに糸を巻く第1レーシング工程を行うので、これらの工程によって3相コイルに絶縁特性が劣化することがあっても、それを確実に検出することができる。
【0015】
【発明の実施の形態】
図1及び図2を参照して本発明による3相交流電動機の製造方法、特に、ステータ構造の組み立て工程を説明する。ステップS101にて、ステータコアの内面に3相コイルを装着する。先ず、U相コイルを装着し、U相コイルの円周部分を半径方向外方に拡大する。次に、U−V相間紙を配置する。次に、V相コイルを装着し、V相コイルの円周部分を半径方向外方に拡大する。次に、V−W相間紙を配置する。最後に、W相コイルを配置する。ステップS102にて、各相コイルの中性点リード線に絶縁スリーブを挿入する。
【0016】
ステップS103にて、コイルエンドの仕上げ成形を行う。ステップS101の3相コイルの装着工程にて、U相コイル及びV相コイルの円周部分を半径方向外方に拡大した。ここでは、U相コイル及びV相コイルの円周部分を半径方向内方に変形し、元の形状に戻す。ステップS104にて、動力線かしめを行う。各相コイルの動力線側の端部に絶縁スリーブを挿入する。絶縁スリーブから露出した各相コイルの動力線側の端部のエナメル皮膜を除去し、銅製の端子を装着する。この端子をかしめ機によってかしめる。それによって、各相コイルの動力線側の端部に端子が圧着される。
【0017】
ステップS105にて、第1レーシングを行う。ステータコアの端面に露出して配置された、3相コイルの円周部分を糸で巻き、3相コイルが解けること及びステータコアより外れることを防止する。但し、本例では、後の3相コイル間の部分放電試験のために、振動等によりコイルが動き傷がつくのを防ぐため、中性点リード線(UN、VN、WN)を立ち上げた状態でレーシングを行う。
【0018】
図2Aは、第1レーシングを行った後のステータの外観を示す。図示のように、ステータコア10の端面12上に3相コイルの円周部分であるコイルエンドが形成され、これらには糸46が巻かれている。各相のコイルの動力線側の端部には端子44が装着されている。3相のコイルのコイルエンドは、ステータコア10の端面12に対して略垂直に立ち上げられている、即ち、略軸線方向に沿って形成されている。尚、実際には、ステータコア10の端面12に対して略垂直に立ち上げられているのは、中性点リード線の先端部分であり、リード線の根元及びコイルエンドの他の部分は、ステータコア10の端面12上にて横たわっている。
【0019】
ステップS106にて、3相コイル間の部分放電試験を行う。U相コイルとV相コイルの間、V相コイルとW相コイルの間、及びW相コイルとU相コイルの間の部分放電開始電圧を検査する。ステップS107にて、中性点かしめを行う。図2Bに示すように3相の中性点リード線の先端を半径方向外方に倒す。絶縁スリーブから露出した3相の中性点リード線の先端のエナメル皮膜を除去し、銅製の端子を装着する。この端子をかしめ機によってかしめる。それによって、3相コイルの中性点は、電気的に接続される。ステップS108にて、絶縁スリーブから露出した中性点及び中性点リード線を絶縁テープによって巻く。
【0020】
ステップS109にて、第2レーシングを行う。先ず、中性点リード線を折り曲げ、ステータコア10の端面上に配置する。次に、折り曲げた中性点リード線を覆うように、糸を巻きつける。それによって、折り曲げた中性点及び中性点リード線が動くことを防止する。図2Cは、第2レーシングを行った後のステータの外観を示す。図示のように、3相の中性点リード線の先端部分の折り曲げ部分にのみ、第2レーシングによる糸48が巻かれている。
【0021】
ステップS110にて、コアと3相コイル間の部分放電試験を行う。ステップS111にて、総合絶縁試験を行う。ステップS112にて、ワニス含浸を行う。ステップS113にて、ステータは、モータ組み立て工程に搬送される。
【0022】
本発明のステータの組み立て工程を従来のステータの組み立て工程と比較する。本発明では、中性点リード線の仕上げ成形と第1レーシングを3相コイル間の部分放電試験の前に実施している。
【0023】
一般に、「3相コイル間の部分放電試験」は「中性点かしめ」の前に行う必要がある。「中性点かしめ」は、3相のコイルの中性点リード線を端子で圧着し、電気的に接続する工程である。従って、「中性点かしめ」を行った後では、各2相のコイル間の部分放電試験を行うことができない。また、「絶縁テープ巻き」は、「中性点かしめ」の後に行う。従って、「3相コイル間の部分放電試験」、「中性点かしめ」及び「絶縁テープ巻き」の3工程は、この順になされる。また、「動力線かしめ」は、3相コイル間の部分放電試験の前に実施する必要がある。
【0024】
「3相コイル間の部分放電試験」は、できる限り、後の工程が望ましい。従って、本例では、「コイルエンド仕上げ」と「レーシング」を「3相コイル間の部分放電試験」、「中性点かしめ」及び「絶縁テープ巻き」の3工程の前に行うこととした。それによって、検査後に絶縁を劣化させる要因をなくすことが可能となった。
【0025】
しかしながら、「3相コイル間の部分放電試験」、「中性点かしめ」及び「絶縁テープ巻き」の3工程では、作業上の理由から、中性点リード線を立ち上げ又は折り曲げる必要がある。従って、「3相コイル間の部分放電試験」、「中性点かしめ」及び「絶縁テープ巻き」の3工程の後に、中性点リード線を折り曲げる工程が必要である。更に、折り曲げた中性点リード線をレーシングする必要がある。従って、本例では、ステップS109にて、第2レーシング工程を設けた。
【0026】
図3を参照して、中性点リード線の立ち上げ及び折り曲げについて説明する。図3Aに示すように、ステップS103のコイルエンドの仕上げ成形が終了したとき、3相コイルの中性点リード線20は、ステータコア10の端面にて、コイル上に横たわった状態にある。図3Bに示すように、ステップS105の第1レーシングの前に、中性点リード線20は立ち上げられ、軸線方向に沿って配置される。図3Cに示すように、ステップS107の中性点かしめの前に、中性点リード線は、半径方向外方に向けて倒される。図3Dに示すように、ステップS109の第2レーシングの前に、折り曲げられた中性点リード線は、ステータコアの端面上にて、コイル上に配置される。即ち、図3Cの矢印にて示すように、中性点リード線20は、円周方向に沿って折り曲げられ、ステータコアの端面のコイルエンド上に配置される。このとき、折り曲げられた中性点リード線の部分にはレーシングがされていないので、第2レーシング工程を設け、この部分が解けないように、糸48で固定する。
【0027】
図4を参照して説明する。図4Aは、ステップS107の中性点かしめ工程におけるステータコアの端面上の3相コイルの中性点リード線を概略的に示す。3相コイルの中性点リード線は、中性点リード線UN22、中性点リード線VN24及び中性点リード線WN26の順に、半径方向外側から内側に、配置されている。従って、中性点リード線VN22の長さは一番短く、中性点リード線WN26の長さは、一番長い。中性点かしめ工程によって、3相の中性点リード線は、端子42によって圧着され、電気的に接続される。ステップS109の第2レーシングの前に、3相の中性点リード線20は、矢印のように、円周方向に沿って折り曲げられる。従って、図4Bに示すように、一番長いW相コイルの中性点リード線26及び二番目に長いはV相コイルの中性点リード線24には、弛みや重なりができる。
【0028】
図5を参照して、図4を参照して説明した弛みや重なりを回避する方法の第1の例を説明する。図5Aに示すように、中性点かしめ工程にて、中性点リード線の冗長部を形成するためのジグを使用する。ジグは、台座50と台座に設けられた3つのピン52、54、56を有する。第1のピン52に、W相コイルの中性点リード線26を巻きつけ、第2のピン54に、V相コイルの中性点リード線24を巻きつけ、第3のピン56に、U相コイルの中性点リード線22を巻きつける。3つのピン52、54、56は、3相のコイルの中性点リード線が迂回するように、配置されている。3相のコイルの中性点リード線の迂回によって、冗長部が形成される。3つのピン52、54、56の間の距離を調節することによって、3相のコイルの中性点リード線の迂回部分、即ち、冗長部の長さが調整される。こうして3相の中性点リード線に冗長部を形成した後に、先端を端子42によって接続する。
【0029】
図5Bに示すように、ステップS109の第2レーシングの前に、3相のコイルの中性点リード線20を円周方向に沿って折り曲げる。上述のように、3相の中性点リード線に冗長部が形成されているから、折り曲げ部に弛みが生じない。
【0030】
図6を参照して、図4を参照して説明した中性点リード線の弛みや重なりを回避する方法の第2の例を説明する。上述の例では、ステップS107の中性点かしめは、3相の中性点リード線を半径方向外側に向けて倒し、中性点リード線の先端に端子42を装着した。しかしながら、本例では、ステップS107の中性点かしめ工程の前に、3相のコイルの中性点リード線をステータコア10の端面12に対して垂直に立ち上げる、即ち、軸線方向に沿って配置する。ステータコア10を倒して、その軸線が水平となるように配置する。
【0031】
この状態で、中性点リード線の先端に端子42を装着する。端子42の装着後、3相の中性点リード線を円周方向に沿って折り曲げ、ステータコアの端面12上のコイルエンド上に配置する。この例では、3相の中性点リード線の長さの差に起因した、弛みが発生しない。
【0032】
以上、本発明の例について説明したが、本発明は上述の例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変形が可能であることは当業者に理解されよう。
【0033】
【発明の効果】
本発明によると、絶縁性に優れた3相交流電動機を製造することができる利点がある。
【0034】
本発明によると、高電圧に対しても絶縁性に優れた3相交流電動機を製造することができる利点がある。
また、本発明によると、高電圧な電動機でのコイルの傷つきのよる絶縁劣化を確実に検査することができる利点がある。
【図面の簡単な説明】
【図1】本発明による3相交流電動機の製造方法を説明するための説明図である。
【図2】本発明による3相交流電動機の製造方法によって製造されたステータ構造の外観を説明するための説明図である。
【図3】本発明による3相交流電動機の製造方法において、3相の中性点リード線の挙動を説明するための説明図である。
【図4】本発明による3相交流電動機の製造方法の中性点かしめ工程において、3相の中性点リード線の挙動を説明するための説明図である。
【図5】本発明による3相交流電動機の製造方法の中性点かしめ工程において、3相の中性点リード線の弛みを除去する方法の第1の例を説明するための説明図である。
【図6】本発明による3相交流電動機の製造方法の中性点かしめ工程において、3相の中性点リード線の弛みを除去する方法の第2の例を説明するための説明図である。
【図7】従来の相交流電動機の製造方法を説明するための説明図である。
【符号の説明】
10…ステータコア、12…ステータコア端面、20…中性点リード線、22…中性点リード線UN、24…中性点リード線VN、26…中性点リード線WN、42…中性点端子、44…動力線端子、46,48…糸、50…台座、52,54,56…ピン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a three-phase AC motor suitable for use in vehicles such as automobiles, and more particularly, to a method for manufacturing a stator thereof.
[0002]
[Prior art]
A three-phase AC motor is used for an electric vehicle, a hybrid electric vehicle, and the like. A three-phase AC motor has a central rotor and a stator arranged so as to surround the rotor. The stator has a cylindrical stator core, and a plurality of axially extending slots are formed at equal angular intervals on a cylindrical inner surface of the stator core. The slots extend from one end face of the stator core to the other end face.
[0003]
A distributed winding three-phase coil, that is, a U-phase coil, a V-phase coil, and a W-phase coil are mounted on the cylindrical inner surface of the stator core. Each coil is formed in a substantially rectangular shape, and comprises an axis portion parallel to each other and a circumferential portion parallel to each other. The axis portion of each coil is arranged in a slot, and the circumferential portion is exposed on the end face of the stator core. Is done.
[0004]
With reference to FIG. 7, a method of manufacturing a three-phase AC motor, in particular, a process of assembling a stator structure will be described. In step S201, a three-phase coil is mounted on the inner surface of the stator core. First, the U-phase coil is mounted, and the circumferential portion of the U-phase coil is expanded radially outward. Next, the U-V interphase paper is arranged. Next, the V-phase coil is mounted, and the circumferential portion of the V-phase coil is expanded radially outward. Next, the VW interphase paper is arranged. Finally, a W-phase coil is arranged. In step S202, an insulating sleeve is inserted into the lead wires at the end of each phase coil and the end on the neutral point side.
[0005]
In step S203, power line caulking is performed. Remove the enamel film from the power line end of each phase coil exposed from the insulating sleeve, and attach copper terminals. This terminal is swaged with a swaging machine. As a result, the terminals are mounted on the power line side end of each phase coil.
[0006]
In step S204, a partial discharge test between the three-phase coils is performed. The partial discharge starting voltage between the U-phase coil and the V-phase coil, between the V-phase coil and the W-phase coil, and between the W-phase coil and the U-phase coil are inspected.
[0007]
In step S205, a neutral point caulking is performed. Remove the enamel coating on the end of the neutral lead exposed from the insulating sleeve, and attach a copper terminal. This terminal is swaged with a swaging machine. Thereby, the neutral point of the three-phase coil is electrically connected. In step S206, a copper terminal attached to the tip of the neutral lead exposed from the insulating sleeve is wound with an insulating tape.
[0008]
In step S207, finish forming of the coil end is performed. In the step of mounting the three-phase coil in step S201, the circumferential portions of the U-phase coil and the V-phase coil were expanded radially outward. Here, the circumferential portions of the U-phase coil and the V-phase coil are deformed inward in the radial direction to return to the original shape. In step S208, racing is performed. A circumferential portion of the three-phase coil exposed on the end face of the stator core is wound with a thread to prevent the coil from being unraveled.
[0009]
In step S209, a partial discharge test between the core and the three-phase coil is performed. A partial discharge starting voltage between each phase coil and the stator core is inspected. In step S210, a comprehensive insulation test is performed. The resistance of each phase coil, the resistance and leakage current between each phase coil and the stator core, and the resistance and short circuit between the two-phase coils are inspected. In step S211, varnish impregnation is performed. The varnish is dropped on the three-phase coil exposed on the end face of the stator core. Thus, the assembly process of the stator is completed. In step S212, the stator is transported to a motor assembly process.
[0010]
[Patent Document 1]
JP-A-55-166467 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-218689
[Problems to be solved by the invention]
In the conventional stator assembling process, it was necessary to perform finish forming and lacing of the coil end after the partial discharge test between the three-phase coils. The finish forming and lacing of the coil end do not degrade the insulation of the three-phase coil at a normal load voltage, but may degrade the insulation when a high voltage is applied. In the conventional stator assembling process, it has not been possible to detect such deterioration or deterioration of the insulation characteristics with respect to a high voltage.
[0012]
An object of the present invention is to provide a method for manufacturing a three-phase AC motor that can reliably detect deterioration / decrease in insulation characteristics between three-phase coils.
An object of the present invention is, in particular, to provide a method of manufacturing a three-phase AC motor that can reliably detect deterioration / decrease of insulation properties between three-phase coils with respect to a high voltage.
[0013]
[Means for Solving the Problems]
According to the present invention, a method of manufacturing a three-phase AC motor includes a mounting step of mounting a three-phase coil on a stator core, a finish forming step of finish forming a coil end of the three-phase coil, and a power line side of the three-phase coil. A power line caulking step of attaching a terminal to an end, a first racing step of winding a thread around a three-phase coil on the end face of the stator core, a partial discharge test step between coils for performing a partial discharge test between the three-phase coils, Neutral point caulking step of connecting the end of the neutral point lead wire of the phase coil with a terminal, insulating tape winding step of winding the neutral point connected by the terminal with an insulating tape, neutral point of the three-phase coil Bending a lead wire and arranging it on the stator core, and winding a thread around the bent portion.
[0014]
According to the present invention, before the inter-coil partial discharge test step, the finish forming step of finish-forming the coil end of the three-phase coil and the first lacing step of winding a thread around the three-phase coil on the end face of the stator core are performed. Even if the insulation characteristics of the three-phase coil are deteriorated by these steps, it is possible to reliably detect the deterioration.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
A method for manufacturing a three-phase AC motor according to the present invention, in particular, a process for assembling a stator structure will be described with reference to FIGS. In step S101, a three-phase coil is mounted on the inner surface of the stator core. First, the U-phase coil is mounted, and the circumferential portion of the U-phase coil is expanded radially outward. Next, the U-V interphase paper is arranged. Next, the V-phase coil is mounted, and the circumferential portion of the V-phase coil is expanded radially outward. Next, the VW interphase paper is arranged. Finally, a W-phase coil is arranged. In step S102, an insulating sleeve is inserted into the neutral lead of each phase coil.
[0016]
In step S103, finish forming of the coil end is performed. In the mounting process of the three-phase coil in step S101, the circumferential portions of the U-phase coil and the V-phase coil were expanded radially outward. Here, the circumferential portions of the U-phase coil and the V-phase coil are deformed inward in the radial direction to return to the original shape. In step S104, power line caulking is performed. Insert an insulating sleeve into the power line end of each phase coil. Remove the enamel film from the power line end of each phase coil exposed from the insulating sleeve, and attach copper terminals. This terminal is swaged with a swaging machine. Thereby, the terminal is crimped to the end on the power line side of each phase coil.
[0017]
In step S105, the first racing is performed. A circumferential portion of the three-phase coil, which is exposed on the end face of the stator core, is wound with a thread to prevent the three-phase coil from unwinding and coming off the stator core. However, in this example, neutral point leads (UN, VN, WN) were set up in order to prevent the coil from moving and being damaged due to vibration or the like for a partial discharge test between the three-phase coils later. Racing in the state.
[0018]
FIG. 2A shows the appearance of the stator after performing the first racing. As shown in the drawing, a coil end, which is a circumferential portion of a three-phase coil, is formed on the end face 12 of the stator core 10, and a thread 46 is wound around these. A terminal 44 is attached to an end of the coil of each phase on the power line side. The coil ends of the three-phase coils are raised substantially perpendicularly to the end face 12 of the stator core 10, that is, are formed substantially along the axial direction. In fact, what is raised almost perpendicularly to the end face 12 of the stator core 10 is the tip of the neutral lead, and the root of the lead and the other part of the coil end are the stator core. Lying on the end face 12 of 10.
[0019]
In step S106, a partial discharge test between the three-phase coils is performed. The partial discharge starting voltage between the U-phase coil and the V-phase coil, between the V-phase coil and the W-phase coil, and between the W-phase coil and the U-phase coil are inspected. In step S107, neutral point caulking is performed. As shown in FIG. 2B, the tip of the three-phase neutral lead wire is tilted outward in the radial direction. The enamel film on the tip of the three-phase neutral lead exposed from the insulating sleeve is removed, and a copper terminal is mounted. This terminal is swaged with a swaging machine. Thereby, the neutral point of the three-phase coil is electrically connected. In step S108, the neutral point and the neutral point lead wire exposed from the insulating sleeve are wound with an insulating tape.
[0020]
In step S109, the second racing is performed. First, the neutral lead wire is bent and placed on the end face of the stator core 10. Next, the yarn is wound so as to cover the bent neutral point lead wire. This prevents the folded neutral and neutral leads from moving. FIG. 2C shows the appearance of the stator after performing the second racing. As shown in the figure, the thread 48 of the second lacing is wound only at the bent portion at the tip of the three-phase neutral point lead wire.
[0021]
In step S110, a partial discharge test between the core and the three-phase coil is performed. In step S111, a comprehensive insulation test is performed. In step S112, varnish impregnation is performed. In step S113, the stator is transported to a motor assembly process.
[0022]
The process of assembling the stator of the present invention will be compared with the process of assembling a conventional stator. In the present invention, the finish forming of the neutral lead wire and the first lacing are performed before the partial discharge test between the three-phase coils.
[0023]
Generally, the "partial discharge test between the three-phase coils" needs to be performed before "neutral caulking". "Neutral point caulking" is a step of crimping a neutral lead wire of a three-phase coil with a terminal and electrically connecting the leads. Therefore, after performing "neutral caulking", a partial discharge test between each two-phase coil cannot be performed. Further, the “insulating tape winding” is performed after the “neutral caulking”. Therefore, the three steps of “partial discharge test between three-phase coils”, “neutral caulking”, and “insulating tape winding” are performed in this order. Further, "power line caulking" needs to be performed before the partial discharge test between the three-phase coils.
[0024]
The "partial discharge test between three-phase coils" is preferably performed in a later step as much as possible. Therefore, in this example, "coil end finishing" and "racing" are performed before three steps of "partial discharge test between three-phase coils", "neutral caulking", and "insulating tape winding". As a result, it is possible to eliminate a factor that degrades insulation after the inspection.
[0025]
However, in the three processes of "partial discharge test between three-phase coils", "neutral caulking", and "insulating tape winding", it is necessary to raise or bend the neutral lead wire for work reasons. Therefore, a step of bending the neutral point lead wire is required after three steps of "partial discharge test between three-phase coils", "neutral caulking", and "insulating tape winding". Further, it is necessary to race the bent neutral lead. Therefore, in this example, the second racing step is provided in step S109.
[0026]
With reference to FIG. 3, the rise and bending of the neutral lead will be described. As shown in FIG. 3A, when the finish forming of the coil end in Step S103 is completed, the neutral lead 20 of the three-phase coil is lying on the coil at the end face of the stator core 10. As shown in FIG. 3B, before the first racing in step S105, the neutral point lead wire 20 is raised and arranged along the axial direction. As shown in FIG. 3C, before the neutral point caulking in step S107, the neutral point lead wire is tilted outward in the radial direction. As shown in FIG. 3D, before the second lacing in step S109, the folded neutral lead is placed on the coil on the end face of the stator core. That is, as shown by the arrow in FIG. 3C, the neutral point lead wire 20 is bent along the circumferential direction and is disposed on the coil end on the end face of the stator core. At this time, since the part of the bent neutral point lead wire is not laced, a second lacing step is provided, and the part is fixed with the thread 48 so as not to be unraveled.
[0027]
This will be described with reference to FIG. FIG. 4A schematically shows a neutral point lead wire of a three-phase coil on the end face of the stator core in the neutral point caulking step of step S107. The neutral lead wires of the three-phase coil are arranged from the outside in the radial direction to the inside in the order of the neutral lead UN22, the neutral lead VN24, and the neutral lead WN26. Therefore, the length of the neutral lead VN22 is the shortest, and the length of the neutral lead WN26 is the longest. By the neutral point caulking process, the three-phase neutral point lead wires are crimped by the terminals 42 and are electrically connected. Prior to the second racing in step S109, the three-phase neutral lead 20 is bent along the circumferential direction as shown by the arrow. Accordingly, as shown in FIG. 4B, the neutral lead 26 of the longest W-phase coil and the neutral lead 24 of the second longest V-phase coil can be loosened or overlap.
[0028]
With reference to FIG. 5, a first example of the method of avoiding the slack or the overlap described with reference to FIG. 4 will be described. As shown in FIG. 5A, a jig for forming a redundant portion of a neutral point lead wire is used in a neutral point caulking step. The jig has a pedestal 50 and three pins 52, 54, 56 provided on the pedestal. The first pin 52 is wound around the neutral lead 26 of the W-phase coil, the second pin 54 is wound around the neutral lead 24 of the V-phase coil, and the third pin 56 is The neutral lead 22 of the phase coil is wound. The three pins 52, 54, 56 are arranged such that the neutral lead of the three-phase coil bypasses. Bypassing the neutral lead of the three-phase coil forms a redundant portion. By adjusting the distance between the three pins 52, 54, 56, the length of the bypass, or redundant portion, of the neutral lead of the three-phase coil is adjusted. After the redundant portions are formed on the three-phase neutral lead wires in this manner, the ends are connected by terminals 42.
[0029]
As shown in FIG. 5B, before the second racing in step S109, the neutral point lead wire 20 of the three-phase coil is bent along the circumferential direction. As described above, since the redundant portion is formed on the three-phase neutral point lead wire, the bent portion does not loosen.
[0030]
With reference to FIG. 6, a second example of the method for avoiding the slack or overlap of the neutral lead wire described with reference to FIG. 4 will be described. In the above-described example, the neutral point caulking in step S107 is such that the three-phase neutral lead wire is tilted outward in the radial direction, and the terminal 42 is attached to the tip of the neutral lead wire. However, in this example, before the neutral point caulking step in step S107, the neutral point lead wire of the three-phase coil is raised perpendicular to the end face 12 of the stator core 10, that is, arranged along the axial direction. I do. The stator core 10 is laid down so that its axis is horizontal.
[0031]
In this state, the terminal 42 is attached to the tip of the neutral lead. After the terminal 42 is mounted, the three-phase neutral point lead wire is bent along the circumferential direction and placed on the coil end on the end face 12 of the stator core. In this example, no slack occurs due to the difference in the length of the three-phase neutral lead wires.
[0032]
As described above, the example of the present invention has been described. However, the present invention is not limited to the above-described example, and it can be understood by those skilled in the art that various modifications can be made within the scope of the invention described in the claims. Will be understood.
[0033]
【The invention's effect】
According to the present invention, there is an advantage that a three-phase AC motor having excellent insulation properties can be manufactured.
[0034]
Advantageous Effects of Invention According to the present invention, there is an advantage that a three-phase AC motor having excellent insulation properties even at a high voltage can be manufactured.
Further, according to the present invention, there is an advantage that the insulation deterioration due to the damage of the coil in the high-voltage motor can be surely inspected.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining a method for manufacturing a three-phase AC motor according to the present invention.
FIG. 2 is an explanatory diagram for explaining an appearance of a stator structure manufactured by a method of manufacturing a three-phase AC motor according to the present invention.
FIG. 3 is an explanatory diagram for explaining the behavior of a three-phase neutral lead in the method of manufacturing a three-phase AC motor according to the present invention.
FIG. 4 is an explanatory diagram for explaining a behavior of a three-phase neutral lead in a neutral point caulking step of the method for manufacturing a three-phase AC motor according to the present invention.
FIG. 5 is an explanatory diagram for explaining a first example of a method of removing slack of a three-phase neutral lead in a neutral point caulking step of the method for manufacturing a three-phase AC motor according to the present invention. .
FIG. 6 is an explanatory diagram for explaining a second example of a method of removing slack of a three-phase neutral lead in a neutral caulking step of the method of manufacturing a three-phase AC motor according to the present invention. .
FIG. 7 is an explanatory diagram for explaining a conventional method for manufacturing a phase-AC motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Stator core, 12 ... Stator core end surface, 20 ... Neutral point lead wire, 22 ... Neutral point lead wire UN, 24 ... Neutral point lead wire VN, 26 ... Neutral point lead wire WN, 42 ... Neutral point terminal , 44 power line terminals, 46, 48 thread, 50 pedestal, 52, 54, 56 pin

Claims (5)

ステータコアに3相コイルを装着する装着工程と、該3相コイルのコイルエンドを仕上げ成形する仕上げ成形工程と、3相コイルの動力線側の端部に端子を装着する動力線かしめ工程と、ステータコアの端面上の3相コイルに糸を巻く第1レーシング工程と、3相コイル間の部分放電試験を行うコイル間部分放電試験工程と、3相コイルの中性点リード線の端部を端子によって接続する中性点かしめ工程と、該端子によって接続された中性点を絶縁テープによって巻く絶縁テープ巻工程と、3相コイルの中性点リード線を折り曲げてステータコアの上に配置し、この折り曲げた部分に糸を巻く第2レーシング工程と、を含む3相交流電動機の製造方法。A mounting step of mounting the three-phase coil on the stator core, a finish forming step of finish-forming the coil end of the three-phase coil, a power line caulking step of mounting a terminal to a power line side end of the three-phase coil, A first lacing step of winding a thread around a three-phase coil on an end face of the coil, a partial discharge test step between coils to perform a partial discharge test between the three-phase coils, and an end of a neutral lead wire of the three-phase coil by a terminal. A neutral point caulking step of connecting, a neutral point winding step of winding a neutral point connected by the terminal with an insulating tape, a neutral point lead wire of a three-phase coil is bent and arranged on a stator core, and this bending is performed. A second lacing step of winding a thread around the bent portion. 上記中性点かしめ工程は、3相コイルの中性点リード線を半径方向外方に倒すことと、3相コイルの中性点リード線の端部を端子によって電気的に接続することと、を含む請求項1記載の3相交流電動機の製造方法。The neutral point caulking step is to tilt the neutral lead of the three-phase coil outward in the radial direction, electrically connect the end of the neutral lead of the three-phase coil by a terminal, The method for manufacturing a three-phase AC motor according to claim 1, comprising: 3相コイルの中性点リード線を半径方向外方に倒すとき、3つの中性点リード線のうち半径方向に最も外側に配置された中性点リード線に冗長部を形成することを特徴とする請求項2記載の3相交流電動機の製造方法。When the neutral lead of the three-phase coil is tilted outward in the radial direction, a redundant portion is formed in the radially outermost neutral lead of the three neutral leads. The method for manufacturing a three-phase AC motor according to claim 2. 上記中性点かしめ工程は、3相コイルの中性点リード線をステータコアの端面に対して略垂直になるように軸線方向に沿って配置し、ステータコアをその軸線が水平になるように配置することと、3相コイルの中性点リード線の端部を端子によって電気的に接続することと、を含む請求項1記載の3相交流電動機の製造方法。In the neutral point caulking step, the neutral point lead wire of the three-phase coil is arranged along the axial direction so as to be substantially perpendicular to the end face of the stator core, and the stator core is arranged so that its axis is horizontal. The method for manufacturing a three-phase AC motor according to claim 1, further comprising: electrically connecting terminals of a neutral lead of the three-phase coil with terminals. 台座と該台座に装着されたピンとを有し、ステータコアの端面上にて円周方向に配置されたW相コイルのリード線、V相コイルのリード線及びU相コイルのリード線を半径方向に折り曲げ、その先端を端子によって電気的に接続するとき、上記W相コイルのリード線、V相コイルのリード線及びU相コイルのリード線を上記ピンの各々に巻きつけることによって、3相コイルのリード線の各々に異なる長さの迂回部分を形成するように構成されているリード線の迂回装置。It has a pedestal and a pin mounted on the pedestal, and radially disposes a lead wire of a W-phase coil, a lead wire of a V-phase coil, and a lead wire of a U-phase coil arranged circumferentially on an end face of a stator core. When the ends of the three-phase coil are bent and electrically connected by terminals, the lead wire of the W-phase coil, the lead wire of the V-phase coil and the lead wire of the U-phase coil are wound around each of the pins. A lead detour device configured to form different length detours on each of the leads.
JP2003065439A 2003-03-11 2003-03-11 Manufacturing method of three-phase AC motor Expired - Fee Related JP4265242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065439A JP4265242B2 (en) 2003-03-11 2003-03-11 Manufacturing method of three-phase AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065439A JP4265242B2 (en) 2003-03-11 2003-03-11 Manufacturing method of three-phase AC motor

Publications (2)

Publication Number Publication Date
JP2004274946A true JP2004274946A (en) 2004-09-30
JP4265242B2 JP4265242B2 (en) 2009-05-20

Family

ID=33126461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065439A Expired - Fee Related JP4265242B2 (en) 2003-03-11 2003-03-11 Manufacturing method of three-phase AC motor

Country Status (1)

Country Link
JP (1) JP4265242B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219343A (en) * 2008-02-13 2009-09-24 Hitachi Ltd Rotating electric machine, and method for connecting stator coil of rotating electric machine
JP2010008199A (en) * 2008-06-26 2010-01-14 Toshiba Corp Method for testing insulation in manufacturing process of coil for rotary electrical machine, and method of manufacturing coil for rotary electrical machine
CN103066778A (en) * 2012-12-18 2013-04-24 南车株洲电机有限公司 Insulation bandaging process of electric motor winding lead wire connector
JP2014217233A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Motor and compressor
KR20180003580A (en) * 2015-05-04 2018-01-09 뷜러 모토 게엠베하 Electronically commutated direct-current motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983070A (en) * 1982-11-04 1984-05-14 Sanyo Electric Co Ltd Apparatus for inspecting winding of rotary electric machine
JPS61161688U (en) * 1985-03-27 1986-10-07
JPH08205487A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Method and apparatus for processing terminal wire of stator coil for rotary electric machine
JP2001159666A (en) * 1999-12-01 2001-06-12 Moriyama Manufacturing Co Ltd Method and device for inspecting, energizing, and heating stator coil
JP2002199644A (en) * 2000-12-28 2002-07-12 Aisin Aw Co Ltd Three-phase motor
JP2002365326A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Insulation diagnostic method and insulation diagnostic device for dynamoelectric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983070A (en) * 1982-11-04 1984-05-14 Sanyo Electric Co Ltd Apparatus for inspecting winding of rotary electric machine
JPS61161688U (en) * 1985-03-27 1986-10-07
JPH08205487A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Method and apparatus for processing terminal wire of stator coil for rotary electric machine
JP2001159666A (en) * 1999-12-01 2001-06-12 Moriyama Manufacturing Co Ltd Method and device for inspecting, energizing, and heating stator coil
JP2002199644A (en) * 2000-12-28 2002-07-12 Aisin Aw Co Ltd Three-phase motor
JP2002365326A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Insulation diagnostic method and insulation diagnostic device for dynamoelectric machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219343A (en) * 2008-02-13 2009-09-24 Hitachi Ltd Rotating electric machine, and method for connecting stator coil of rotating electric machine
USRE46265E1 (en) 2008-02-13 2017-01-03 Hitachi, Ltd. Rotating electric apparatus and method for connecting stator coils thereof
JP2010008199A (en) * 2008-06-26 2010-01-14 Toshiba Corp Method for testing insulation in manufacturing process of coil for rotary electrical machine, and method of manufacturing coil for rotary electrical machine
CN103066778A (en) * 2012-12-18 2013-04-24 南车株洲电机有限公司 Insulation bandaging process of electric motor winding lead wire connector
JP2014217233A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Motor and compressor
KR20180003580A (en) * 2015-05-04 2018-01-09 뷜러 모토 게엠베하 Electronically commutated direct-current motor
KR101967607B1 (en) 2015-05-04 2019-08-13 뷜러 모토 게엠베하 Electronically commutated direct-current motor

Also Published As

Publication number Publication date
JP4265242B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US8497618B2 (en) Stator for rotatry electrical machine including an insulating bobbin
US7952245B2 (en) Power distribution unit for rotary electric machine with linear conductor connecting ring having terminal section with axially extending hole for connecting stator coil, and method for assembling rotary electric machine
US9729030B2 (en) Method for manufacturing stator for rotary electric machine
US6373164B1 (en) Stator for dynamo-electric machine
US20110018376A1 (en) Busbar terminal, busbar unit, and motor
US20060043806A1 (en) Stator and motor
US6938323B2 (en) Method of manufacturing stator coil of rotary electric machine
US11056945B2 (en) Stator of rotary electric machine and method of manufacturing the same
JP2007174869A (en) Insulator, stator assembly, segment stator, and stator for dynamo-electric machine
JP2001037131A (en) Vehicle ac generator
JP2004229459A (en) Concentrated-winding stator coil for rotary electric machine
JP5769828B2 (en) Rotating electrical machine slip ring device
JP3836608B2 (en) AC alternator rotor for vehicles
US8981613B2 (en) Electric rotating machine
KR101082278B1 (en) End turn phase insulator with a lead wire restraining tab and method of restraining lead wires on dynamoelectric devices
CN103730973A (en) Brushless motor insulator, brushless motor stator, brushless motor, and method of manufacturing brushless motor
JP4265242B2 (en) Manufacturing method of three-phase AC motor
US8466598B2 (en) Electric rotating machine
JP4193640B2 (en) Manufacturing method of motor
US20220239178A1 (en) Brushless electric motor with busbar unit
CN111095739B (en) Stator and stator coil
US20220344983A1 (en) Stator for rotating electric machine
CN107786022A (en) A kind of side&#39;s line stator and its cross-line insulating support
JP7489312B2 (en) Motor stator lead wire insulation structure and insulation method
US20220344992A1 (en) Stator for rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees