JP2004273223A - Dye-sensitized solar cell module - Google Patents

Dye-sensitized solar cell module Download PDF

Info

Publication number
JP2004273223A
JP2004273223A JP2003060896A JP2003060896A JP2004273223A JP 2004273223 A JP2004273223 A JP 2004273223A JP 2003060896 A JP2003060896 A JP 2003060896A JP 2003060896 A JP2003060896 A JP 2003060896A JP 2004273223 A JP2004273223 A JP 2004273223A
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
cell module
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060896A
Other languages
Japanese (ja)
Other versions
JP4314847B2 (en
Inventor
Masahiro Oma
正弘 大麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003060896A priority Critical patent/JP4314847B2/en
Publication of JP2004273223A publication Critical patent/JP2004273223A/en
Application granted granted Critical
Publication of JP4314847B2 publication Critical patent/JP4314847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell module of which installation area is small, and a photoelectric conversion efficiency per projected area can be improved. <P>SOLUTION: One of the dye-sensitized solar cells (1), and one of reflecting mirrors (2) are adjacently arranged in a pair, and each one is tilted at the same angle θ against a module support substrate (13) so as to face each other. The angle θ is preferably 10 to 80°, and more preferably 45 to 80°. As for a cathode electrode of the dye-sensitized solar cells (1), it is preferable that a first transparent conductive film is formed at the inner side of a transparent substrate, and on the surface of the transparent conductive film, platinum particulates or carbon particulates are adhered, and as for an anode electrode, it is preferable that a second transparent conductive thin film and a metal oxide thin film are sequentially formed at the inner side of a second transparent substrate, and that pigments are carried on the surface of the metal oxide film. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、色素増感型太陽電池モジュールに関する。
【0002】
【従来の技術】
近年、地球環境問題に対する対応から、クリーンなエネルギーが求められて、太陽電池開発が進められ、その利用も高まっている。太陽電池の中でも、色素増感型太陽電池は、安価に製造できることから注目されている。
【0003】
従来の色素増感型太陽電池の構造について、断面図を示した図2を用いて説明する。
【0004】
従来の色素増感型太陽電池は、ガラス基板(4a)の内側に、透明導電膜(5a)をコートし、その上に金属酸化物多孔質膜(6)を形成し、金属酸化物多孔質膜(6)を構成する金属酸化物微粒子(9)の表面に、色素(10)を吸着させ、もう一枚の透明導電性膜(5b)をコートしたガラス基板(4b)との間に、電解液(7)を封入したサンドイッチ構造になっている。使用されている酸化チタン等の金属酸化物微粒子(9)は、短波長の光しか吸収しないので、太陽光を効率よく電気に変えるために、増感剤として色素(10)が用いられている。この色素(10)は光吸収剤として働き、太陽光を吸収して電子を金属酸化物微粒子(9)に注入して、発電が行われる。
【0005】
シリコン太陽電池の場合には、シリコンのpn接合によってバンドの勾配が形成され、光照射によって生成した電子と正孔が内部電界によって分離され、起電力が発生する。
【0006】
これに対して、色素増感型太陽電池は、太陽光で励起された色素(10)の電子のみが金属酸化物微粒子(9)に注入され、電子と正孔の再結合による損失がほとんどない。そして、金属酸化物微粒子(9)に電子注入したことにより酸化された色素(10)は、電解液(7)に存在するドナーによって速やかに還元され、初期状態へ戻る。
【0007】
シリコン太陽電池では、光エネルギーの吸収と電子の伝達が、同じシリコン半導体の中で行われているのと異なり、前述のように色素増感型太陽電池の場合には、光エネルギーの吸収と電子の伝達が、別々のところで行われており、植物がクロロフィルで光エネルギーを吸収し、細胞膜の中のメディエーターで電子を伝達しているのと、よく似た構造になっている。
【0008】
この型の太陽電池は電解液を用いるため、湿式太陽電池と呼ばれ、特に、色素を増感剤として用いるため、色素増感型太陽電池と呼ばれる。
【0009】
グレッツェル等は、ナノスケールの酸化チタン微粒子を焼結した多孔質の酸化チタン膜を用いることにより、表面積を投影面積の約1000倍とし、酸化チタン膜と相性が良く、太陽光を効率よく吸収するルテニウム錯体(RuL(NCS)、L=4,4’−ジカルボキシ−2,2’ビピリジン)を用いたことで、AM1.5(エアマス1.5:地球の中経度における太陽スペクトルの太陽光)の太陽光に対して、10%の変換効率を得ている。このとき、電解液は、アセトニトリル90体積%と、3メチル2オキサゾリジノン10体積%との混合溶媒に、ヨウ素とヨウ化リチウムを加えたもので、I/I 酸化還元対として働いている(M.K.Nazeeruddin et al., J. Am. Chem. Soc. 1993, 115, 6382、および特開平1−220380号公報)。
【0010】
しかしながら、色素増感型太陽電池モジュールを屋根に設置する場合、色素増感型太陽電池モジュールは、ほとんどすべてが平面状であり、また、この色素増感型太陽電池セルを複数組み合わせて、大面積の太陽電池を構成しようとすると、配線の取り出しや、外装上の諸部材により、互いに隣接配置される間に、光電変換に寄与しない額縁部分の形成が必要であり、設置面積に対して光電変換のための有効面積が減少してしまう。従って、個人住宅で実用に供するためには、屋根の広さで制限を受けるため、実用レベルの変換効率の達成には、さらなる光電変換効率の向上が望まれていた。
【0011】
シリコン太陽電池においては、住宅の屋根に太陽電池モジュールを設置した時の発電能力を高める方法として、例えば特開平6−120547号公報に、互いに平行な上下両表面間に太陽電池セルが透明材料で封止されている太陽電池モジュールが記載されている。前記太陽電池セルは、前記両表面に対して傾斜した状態で配置させ、太陽電池モジュールが取り付けられる屋根の傾斜角度に対応して、太陽電池セルの傾斜角度を所要の角度とすることで、太陽電池セルを水平にすることができ、これにより、太陽電池モジュールによる発電能力を、年間を通じて最大にすることができる。
【0012】
一方、色素増感型太陽電池においては、特開2002−260746号公報の図1に示されるように、半導体電極(2)、およびその受光面(F2)の上に配置された透明電極(1)を有する光電極(WE)と、対極(CE)と、スペーサー(S)により光電極(WE)と対極(CE)との間に形成される間隙に充填される電解質(E)とから構成される色素増感型太陽電池が記載されている。透明電極(1)の受光面(F1)の法線方向から、半導体電極(2)の受光面(F2)に入射する光の入射角を30〜80°となるように、半導体電極(2)を断面方向から見て鋸歯状に形成し、透明電極(1)と半導体電極(2)との接触面(F2)も、半導体電極(2)の形状に合わせて鋸歯状に溝を形成する。また、外部から透明電極の受光面に入射する光の進行方向を変化させるライトガイド手段を形成し、透明電極内を進行して前記半導体電極の受光面に、前記同様、斜め入射するように構成することで、光が半導体電極に垂直に入射する場合に比較して入射光利用率が向上し、単位有効面積当たりの発電量が向上した色素増感型太陽電池が提案されている。この発明では、基板として鋸歯状の断面形状を有した透明電極基板を必要とし、対極も同様の透明電極基板を必要とすることから、製造コストの上昇を招いてしまう。また、前記鋸歯状の断面形状を有した透明電極を有する光電極と、同様の対極とを、精度よく対向させることが必要となり、生産性の観点から問題を有している。
【0013】
また、特開2001−35551号公報には、色素の近傍に金属微粒子を配することが記載されている。。
【0014】
【特許文献1】
特開平1−220380号公報
【0015】
【特許文献2】
特開平6−120547号公報
【0016】
【特許文献3】
特開2002−260746号公報
【0017】
【特許文献4】
特開2001−35551号公報
【0018】
【非特許文献1】
M.K.Nazeeruddin et al., J.Am.Chem. Soc. 1993, 115, 6382
【0019】
【発明が解決しようとする課題】
本発明は、設置面積が小さく、投影面積当たりの光電変換効率を向上させることができる色素増感型太陽電池モジュールの提供を目的とする。
【0020】
【課題を解決するための手段】
本発明の色素増感型太陽電池モジュールは、モジュール支持基板と、複数の色素増感型太陽電池セルと、同数の反射鏡とからなり、前記色素増感型太陽電池セルの1つと、前記反射鏡の1つとが、隣接して対になって配置され、かつ、それぞれが角度をなして向き合うように、前記モジュール支持基板に対して同一の所定角度で傾斜する。
【0021】
前記所定角度が、10〜80°であることが望ましく、45〜80°であることがさらに望ましい。
【0022】
前記色素増感型太陽電池セルは、カソード電極と、アノード電極と、それらの間に充填された酸化還元電解質とからなり、前記カソード電極は、第1の透明基板の内側に、第1の透明導電膜を形成し、第1の透明導電膜の表面には、白金微粒子もしくは炭素微粒子が付着され、前記アノード電極は、第2の透明基板の内側に、第2の透明導電膜および金属酸化物薄膜を順次形成し、該金属酸化物薄膜の表面には、色素を担持することが好ましい。
【0023】
あるいは、前記色素増感型太陽電池セルは、カソード電極と、アノード電極と、それらの間に充填された酸化還元電解質とからなり、前記カソード電極は、第1の透明基板の内側に、第1の透明導電膜を形成し、第1の透明導電膜の表面には、白金微粒子もしくは炭素微粒子が付着され、前記アノード電極は、第2の透明基板の内側に、第2の透明導電膜および金属酸化物薄膜を順次形成し、該金属酸化物薄膜の表面には、色素を担持し、該色素の近傍には、Pt、Pt合金、PdおよびPd合金からなる群から選ばれた少なくとも1種の金属微粒子を配したことが好ましい。
【0024】
前記金属酸化物薄膜が、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化錫(SnO)、または、チタン酸ストロンチウム(SrTiO)からなることが望ましい。
【0025】
また、前記色素が、ルテニウム錯体、ポルフィリン錯体、キサンテン系色素、メチン系色素、クマリン系色素、アクリジン系色素、またはフェニルメタン系色素であることが望ましい。
【0026】
また、前記酸化還元電解質が、ヨウ素、臭素、または、塩素を含む電解液であるか、ヨウ素、臭素、または、塩素を含む固体伝導体であることが望ましい。
【0027】
また、第1の透明基板および第2の透明基板が、ガラス、PETまたはポリイミドからなることが望ましい。
【0028】
【発明の実施の形態】
色素増感型太陽電池モジュールの設置面積を小さくするには、色素増感型太陽電池の光電変換効率を向上させることが求められる。色素増感型太陽電池では、金属酸化物多孔質膜の膜厚を厚くすることにより、投影面積当たりの表面積を増やすことができ、金属酸化物多孔質膜への吸着色素量を増やすことができ、吸着色素量の増加により光電変換効率も向上する。しかしながら、実際には、金属酸化物多孔質膜の膜厚を厚くしても、ある値以上には光電変換効率は向上しない。この現象は、透明導電膜から遠い金属酸化物に、色素から電子が注入されても、透明導電膜に捕集されるまでに、ジュール熱として消費されるためと考えられている。この問題の解決のため、金属酸化物に導電性を持たせたり、導電物質を混合することが考えられる。また、捕集電極を金属酸化物多孔質膜内に形成する試みもあるが、作製プロセスが複雑となることが問題になる。
【0029】
そこで、本発明者は、金属酸化物多孔質膜内で光路長を長くでき、透明導電膜までの距離が短くなる構造に注目し、研究を進めた。
【0030】
図5に、色素増感型太陽電池セルの相対短絡電流密度(△)、色素増感型太陽電池セルに反射鏡を対向させた色素増感型太陽電池モジュールの相対短絡電流密度(○)、アモルファスシリコン(a−Si)太陽電池セルの相対短絡電流密度(□)、太陽光に対する色素増感型太陽電池セル、色素増感型太陽電池モジュールおよびアモルファスシリコン(a−Si)太陽電池セルの相対投影面積(実線)を示す。
【0031】
入射角θ(°)が増加するにつれて、相対投影面積(実線)は、COSθで減少する。アモルファスシリコン(a−Si)太陽電池セルの相対短絡電流密度(□)も、相対投影面積の変化に対応して減少していく。この時、相対投影面積の変化より若干低めに出ているのは、入射角の増加とともに表面での反射ロスが増加していくためである。一方、色素増感型太陽電池セル、色素増感型太陽電池モジュールの相対短絡電流密度(△)、(○)は、入射角30°でもほとんど変化しない。色素増感型太陽電池セルの相対短絡電流密度(△)は、40°付近で低下がみられるが、相対投影面積(実線)の減少に比べて小さい。これは、見かけ上、変換効率が向上していることを示している。
【0032】
これらのことより、傾斜角が10°よりも小さいと、平板状に設置した時と変わらない特性および投影面積当たりの表面積しか得られないし、一方、80°を超えると、設置面積を小さくすることはできるが、入射光を有効に利用できず、利用効率を高くすることができないことがわかる。
【0033】
さらに、色素増感型太陽電池セルに角度をつけて反射鏡を対向させた色素増感型太陽電池モジュールの場合(○)、入射角が30°までは、反射鏡の効果がないが、入射角が30°を超えると、対向する反射鏡で反射した光が、対向する色素増感型太陽電池セルに入射され、発電に寄与する。入射角が45°までは、角度の増加とともに単調に反射光成分が増えてくる。入射角が45°を境として、色素増感型太陽電池セルと反射鏡の間での多重反射成分も寄与するようになり、入射角の増加とともに、急激に光閉じ込め効果が顕著となり、発電効率が増大する。
【0034】
この発電効率の増大を、単位面積あたりの増強率(相対短絡電流/相対投影面積)で表したものが、図6である。
【0035】
アモルファスシリコン(a−Si)太陽電池セルの増強率(□)は60度まで1より少し下回り、傾斜させることによる利得はない。さらに、70度以上では大きく1を下回っている。一方、色素増感太陽電池セルでは、傾斜させることにより入射光路長が電子の移動距離より長くなる効果により、最大30%の利得が得られる(△)。この色素増感太陽電池セルに、さらに反射鏡を対向させることにより(○)、入射角が30°付近から、入射光路長が電子の移動距離より長くなる効果に加えて、反射の効果が現れ、入射角が45°からは、多重反射効果も加わり、急激に利得が増え、入射角が70°付近では、約3倍に達する。反射鏡が、投影面積の半分を占めていることを考えると、単位面積あたり約1.5倍の利得となる。また、投影面積の半分は、色素増感太陽電池セルではなく反射鏡でよいため、コストがほぼ半分になるメリットがある。
【0036】
すなわち、色素増感型太陽電池セルを傾斜させても、投影面積当たりの光電流を大きく減少させず、さらに、色素増感型太陽電池セル1つと、反射鏡1つとを対として、モジュール支持基板の平面に対してそれぞれ同一傾斜角度で向かい合わせて設置することにより、反射鏡による太陽光反射光を、有効に色素増感型太陽電池セルに入射させることができ、投影面積当たりでは変換効率を向上させ、かつ、必要な電力を得るために設置する色素増感型太陽電池モジュールの枚数を減らすことができることを見出した。
【0037】
本発明にかかる短冊状の色素増感型太陽電池セルの構成について、断面図を示した図2を用いて説明する。
【0038】
短冊状色素増感型太陽電池は、ガラス基板(4b)と、透明導電膜(例えば、フッ素ドープ酸化錫)(5b)と、該透明導電膜(5b)に付着させた白金微粒子もしくは炭素微粒子(8)とからなるカソード電極、ガラス基板(4a)と、透明導電膜(例えばフッ素ドープ酸化錫)(5a)と、該透明導電膜(5a)の上に形成した多孔質の金属酸化物多孔質薄膜(6)と、該金属酸化物多孔質薄膜(6)を構成する金属酸化物微粒子(9)の表面に担持した色素(10)とからなり、光電極であるアノード電極、および酸化還元電解質(7)で構成される。
【0039】
酸化還元電解質(7)は、ヨウ素系電解液であるアセトニトリル90体積%と、3メチル2オキサゾリジノン10体積%との混合溶媒に、ヨウ素とヨウ化リチウムを加えたものであり、ヨウ素酸化還元対(I /I)として働き、カソード電極とアノード電極との間の電子移動に寄与している。
【0040】
金属酸化物微粒子(9)は、例えば酸化チタン微粒子で形成することができる。
【0041】
色素(10)には、例えばルテニウム錯体からなる色素(10)を用いると、色素(10)が光を吸収して、ルテニウム金属・配位子軌道遷移により励起された電子が、酸化チタンの伝導帯に移り、光電流となり、発電が行なわれる。さらに、前述の特開2001−35551号公報に記載するように、色素(10)の近傍に金属微粒子を配することによって、さらに特性を向上させた色素増感型太陽電池セルが一層好ましい。このような金属微粒子には、Pt、Pt合金、Pd、またはPd合金からなる群から選ばれた少なくとも1種の金属微粒子を用いることが好ましい。これは、該金属微粒子が、ハロゲン系の酸化還元電解液と反応して溶解することがなく、前記金属微粒子を配することによって、Ru色素の吸光度に比べ、吸光度が可視光から近赤外領域にかけて増強されるからである。
【0042】
図3は、従来と同様に、短冊状色素増感型太陽電池セルに、垂直に太陽光が入射した場合を示す断面図である。発電に寄与する入射光の光路長(11)は、金属酸化物多孔質膜(6)の厚さであり、透明導電膜(5a)より最も遠い位置からの電子移動の最短距離(12)も、金属酸化物多孔質膜(6)の厚さと同じである。
【0043】
図4は、本発明のように、短冊状色素増感型太陽電池セルに、角度θをもって太陽光が入射した場合を示す断面図である。色素増感型太陽電池セルに、受光面ガラス基板の法線方向から角度θだけ傾いて太陽光が入射したことになり、発電に寄与する入射光の光路長(11)は、(金属酸化物多孔質膜(6)の厚さ)/COSθとなり、傾斜角θが大きくなるほど、入射光の光路長(11)は長くなる。しかし、透明導電膜(5a)より最も遠い位置からの電子移動の最短距離(12)は、金属酸化物多孔質膜(6)の厚さのままである。
【0044】
このとき、垂直入射光を受光する図3に対し、傾斜角θで斜め入射させる図4の場合に、金属酸化物多孔質膜(6)の膜厚が、見かけ上、厚くなったことになり、一方、金属酸化物多孔質膜(6)の表面で、色素から注入された電子は、入射光方向ではなく最短の膜厚方向に流れるので、ジュール熱による損失は、色素増感型太陽電池セルを角度θだけ傾けても、変わらない。
【0045】
さらに、端部では光路長を長くすることができず、この効果は得られない。従って、酸化物多孔質膜(6)の膜厚に比べて、斜面部が十分長いことが重要である。そのため、前記課題を解決するための本発明の色素増感型太陽電池モジュールでは、短冊状の色素増感型太陽電池セルを、角度をつけて並べる。
【0046】
このように、短冊状色素増感型太陽電池セルを、角度をつけて並べる色素増感型太陽電池モジュールにより、同一性能の色素増感型太陽電池セルで、設置面積を小さくすることができる。この効果は図5に示したようにアモルファスシリコン(a−Si)太陽電池では起こらず、色素増感型太陽電池特有の効果である。
【0047】
本発明では更に、短冊状の色素増感型太陽電池セルと、短冊状の反射鏡の複数の対を、平坦なモジュール支持基板に対して同一角度で傾斜させ、それぞれの短冊状の色素増感型太陽電池セルと短冊状の反射鏡とを向かい合わせて設置し、色素増感型太陽電池モジュールを構成する。この時、前記角度は、10〜80°とすることが望ましく、さらには、45〜80°とすることが望ましい。角度が10°よりも小さいと、平板状に設置した時と変わらない特性と設置面積しか得られない。一方、角度が80°を超えると、設置面積を少なくすることはできるが、入射光を有効に利用できず、利用効率を高くすることができない。45°以上では、前述のように光閉じ込め効果により、発電効率が増大する。
【0048】
本発明の色素増感型太陽電池モジュールの構造を、図面を用いて説明する。
【0049】
図1は、本発明の色素増感型太陽電池モジュールを示す斜視図である。
【0050】
本発明の色素増感型太陽電池モジュールは、短冊状の色素増感型太陽電池(1)と、短冊状の反射鏡(2)の複数の対を、平坦なモジュール支持基板(13)に対し同一角度で傾斜させて配置し、それぞれの短冊状の色素増感型太陽電池セル(1)と、短冊状の反射鏡(2)とを向かい合わせて設置したことを特徴としている。この場合、反射鏡(2)の受光面からの太陽光反射光を、短冊状の色素増感型太陽電池(1)で受光することができるため、太陽光を有効利用することができ、投影面積当たりの変換効率を向上させ、かつ、必要な電力を得るための色素増感型太陽電池の枚数を減らすことができる。
【0051】
以上のように説明した本発明により、同一性能の色素増感型太陽電池セルで、特に、受光部に特殊な形状を形成したり、特殊な部材を配置することなく、設置面積が小さく、投影面積当たりの光電変換効率を向上させることができるとともに、太陽光反射光をも有効利用することのできる色素増感型太陽電池モジュールを提供することができる。
【0052】
【実施例】
本発明を、以下の実施例により説明する。しかし、本発明はこれらに限定されるものではない。
【0053】
(実施例1)
以下の条件で、本発明の色素増感型太陽電池モジュールを構成し、その特性を評価した。
【0054】
短冊状色素増感型太陽電池セルについて、透明導電膜を形成した透明基板には市販のフッ素ドープSnOガラス(日本板硝子製、導電層膜厚450nm)を用いた。金属酸化物の薄膜には、酸化チタンとして平均粒径15nmのTiOペースト(Solaronix社製)を用いた。
【0055】
フッ素ドープSnOガラスの上に、酸化チタンペーストを塗布し、自然乾燥後、500℃で30分間、電気炉で焼成を行った。一回の塗布で約2μm厚の酸化チタン多孔質膜が形成され、5回の塗布を繰り返すことにより、約10μm厚とした。酸化チタン多孔質膜を、Ru色素溶液に浸漬し、80℃で2時間、還流を行い、酸化チタン多孔質の表面にRu色素を担持した。Ru色素溶液は、エタノールに3×10−4mol/LのRu色素(Solaronix社製、Ruthenium535)を溶解させることにより作製した。以上のようにして、光電極であるアノード電極を形成した。
【0056】
一方、カソード電極は、フッ素ドープSnOガラスの表面にスパッタリング法で白金を付着させることにより形成した。
【0057】
カソード電極とアノード電極を対向保持させて電池構造を形成し、間隙に酸化還元電解質を注入した。酸化還元電解質はヨウ素系電解液であり、アセトニトリル90体積%と、3メチル2オキサゾリジノン10体積%との混合溶媒に、ヨウ素とヨウ化リチウムを加えたものである。
【0058】
色素増感型太陽電池モジュールは、1cm×5cmの前記短冊状色素増感型太陽電池セルと、1cm×5cmの反射鏡との3対を、図1のように、モジュール支持基板に対し、同一傾斜角度で向かい合わせて、設置した。傾斜角θは70°とした。投影面積は10cmであった。
【0059】
本実施例の色素増感型太陽電池モジュールに対して、AM1.5のソーラーシミュレータで1000W/mの疑似太陽光を照射して、電流電圧特性を測定した結果、短絡電流150mA、開放電圧0.7Vを得た。短絡電流値を投影面積で割った短絡電流密度は15mA/cmであった。
【0060】
後述する比較例1の測定結果との比較から、比較例1と同等の性能を得ながら、色素増感型太陽電池モジュールの設置面積を2/3に縮小できることが確認できた。ここで、短絡電流値とは、色素増感型太陽電池モジュールにソーラーシミュレーターを、光軸が垂直となるように配置して、色素増感型太陽電池モジュールの端子を短絡し、光照射したときに測定される電流値を言う。
【0061】
(実施例2)
傾斜角θを80°とした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。投影面積は5.2cmであった。
【0062】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流77mA、開放電圧0.7Vを得た。短絡電流値を投影面積で割った短絡電流密度は15mA/cmであった。
【0063】
後述する比較例1の測定結果との比較から、比較例1と同等の性能を得ながら、色素増感型太陽電池モジュールの設置面積を2/3に縮小できることが確認できた。
【0064】
(実施例3)
傾斜角θを60°とした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。投影面積は15cmであった。
【0065】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流171mA、開放電圧0.7Vを得た。短絡電流値を投影面積で割った短絡電流密度は11.4mA/cmであった。
【0066】
後述する比較例1の測定結果との比較から、比較例1と同等の投影面積で、短絡電流値は14%向上した。設置面積に換算すると、12%縮小できることが確認された。
【0067】
(実施例4)
傾斜角θを50°とした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。
【0068】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流175mA、開放電圧0.7Vを得た。
【0069】
(実施例5)
傾斜角θを40°とした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。
【0070】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流154mA、開放電圧0.7Vを得た。
【0071】
(実施例6)
傾斜角θを30°とした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。
【0072】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流149mA、開放電圧0.7Vを得た。
【0073】
(実施例7)
傾斜角θを20°とした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。
【0074】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流153mA、開放電圧0.7Vを得た。
【0075】
(実施例8)
傾斜角θを10°とした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。
【0076】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流151mA、開放電圧0.7Vを得た。
【0077】
以上の実施例1〜8と、後述する比較例1とから、反射鏡を対向させることにより10°以上で、比較例1に比べて短絡電流値の増加が確認された。
【0078】
(比較例1)
傾斜角θを0°、すなわち、平面状にした以外は、実施例1と同様にして、色素増感型太陽電池モジュールを作製した。投影面積は15cmであった。
【0079】
実施例1と同様に、電流電圧特性を測定した結果、短絡電流150mA、開放電圧0.7Vを得た。
【0080】
短絡電流値を投影面積で割った短絡電流密度は10mA/cmであった。
【0081】
【発明の効果】
本発明により、設置面積が小さく、投影面積当たりの光電変換効率を向上させることができ、太陽光反射光をも有効利用可能で、必要な電力を得るための色素増感型太陽電池セルの使用枚数を削減でき、安価な色素増感型太陽電池モジュールを提供可能となった。
【図面の簡単な説明】
【図1】本発明の色素増感型太陽電池モジュールを示す斜視図である。
【図2】色素増感型太陽電池セルを示す断面図である。
【図3】短冊状色素増感型太陽電池セルに、垂直に太陽光が入射した場合を示す断面図である。
【図4】短冊状色素増感型太陽電池セルに、角度θをもって太陽光が入射した場合を示す断面図である。
【図5】相対短絡電流密度および相対投影面積の入射角依存性を示すグラフである。
【図6】短絡電流密度増強率の入射角依存性を示すグラフである。
【符号の説明】
1 短冊状色素増感型太陽電池セル
2 反射鏡
3 色素増感型太陽電池モジュール
4a、4b ガラス基板
5a、5b 透明導電膜
6 金属酸化物多孔質膜
7 酸化還元電解質
8 白金微粒子もしくは炭素微粒子
9 金属酸化物微粒子
10 色素
11 金属酸化物多孔質膜中での光路長
12 金属酸化物多孔質膜の膜厚
13 モジュール支持基板
θ 傾斜角
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dye-sensitized solar cell module.
[0002]
[Prior art]
In recent years, in response to global environmental problems, clean energy has been demanded, solar cells have been developed, and their use has been increasing. Among solar cells, dye-sensitized solar cells have attracted attention because they can be manufactured at low cost.
[0003]
The structure of a conventional dye-sensitized solar cell will be described with reference to FIG.
[0004]
In a conventional dye-sensitized solar cell, a transparent conductive film (5a) is coated on the inside of a glass substrate (4a), and a metal oxide porous film (6) is formed thereon. The dye (10) is adsorbed on the surface of the metal oxide fine particles (9) constituting the film (6), and between the glass substrate (4b) coated with another transparent conductive film (5b), It has a sandwich structure in which the electrolyte (7) is sealed. The metal oxide fine particles (9) such as titanium oxide used absorb only short-wavelength light, and thus the dye (10) is used as a sensitizer to efficiently convert sunlight into electricity. . The dye (10) functions as a light absorber, absorbs sunlight, injects electrons into the metal oxide fine particles (9), and generates power.
[0005]
In the case of a silicon solar cell, a band gradient is formed by a pn junction of silicon, electrons and holes generated by light irradiation are separated by an internal electric field, and an electromotive force is generated.
[0006]
In contrast, in the dye-sensitized solar cell, only electrons of the dye (10) excited by sunlight are injected into the metal oxide fine particles (9), and there is almost no loss due to recombination of electrons and holes. . The dye (10) oxidized by electron injection into the metal oxide fine particles (9) is promptly reduced by the donor present in the electrolytic solution (7), and returns to the initial state.
[0007]
Unlike silicon solar cells, in which light energy is absorbed and electrons are transmitted in the same silicon semiconductor, in the case of a dye-sensitized solar cell, as described above, light energy is absorbed and electrons are transmitted. Is transmitted in separate places, similar to the way plants absorb light energy with chlorophyll and transfer electrons with mediators in the cell membrane.
[0008]
This type of solar cell is called a wet solar cell because it uses an electrolytic solution, and is particularly called a dye-sensitized solar cell because it uses a dye as a sensitizer.
[0009]
Gretzel et al. Use a porous titanium oxide film obtained by sintering nanoscale titanium oxide fine particles, make the surface area approximately 1000 times the projected area, have good compatibility with the titanium oxide film, and efficiently absorb sunlight. Ruthenium complex (RuL2(NCS)2, L = 4,4′-dicarboxy-2,2 ′ bipyridine), the sunlight of AM1.5 (air mass 1.5: sunlight in the solar spectrum at midlong longitude of the earth) A conversion efficiency of 10% is obtained. At this time, the electrolytic solution was a mixture of 90% by volume of acetonitrile and 10% by volume of 3-methyl-2-oxazolidinone to which iodine and lithium iodide were added./ I3 It functions as a redox couple (MK Nazeeruddin et al., J. Am. Chem. Soc. 1993, 115, 6382, and JP-A-1-220380).
[0010]
However, when a dye-sensitized solar cell module is installed on a roof, almost all of the dye-sensitized solar cell module is planar, and a large area is obtained by combining a plurality of the dye-sensitized solar cells. In order to construct a solar cell, it is necessary to form a frame part that does not contribute to photoelectric conversion while taking out the wiring and various members on the exterior, while being arranged adjacent to each other. The effective area for the operation is reduced. Therefore, in order to be put to practical use in a private house, the size of the roof is limited, so that a further improvement in photoelectric conversion efficiency has been desired to achieve a practical level of conversion efficiency.
[0011]
In a silicon solar cell, as a method of increasing power generation capacity when a solar cell module is installed on a roof of a house, for example, JP-A-6-120547 discloses that a solar cell is made of a transparent material between upper and lower surfaces parallel to each other. A sealed solar cell module is described. The solar cells are arranged in an inclined state with respect to the both surfaces, and the solar cell is inclined at a required angle in accordance with the inclination angle of the roof to which the solar cell module is attached, so that The battery cells can be leveled, thereby maximizing the power generation capacity of the solar cell module throughout the year.
[0012]
On the other hand, in a dye-sensitized solar cell, as shown in FIG. 1 of JP-A-2002-260746, a semiconductor electrode (2) and a transparent electrode (1) disposed on a light-receiving surface (F2) thereof are provided. ), A counter electrode (CE), and an electrolyte (E) filled in a gap formed between the photoelectrode (WE) and the counter electrode (CE) by the spacer (S). Dye-sensitized solar cells are described. The semiconductor electrode (2) such that the incident angle of light incident on the light receiving surface (F2) of the semiconductor electrode (2) is 30 to 80 ° from the normal direction of the light receiving surface (F1) of the transparent electrode (1). Are formed in a sawtooth shape when viewed from the cross-sectional direction, and a contact surface (F2) between the transparent electrode (1) and the semiconductor electrode (2) is also formed with a sawtooth groove in accordance with the shape of the semiconductor electrode (2). Further, a light guide means for changing the traveling direction of light incident on the light receiving surface of the transparent electrode from the outside is formed, and the light guide means travels inside the transparent electrode and is obliquely incident on the light receiving surface of the semiconductor electrode as described above. By doing so, there has been proposed a dye-sensitized solar cell in which the incident light utilization factor is improved as compared with the case where light is vertically incident on a semiconductor electrode, and the amount of power generation per unit effective area is improved. According to the present invention, a transparent electrode substrate having a sawtooth cross-sectional shape is required as a substrate, and a similar transparent electrode substrate is also required for a counter electrode, resulting in an increase in manufacturing cost. In addition, it is necessary to accurately oppose a photoelectrode having a transparent electrode having a sawtooth cross-sectional shape and a similar counter electrode, which poses a problem from the viewpoint of productivity.
[0013]
Japanese Patent Application Laid-Open No. 2001-35551 describes that metal fine particles are arranged near a dye. .
[0014]
[Patent Document 1]
JP-A-1-220380
[0015]
[Patent Document 2]
JP-A-6-120547
[0016]
[Patent Document 3]
JP-A-2002-260746
[0017]
[Patent Document 4]
JP 2001-35551 A
[0018]
[Non-patent document 1]
M. K. Nazeeruddin et al. , J. et al. Am. Chem. Soc. 1993, 115, 6382
[0019]
[Problems to be solved by the invention]
An object of the present invention is to provide a dye-sensitized solar cell module having a small installation area and capable of improving photoelectric conversion efficiency per projected area.
[0020]
[Means for Solving the Problems]
The dye-sensitized solar cell module of the present invention comprises a module support substrate, a plurality of dye-sensitized solar cells, and the same number of reflecting mirrors. One of the mirrors is disposed adjacently in pairs and is inclined at the same predetermined angle with respect to the module support substrate so that each faces at an angle.
[0021]
The predetermined angle is preferably from 10 to 80 °, and more preferably from 45 to 80 °.
[0022]
The dye-sensitized solar cell includes a cathode electrode, an anode electrode, and an oxidation-reduction electrolyte filled therebetween, and the cathode electrode includes a first transparent substrate provided inside a first transparent substrate. A conductive film is formed, and platinum fine particles or carbon fine particles are adhered to the surface of the first transparent conductive film, and the anode electrode is provided inside the second transparent substrate with the second transparent conductive film and the metal oxide. It is preferable that thin films are sequentially formed, and a dye is supported on the surface of the metal oxide thin film.
[0023]
Alternatively, the dye-sensitized solar cell includes a cathode electrode, an anode electrode, and a redox electrolyte filled therebetween, and the cathode electrode includes a first transparent substrate inside a first transparent substrate. A platinum fine particle or a carbon fine particle is adhered to the surface of the first transparent conductive film, and the anode electrode is provided inside the second transparent substrate with the second transparent conductive film and the metal. An oxide thin film is sequentially formed, and a dye is supported on the surface of the metal oxide thin film. In the vicinity of the dye, at least one kind selected from the group consisting of Pt, a Pt alloy, Pd, and a Pd alloy is provided. It is preferable to dispose metal fine particles.
[0024]
The metal oxide thin film is made of titanium oxide (TiO 2).2), Zinc oxide (ZnO), niobium oxide (Nb)2O5), Tin oxide (SnO)2) Or strontium titanate (SrTiO3) Is desirable.
[0025]
Further, it is preferable that the dye is a ruthenium complex, a porphyrin complex, a xanthene dye, a methine dye, a coumarin dye, an acridine dye, or a phenylmethane dye.
[0026]
It is preferable that the redox electrolyte is an electrolyte containing iodine, bromine, or chlorine, or a solid conductor containing iodine, bromine, or chlorine.
[0027]
Further, it is desirable that the first transparent substrate and the second transparent substrate are made of glass, PET or polyimide.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to reduce the installation area of the dye-sensitized solar cell module, it is required to improve the photoelectric conversion efficiency of the dye-sensitized solar cell. In the dye-sensitized solar cell, by increasing the thickness of the metal oxide porous film, the surface area per projected area can be increased, and the amount of dye adsorbed on the metal oxide porous film can be increased. Also, the photoelectric conversion efficiency is improved by increasing the amount of the adsorbed dye. However, in practice, even if the thickness of the porous metal oxide film is increased, the photoelectric conversion efficiency does not improve beyond a certain value. This phenomenon is considered to be due to the fact that even if electrons are injected from a dye into a metal oxide far from the transparent conductive film, it is consumed as Joule heat before being collected by the transparent conductive film. To solve this problem, it is conceivable to make the metal oxide conductive or to mix a conductive substance. There is also an attempt to form a collecting electrode in a porous metal oxide film, but there is a problem that the manufacturing process becomes complicated.
[0029]
Accordingly, the present inventors have focused on a structure in which the optical path length can be increased in the metal oxide porous film and the distance to the transparent conductive film is reduced, and have proceeded with research.
[0030]
FIG. 5 shows the relative short-circuit current density of the dye-sensitized solar cell (△), the relative short-circuit current density of the dye-sensitized solar cell module in which a reflecting mirror is opposed to the dye-sensitized solar cell (○), Relative short-circuit current density (□) of amorphous silicon (a-Si) solar cell, relative to dye-sensitized solar cell, dye-sensitized solar cell module and amorphous silicon (a-Si) solar cell to sunlight The projection area (solid line) is shown.
[0031]
As the angle of incidence θ (°) increases, the relative projected area (solid line) decreases at COS θ. The relative short-circuit current density (□) of the amorphous silicon (a-Si) solar cell also decreases in accordance with the change in the relative projected area. At this time, the reason why the relative projection area is slightly lower than the change is that the reflection loss on the surface increases as the incident angle increases. On the other hand, the relative short-circuit current densities (△) and (○) of the dye-sensitized solar cell and the dye-sensitized solar cell module hardly change even at an incident angle of 30 °. The relative short-circuit current density (△) of the dye-sensitized solar cell decreases around 40 °, but is smaller than the decrease in the relative projected area (solid line). This indicates that the conversion efficiency is apparently improved.
[0032]
From these facts, if the inclination angle is smaller than 10 °, only the characteristics and the surface area per projected area that are the same as those when the apparatus is installed in a flat plate shape can be obtained. On the other hand, if the inclination angle exceeds 80 °, the installation area is reduced. It can be seen that the incident light cannot be used effectively, and the use efficiency cannot be increased.
[0033]
Furthermore, in the case of the dye-sensitized solar cell module in which the reflecting mirror is opposed to the dye-sensitized solar cell at an angle (○), the effect of the reflecting mirror is not obtained up to an incident angle of 30 °. If the angle exceeds 30 °, the light reflected by the opposing reflecting mirrors is incident on the opposing dye-sensitized solar cell and contributes to power generation. Up to an incident angle of 45 °, the reflected light component monotonically increases as the angle increases. At an angle of incidence of 45 °, multiple reflection components between the dye-sensitized solar cell and the reflector also contribute, and as the angle of incidence increases, the light confinement effect suddenly becomes remarkable, and the power generation efficiency increases Increase.
[0034]
FIG. 6 shows the increase in the power generation efficiency in terms of the enhancement rate per unit area (relative short-circuit current / relative projected area).
[0035]
The enhancement factor (□) of the amorphous silicon (a-Si) solar cell is slightly less than 1 up to 60 degrees, and there is no gain by tilting. Further, it is significantly less than 1 at 70 degrees or more. On the other hand, in the dye-sensitized solar cell, a maximum gain of 30% can be obtained due to the effect that the incident optical path length becomes longer than the electron moving distance by tilting (△). When a reflecting mirror is further opposed to the dye-sensitized solar cell (○), the reflection effect appears in addition to the effect that the incident optical path length becomes longer than the electron moving distance from the incident angle of about 30 °. From the angle of incidence of 45 °, the multiple reflection effect is also added, and the gain sharply increases. When the angle of incidence is around 70 °, the gain reaches about three times. Considering that the reflector occupies half of the projected area, the gain per unit area is about 1.5 times. Further, half of the projected area may be a reflection mirror instead of the dye-sensitized solar cell, and therefore, there is an advantage that the cost is reduced to almost half.
[0036]
That is, even if the dye-sensitized solar cell is tilted, the photocurrent per projected area is not significantly reduced, and further, one dye-sensitized solar cell and one reflector are paired to form a module support substrate. By installing the mirrors facing each other at the same inclination angle with respect to the plane, the sunlight reflected by the reflector can be effectively incident on the dye-sensitized solar cell, and the conversion efficiency per projected area can be reduced. It has been found that the number of dye-sensitized solar cell modules that can be installed to obtain necessary power can be reduced.
[0037]
The configuration of the strip-shaped dye-sensitized solar cell according to the present invention will be described with reference to FIG. 2 showing a cross-sectional view.
[0038]
The strip-shaped dye-sensitized solar cell comprises a glass substrate (4b), a transparent conductive film (for example, fluorine-doped tin oxide) (5b), and platinum or carbon fine particles adhered to the transparent conductive film (5b). 8), a glass substrate (4a), a transparent conductive film (for example, fluorine-doped tin oxide) (5a), and a porous metal oxide porous film formed on the transparent conductive film (5a). A thin film (6), a dye (10) supported on the surface of metal oxide fine particles (9) constituting the metal oxide porous thin film (6), an anode electrode serving as a photoelectrode, and a redox electrolyte (7).
[0039]
The oxidation-reduction electrolyte (7) is obtained by adding iodine and lithium iodide to a mixed solvent of 90% by volume of acetonitrile, which is an iodine-based electrolyte, and 10% by volume of 3-methyldioxazolidinone. I3 / I) And contributes to the electron transfer between the cathode electrode and the anode electrode.
[0040]
The metal oxide fine particles (9) can be formed, for example, of titanium oxide fine particles.
[0041]
When a dye (10) made of, for example, a ruthenium complex is used as the dye (10), the dye (10) absorbs light, and the electrons excited by the ruthenium metal / ligand orbit transition cause conduction of titanium oxide. The band moves to a photocurrent and power is generated. Further, as described in the above-mentioned JP-A-2001-35551, a dye-sensitized solar cell further improved in characteristics by disposing fine metal particles near the dye (10) is more preferable. As such metal fine particles, it is preferable to use at least one kind of metal fine particles selected from the group consisting of Pt, Pt alloy, Pd, and Pd alloy. This is because the metal fine particles do not react with and dissolve in the halogen-based redox electrolyte, and by disposing the metal fine particles, the absorbance of visible light to the near infrared region is lower than the absorbance of the Ru dye. It is because it is strengthened over.
[0042]
FIG. 3 is a cross-sectional view showing a case where sunlight is vertically incident on a strip-shaped dye-sensitized solar cell as in the related art. The optical path length (11) of incident light contributing to power generation is the thickness of the metal oxide porous film (6), and the shortest distance (12) of electron transfer from the position farthest from the transparent conductive film (5a) is also large. And the thickness of the metal oxide porous membrane (6).
[0043]
FIG. 4 is a cross-sectional view showing a case where sunlight enters the strip-shaped dye-sensitized solar cell at an angle θ as in the present invention. The sunlight enters the dye-sensitized solar cell at an angle θ from the normal direction of the light-receiving surface glass substrate, and the optical path length (11) of the incident light contributing to power generation is (metal oxide). The thickness of the porous film (6)) / COS θ, and the greater the inclination angle θ, the longer the optical path length (11) of the incident light. However, the shortest distance (12) of electron transfer from the position farthest from the transparent conductive film (5a) remains the thickness of the metal oxide porous film (6).
[0044]
At this time, in the case of FIG. 4 in which the light is incident obliquely at an inclination angle θ with respect to FIG. 3 in which the vertically incident light is received, the thickness of the metal oxide porous film (6) is apparently thick. On the other hand, on the surface of the metal oxide porous film (6), electrons injected from the dye flow not in the incident light direction but in the shortest film thickness direction. It does not change even if the cell is tilted by the angle θ.
[0045]
Further, the optical path length cannot be increased at the end, and this effect cannot be obtained. Therefore, it is important that the slope is sufficiently longer than the thickness of the porous oxide film (6). Therefore, in the dye-sensitized solar cell module of the present invention for solving the above-mentioned problems, strip-shaped dye-sensitized solar cells are arranged at an angle.
[0046]
As described above, the dye-sensitized solar cell module in which strip-shaped dye-sensitized solar cells are arranged at an angle can reduce the installation area of the dye-sensitized solar cells having the same performance. This effect does not occur in the amorphous silicon (a-Si) solar cell as shown in FIG. 5, and is an effect peculiar to the dye-sensitized solar cell.
[0047]
In the present invention, furthermore, a plurality of strip-shaped dye-sensitized solar cells and a plurality of pairs of strip-shaped reflecting mirrors are inclined at the same angle with respect to a flat module supporting substrate, and each strip-shaped dye-sensitized A solar cell module and a strip-shaped reflecting mirror are installed facing each other to form a dye-sensitized solar cell module. At this time, the angle is desirably 10 to 80 °, and more desirably 45 to 80 °. When the angle is smaller than 10 °, only the characteristics and the installation area which are the same as those when the panel is installed in a flat shape are obtained. On the other hand, if the angle exceeds 80 °, the installation area can be reduced, but the incident light cannot be used effectively and the use efficiency cannot be increased. Above 45 °, the power generation efficiency increases due to the light confinement effect as described above.
[0048]
The structure of the dye-sensitized solar cell module of the present invention will be described with reference to the drawings.
[0049]
FIG. 1 is a perspective view showing a dye-sensitized solar cell module of the present invention.
[0050]
The dye-sensitized solar cell module of the present invention comprises a plurality of pairs of a strip-shaped dye-sensitized solar cell (1) and a plurality of strip-shaped reflecting mirrors (2) placed on a flat module supporting substrate (13). It is characterized by being arranged to be inclined at the same angle, and each strip-shaped dye-sensitized solar cell (1) and the strip-shaped reflecting mirror (2) facing each other. In this case, the sunlight reflected from the light receiving surface of the reflecting mirror (2) can be received by the strip-shaped dye-sensitized solar cell (1), so that the sunlight can be used effectively and the projection can be performed. The conversion efficiency per area can be improved, and the number of dye-sensitized solar cells for obtaining necessary power can be reduced.
[0051]
According to the present invention described above, in the dye-sensitized solar cell having the same performance, in particular, the installation area is small and the projection area is small without forming a special shape in the light receiving portion or arranging a special member. It is possible to provide a dye-sensitized solar cell module that can improve photoelectric conversion efficiency per area and can also effectively use sunlight reflected light.
[0052]
【Example】
The present invention is illustrated by the following examples. However, the present invention is not limited to these.
[0053]
(Example 1)
Under the following conditions, a dye-sensitized solar cell module of the present invention was constructed, and its characteristics were evaluated.
[0054]
Regarding the strip-shaped dye-sensitized solar cell, commercially available fluorine-doped SnO is applied to the transparent substrate on which the transparent conductive film is formed.2Glass (manufactured by Nippon Sheet Glass, conductive layer thickness 450 nm) was used. The metal oxide thin film is made of TiO having an average particle size of 15 nm as titanium oxide.2A paste (manufactured by Solaronix) was used.
[0055]
Fluorine-doped SnO2A titanium oxide paste was applied on the glass, air-dried, and then fired at 500 ° C. for 30 minutes in an electric furnace. A titanium oxide porous film having a thickness of about 2 μm was formed by one coating, and the coating was repeated about five times to obtain a thickness of about 10 μm. The titanium oxide porous film was immersed in a Ru dye solution and refluxed at 80 ° C. for 2 hours to carry the Ru dye on the surface of the porous titanium oxide. Ru dye solution was added to ethanol at 3 × 10-4It was prepared by dissolving a mol / L Ru dye (Ruthenium 535, manufactured by Solaronix). As described above, an anode electrode serving as a photoelectrode was formed.
[0056]
On the other hand, the cathode electrode is a fluorine-doped SnO2It was formed by depositing platinum on the surface of glass by sputtering.
[0057]
A battery structure was formed by holding the cathode electrode and the anode electrode facing each other, and an oxidation-reduction electrolyte was injected into the gap. The oxidation-reduction electrolyte is an iodine-based electrolyte, which is obtained by adding iodine and lithium iodide to a mixed solvent of 90% by volume of acetonitrile and 10% by volume of 3-methyl-2-oxazolidinone.
[0058]
As shown in FIG. 1, the dye-sensitized solar cell module includes three pairs of the 1 cm × 5 cm strip-shaped dye-sensitized solar cell and a 1 cm × 5 cm reflecting mirror, which are the same as the module supporting substrate. They were installed facing each other at an angle of inclination. The inclination angle θ was 70 °. Projected area is 10cm2Met.
[0059]
With the dye-sensitized solar cell module of the present example, a solar simulator of AM1.5 was used at 1000 W / m2As a result of measuring the current-voltage characteristics by irradiating the pseudo sunlight as described above, a short circuit current of 150 mA and an open voltage of 0.7 V were obtained. The short-circuit current density obtained by dividing the short-circuit current value by the projected area is 15 mA / cm.2Met.
[0060]
From comparison with the measurement results of Comparative Example 1 described later, it was confirmed that the installation area of the dye-sensitized solar cell module could be reduced to 2/3 while obtaining the same performance as Comparative Example 1. Here, the short-circuit current value means that when a solar simulator is arranged on the dye-sensitized solar cell module so that the optical axis is vertical, the terminals of the dye-sensitized solar cell module are short-circuited, and light is irradiated. Means the current value measured.
[0061]
(Example 2)
A dye-sensitized solar cell module was manufactured in the same manner as in Example 1 except that the inclination angle θ was set to 80 °. Projected area is 5.2cm2Met.
[0062]
As a result of measuring the current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 77 mA and an open-circuit voltage of 0.7 V were obtained. The short-circuit current density obtained by dividing the short-circuit current value by the projected area is 15 mA / cm.2Met.
[0063]
From comparison with the measurement results of Comparative Example 1 described later, it was confirmed that the installation area of the dye-sensitized solar cell module could be reduced to 2/3 while obtaining the same performance as Comparative Example 1.
[0064]
(Example 3)
A dye-sensitized solar cell module was manufactured in the same manner as in Example 1 except that the inclination angle θ was set to 60 °. Projected area is 15cm2Met.
[0065]
As a result of measuring the current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 171 mA and an open-circuit voltage of 0.7 V were obtained. The short-circuit current density obtained by dividing the short-circuit current value by the projected area is 11.4 mA / cm.2Met.
[0066]
From a comparison with the measurement result of Comparative Example 1 described later, the short-circuit current value was improved by 14% with the same projected area as that of Comparative Example 1. In terms of the installation area, it was confirmed that the area could be reduced by 12%.
[0067]
(Example 4)
A dye-sensitized solar cell module was manufactured in the same manner as in Example 1 except that the inclination angle θ was set to 50 °.
[0068]
As a result of measuring the current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 175 mA and an open-circuit voltage of 0.7 V were obtained.
[0069]
(Example 5)
A dye-sensitized solar cell module was manufactured in the same manner as in Example 1 except that the inclination angle θ was set to 40 °.
[0070]
As a result of measuring the current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 154 mA and an open-circuit voltage of 0.7 V were obtained.
[0071]
(Example 6)
A dye-sensitized solar cell module was manufactured in the same manner as in Example 1 except that the inclination angle θ was set to 30 °.
[0072]
As a result of measuring the current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 149 mA and an open-circuit voltage of 0.7 V were obtained.
[0073]
(Example 7)
A dye-sensitized solar cell module was manufactured in the same manner as in Example 1 except that the inclination angle θ was set to 20 °.
[0074]
As a result of measuring the current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 153 mA and an open-circuit voltage of 0.7 V were obtained.
[0075]
(Example 8)
A dye-sensitized solar cell module was manufactured in the same manner as in Example 1 except that the inclination angle θ was set to 10 °.
[0076]
As a result of measuring current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 151 mA and an open-circuit voltage of 0.7 V were obtained.
[0077]
From the above Examples 1 to 8 and Comparative Example 1 described later, it was confirmed that the short-circuit current value was increased as compared with Comparative Example 1 at 10 ° or more by facing the reflecting mirror.
[0078]
(Comparative Example 1)
A dye-sensitized solar cell module was produced in the same manner as in Example 1 except that the inclination angle θ was 0 °, that is, the planar shape was adopted. Projected area is 15cm2Met.
[0079]
As a result of measuring the current-voltage characteristics in the same manner as in Example 1, a short-circuit current of 150 mA and an open-circuit voltage of 0.7 V were obtained.
[0080]
The short-circuit current density obtained by dividing the short-circuit current value by the projected area is 10 mA / cm.2Met.
[0081]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, the installation area is small, the photoelectric conversion efficiency per projection area can be improved, sunlight reflected light can also be effectively used, and the use of a dye-sensitized solar cell to obtain necessary power The number of sheets can be reduced, and an inexpensive dye-sensitized solar cell module can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a dye-sensitized solar cell module of the present invention.
FIG. 2 is a sectional view showing a dye-sensitized solar cell.
FIG. 3 is a cross-sectional view showing a case where sunlight is vertically incident on a strip-shaped dye-sensitized solar cell.
FIG. 4 is a cross-sectional view showing a case where sunlight enters a strip-shaped dye-sensitized solar cell at an angle θ.
FIG. 5 is a graph showing an incident angle dependency of a relative short-circuit current density and a relative projected area.
FIG. 6 is a graph showing the incident angle dependence of the short-circuit current density enhancement rate.
[Explanation of symbols]
1. Strip-shaped dye-sensitized solar cell
2 Reflector
3 Dye-sensitized solar cell module
4a, 4b glass substrate
5a, 5b transparent conductive film
6. Porous metal oxide membrane
7 Redox electrolyte
8 Platinum fine particles or carbon fine particles
9 Metal oxide fine particles
10 Dye
11 Optical path length in porous metal oxide film
12 Thickness of metal oxide porous membrane
13 Module support board
θ tilt angle

Claims (10)

モジュール支持基板と、複数の色素増感型太陽電池セルと、同数の反射鏡とからなる色素増感型太陽電池モジュールであって、前記色素増感型太陽電池セルの1つと、前記反射鏡の1つとが、隣接して対になって配置され、かつ、それぞれが角度をなして向き合うように、前記モジュール支持基板に対して同一の所定角度で傾斜することを特徴とする色素増感型太陽電池モジュール。A module support substrate, a plurality of dye-sensitized solar cells, and a dye-sensitized solar cell module including the same number of reflecting mirrors, wherein one of the dye-sensitized solar cells and the reflecting mirror One of which is arranged adjacent to each other in a pair, and is inclined at the same predetermined angle with respect to the module supporting substrate so that they face each other at an angle. Battery module. 前記所定角度が、10〜80°であることを特徴とする請求項1に記載の色素増感型太陽電池モジュール。The dye-sensitized solar cell module according to claim 1, wherein the predetermined angle is 10 to 80 °. 前記所定角度が、45〜80°であることを特徴とする請求項1に記載の色素増感型太陽電池モジュール。The dye-sensitized solar cell module according to claim 1, wherein the predetermined angle is 45 to 80 °. 前記色素増感型太陽電池セルは、カソード電極と、アノード電極と、それらの間に充填された酸化還元電解質とからなり、前記カソード電極は、第1の透明基板の内側に、第1の透明導電膜を形成し、第1の透明導電膜の表面には、白金微粒子もしくは炭素微粒子が付着され、前記アノード電極は、第2の透明基板の内側に、第2の透明導電膜および金属酸化物薄膜を順次形成し、該金属酸化物薄膜の表面には、色素を担持したことを特徴とする請求項1〜3のいずれかに記載の色素増感型太陽電池モジュール。The dye-sensitized solar cell includes a cathode electrode, an anode electrode, and an oxidation-reduction electrolyte filled therebetween, and the cathode electrode includes a first transparent substrate provided inside a first transparent substrate. A conductive film is formed, and platinum fine particles or carbon fine particles are adhered to the surface of the first transparent conductive film, and the anode electrode is provided inside the second transparent substrate with the second transparent conductive film and the metal oxide. The dye-sensitized solar cell module according to any one of claims 1 to 3, wherein a thin film is sequentially formed, and a dye is carried on a surface of the metal oxide thin film. 前記色素増感型太陽電池セルは、カソード電極と、アノード電極と、それらの間に充填された酸化還元電解質とからなり、前記カソード電極は、第1の透明基板の内側に、第1の透明導電膜を形成し、第1の透明導電膜の表面には、白金微粒子もしくは炭素微粒子が付着され、前記アノード電極は、第2の透明基板の内側に、第2の透明導電膜および金属酸化物薄膜を順次形成し、該金属酸化物薄膜の表面には、色素を担持し、該色素の近傍には、Pt、Pt合金、PdおよびPd合金からなる群から選ばれた少なくとも1種の金属微粒子を配したことを特徴とする請求項1〜3のいずれかに記載の色素増感型太陽電池モジュール。The dye-sensitized solar cell includes a cathode electrode, an anode electrode, and an oxidation-reduction electrolyte filled therebetween, and the cathode electrode includes a first transparent substrate provided inside a first transparent substrate. A conductive film is formed, and platinum fine particles or carbon fine particles are adhered to the surface of the first transparent conductive film, and the anode electrode is provided inside the second transparent substrate with the second transparent conductive film and the metal oxide. A thin film is sequentially formed, a dye is supported on the surface of the metal oxide thin film, and at least one type of metal fine particle selected from the group consisting of Pt, a Pt alloy, Pd, and a Pd alloy is provided near the dye The dye-sensitized solar cell module according to any one of claims 1 to 3, wherein 前記金属酸化物薄膜が、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化錫(SnO)、または、チタン酸ストロンチウム(SrTiO)からなることを特徴とする請求項4または5に記載の色素増感型太陽電池モジュール。The metal oxide thin film is made of titanium oxide (TiO 2 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), tin oxide (SnO 2 ), or strontium titanate (SrTiO 3 ). The dye-sensitized solar cell module according to claim 4. 前記色素が、ルテニウム錯体、ポルフィリン錯体、キサンテン系色素、メチン系色素、クマリン系色素、アクリジン系色素、またはフェニルメタン系色素であることを特徴とする請求項4〜6のいずれかに記載の色素増感型太陽電池モジュール。The dye according to any one of claims 4 to 6, wherein the dye is a ruthenium complex, a porphyrin complex, a xanthene dye, a methine dye, a coumarin dye, an acridine dye, or a phenylmethane dye. Sensitized solar cell module. 前記酸化還元電解質が、ヨウ素、臭素、または、塩素を含む電解液であることを特徴とする請求項4〜7のいずれかに記載の色素増感型太陽電池モジュール。The dye-sensitized solar cell module according to any one of claims 4 to 7, wherein the redox electrolyte is an electrolyte containing iodine, bromine, or chlorine. 前記酸化還元電解質が、ヨウ素、臭素、または、塩素を含む固体伝導体であることを特徴とする請求項4〜8のいずれかに記載の色素増感型太陽電池モジュール。The dye-sensitized solar cell module according to any one of claims 4 to 8, wherein the redox electrolyte is a solid conductor containing iodine, bromine, or chlorine. 第1の透明基板および第2の透明基板が、ガラス、PETまたはポリイミドからなることを特徴とする請求項4〜9のいずれかに記載の色素増感型太陽電池モジュール。The dye-sensitized solar cell module according to any one of claims 4 to 9, wherein the first transparent substrate and the second transparent substrate are made of glass, PET, or polyimide.
JP2003060896A 2003-03-07 2003-03-07 Dye-sensitized solar cell module Expired - Fee Related JP4314847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060896A JP4314847B2 (en) 2003-03-07 2003-03-07 Dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060896A JP4314847B2 (en) 2003-03-07 2003-03-07 Dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2004273223A true JP2004273223A (en) 2004-09-30
JP4314847B2 JP4314847B2 (en) 2009-08-19

Family

ID=33123259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060896A Expired - Fee Related JP4314847B2 (en) 2003-03-07 2003-03-07 Dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP4314847B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764099B1 (en) * 2006-02-16 2007-10-09 강만식 A structure of sun-ray collecting board with reflector and the method of manufacturing sun-ray collecting board thereof
JP2009193704A (en) * 2008-02-12 2009-08-27 Dainippon Printing Co Ltd Dye-sensitized solar cell, and dye-sensitized solar cell module
JP2009301840A (en) * 2008-06-12 2009-12-24 Fujikura Ltd Photoelectric conversion element
JP2012195382A (en) * 2011-03-15 2012-10-11 Toshiba Corp Organic thin-film solar battery module and submodule

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764099B1 (en) * 2006-02-16 2007-10-09 강만식 A structure of sun-ray collecting board with reflector and the method of manufacturing sun-ray collecting board thereof
JP2009193704A (en) * 2008-02-12 2009-08-27 Dainippon Printing Co Ltd Dye-sensitized solar cell, and dye-sensitized solar cell module
JP2009301840A (en) * 2008-06-12 2009-12-24 Fujikura Ltd Photoelectric conversion element
JP2012195382A (en) * 2011-03-15 2012-10-11 Toshiba Corp Organic thin-film solar battery module and submodule
US9269916B2 (en) 2011-03-15 2016-02-23 Kabushiki Kaisha Toshiba Organic thin-film solar cell module and sub-module

Also Published As

Publication number Publication date
JP4314847B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
EP0924724B1 (en) Photoelectric conversion device and photo-electrochemical cell
EP0901175A2 (en) Photoelectric conversion device and solar cell
US20160307705A1 (en) Dye-Sensitized Solar Cell, Method of Producing The Same, and Dye-Sensitized Solar Cell Module
JP2003303629A (en) Dye sensitizing solar cell
JP2000086724A (en) Cross-linked polymer, electrolyte and photoelectrochemical battery
JP2000106223A (en) Photoelectric conversion element
JP2005235725A (en) Dye-sensitized solar cell module
EP1667275B1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
US10014122B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5096064B2 (en) Dye-sensitized solar cell module
JP4422236B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2006134870A (en) Dye-sensitized solar cell, its manufacturing method and dye-sensitized solar cell module
JP2003223939A (en) Interlaminar material for solar cell and dye sensitizing solar cell using it
TWI453924B (en) Electrode plate and dye-sensitized photovoltaic cell having the same
JP2004241378A (en) Dye sensitized solar cell
JP2000285975A (en) Semiconductor for photoelectric conversion and photoelectric conversion element
JP4777592B2 (en) Counter electrode and dye-sensitized solar cell having the same
JP2004235011A (en) Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
JP2005158379A (en) Photoelectric conversion element, its manufacturing method, electronic device and its manufacturing method
JP4716636B2 (en) Compound semiconductor
JP2003187883A (en) Photoelectric conversion element
JP2001185743A (en) Photoelectric conversion element and solar cell
JP4314847B2 (en) Dye-sensitized solar cell module
Parkinson An evaluation of various configurations for photoelectrochemical photovoltaic solar cells
JP4155431B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4314847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees