JP2004273162A - Fuel cell control system - Google Patents

Fuel cell control system Download PDF

Info

Publication number
JP2004273162A
JP2004273162A JP2003059010A JP2003059010A JP2004273162A JP 2004273162 A JP2004273162 A JP 2004273162A JP 2003059010 A JP2003059010 A JP 2003059010A JP 2003059010 A JP2003059010 A JP 2003059010A JP 2004273162 A JP2004273162 A JP 2004273162A
Authority
JP
Japan
Prior art keywords
fuel cell
stoichiometric ratio
state
flow rate
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059010A
Other languages
Japanese (ja)
Other versions
JP4734821B2 (en
Inventor
Takashi Ino
崇 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003059010A priority Critical patent/JP4734821B2/en
Publication of JP2004273162A publication Critical patent/JP2004273162A/en
Application granted granted Critical
Publication of JP4734821B2 publication Critical patent/JP4734821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To supply an appropriate oxygen amount corresponding to the state of a fuel cell, eliminating the waste of oxidizer supply driving power and prevent lowering of output voltage even when power load is varied. <P>SOLUTION: When a state in which variations of a target power generation amount output from a target power generation amount calculating device 11 is small, continues, an appropriate stoichiometric ratio retrieving means 21 retrieves an appropriate stoichiometric ratio by varying a stoichiometric ratio. A state stoichiometric ratio curved line update means 22 updates the state stoichiometric ratio curved line stored in the storage means 23 based on the retrieval result for the appropriate stoichiometric ratio. A target oxidizer flow rate calculating means 24 calculates a target oxidizer flow rate in reference to the curved line from the state of the fuel cell. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムに係り、特に発電量に相当する酸化剤供給量に対して実際に供給される酸化剤供給量の比率であるストイキ比を改善した燃料電池システムに関する。
【0002】
【従来の技術】
燃料電池は、水素ガスなどの燃料ガスと酸素を含む酸化剤ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。
【0003】
すなわち、燃料電池車両は、高圧水素タンク、液体水素タンク、水素吸蔵合金タンクなどの水素貯蔵装置を車両に搭載し、そこから供給される水素と、酸素を含む空気とを燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギで駆動輪につながるモータを駆動するものであり、排出物質は水だけであるという究極のクリーン車両である。
【0004】
固体高分子型燃料電池は、燃料極(アノード、負極)と酸化剤極(カソード、正極)との間に膜状の固体高分子電解質があり、これは水素イオン伝導体として機能する。燃料極では水素が水素イオンと電子とに解離し、水素イオンは、固体高分子膜を酸化剤極に向かって移動する。電子は、燃料極から外部回路(負荷)を通って酸化剤極に至る。酸化剤極では、酸素と水素イオンと電子から水が生成される。
【0005】
固体高分子膜を水素イオンが移動するためには、固体高分子膜が水分を含んでいる必要がある。このため固体高分子膜を加湿して湿らせておく必要があり、燃料電池へ供給する水素ガスを加湿装置で加湿して燃料極に供給するようにする方法が知られている。
【0006】
また加湿に有効な方法として、燃料電池本体で未使用の水素ガスを燃料電池本体へ再循環して再利用する水素循環形式が用いられる。燃料電池本体外部に接続した負荷で消費する電力に要する水素量より幾分多めの水素を燃料極へ供給し、未使用の水素を燃料極出口から排出し、この排水素(循環水素と記す)を再度、燃料極入り口へ戻して再利用する。
【0007】
循環水素は水蒸気を多く含んでいるため、この循環水素と水素タンクから供給される乾燥した水素とを混合して燃料極へ供給するようにして、燃料極へ供給する水素を加湿するようにしている。燃料電池の燃料極入口を通過する水素流量は、発電に必要な水素量に加えて、循環する水素量が余分に通過する。このように発電に必要な水素量よりも余分な水素量を燃料極に供給することにより、燃料電池の全てのセルでの発電を高率的に行わせるようにする効果がある。発電に使用する水素量のみを供給すると、燃料極出口付近のセルに効率的に水素が到達しなくなり発電効率が落ちる。
【0008】
同様のことが燃料電池の酸化剤極についても言えるので、発電に必要な酸素量のみを供給するのではなく、少し余分に酸素を供給するようにしている。このような反応ガスの供給過剰率を原料ストイキ比と通常呼んでいる。発電に使用する水素または酸素のみを供給するとストイキ比は1であるが、通常は上記理由により、ストイキ比は1より大きい値である。
【0009】
ストイキ比は、このように燃料電池での発電を効率よく行わせるように設定される。しかしながら、燃料電池の状態は、環境や運転負荷、経年変化等によって変化するので、ストイキ比を燃料電池のある状態の最適値に設定した場合でも、運転負荷あるいは経年変化の影響により発電効率が悪くなり、その結果としてセル電圧のバラツキが大きくなる。
【0010】
セル電圧バラツキが許容範囲を超えて電圧下限以下になるようなセルが生じた場合は、燃料電池を構成している高分子膜を劣化させる可能性があるため、セル電圧にバラツキを生じないように、総電圧が低下しないようにストイキ比を変えていく必要がある。
【0011】
しかしながらセル電圧にバラツキを生じたあるいは総電圧低下した場合にいつもストイキ比を増加するようにしていると、燃料の無駄使いあるいは空気を供給するブロアやコンプレッサ等の動力の無駄使いになる場合がある。
【0012】
空気原料のストイキ比を高く設定すると、発電に使用しなかった空気はそのまま捨てることになり、空気原料供給動力の無駄使いを引き起こす。
【0013】
特許文献1に記載された燃料電池発電システムは、電力負荷変動(部分負荷)に伴う空気ブロアの無駄な電力消費を抑えて総合的な発電効率の向上が図れるように燃料電池の電力負荷変動に対応した適正空気風量を発生させる風量制御を行っている。
【0014】
電力負荷変動が電流検出器により検出されるとともに、その出力信号を基に、その部分負荷運転に必要な空気供給量のデータ(電力負荷と燃料電池に供給する必要空気流量との関係はあらかじめ定められている)からその発生風量に対応した空気ブロアの適正な回転速度を演算し、その演算結果を基にブロア駆動モータの回転速度を制御している。
【0015】
【特許文献1】
特開平7−211336号公報(第3頁、図1)
【0016】
【発明が解決しようとする課題】
しかしながら、燃料電池の特性は日々、温度、湿度、圧力、膜の状態、運転時間などによって変化するので、電力負荷と燃料電池に供給する必要空気流量との関係も燃料電池の状態に応じて変化しなければ電力負荷に対して過剰の酸素を供給して空気供給装置が過剰な動力を消費したり、酸化剤極で酸素が不足して燃料電池本体を劣化させる虞があるという問題点があった。
【0017】
【課題を解決するための手段】
本発明は、上記問題点を解決するため、燃料極および酸化剤極にそれぞれ燃料および酸化剤の供給を受けて直流電力を発電する燃料電池と、前記燃料電池に供給している酸化剤流量を検出する酸化剤流量検出手段と、前記燃料電池に供給している酸化剤濃度を検出する酸化剤濃度検出手段と、前記燃料電池の状態を検出する状態検出手段と、燃料電池の状態毎に適正ストイキ比を予め記憶する状態ストイキ比曲線記憶手段と、前記状態検出手段が検出した状態に応じた適正ストイキ比を前記状態ストイキ比曲線記憶手段から読み出して、該適正ストイキ比を発電に必要な酸素量に乗じて目標酸化剤流量を算出する目標酸化剤流量算出手段と、前記目標酸化剤流量で燃料電池に酸化剤を供給するように制御する酸化剤流量制御手段と、を備えたことを要旨とする燃料電池システムである。
【0018】
【発明の効果】
本発明によれば、燃料電池の状態が変化しても酸化剤を必要以上に供給して酸化剤供給のための動力が無駄になることを抑制するとともに、酸化剤供給量が不足して燃料電池の発電電力が低下することを防止できる。
【0019】
【発明の実施の形態】
次に図面を参照して、本発明の実施の形態を詳細に説明する。
図1は、本発明に係る燃料電池システムの一実施形態を説明するシステム構成図である。同図において、燃料電池システムは、図示しない燃料極および酸化剤極にそれぞれ燃料および酸化剤の供給を受けて直流電力を発電する燃料電池(燃料電池本体)1と、燃料電池1に燃料ガスである水素を供給する燃料供給装置2と、燃料電池1に酸素を含む空気を供給する空気供給装置3と、燃料電池1に供給する空気流量を調節するブロワ4と、燃料電池1に供給する空気の流量を計測する流量センサ5と、燃料電池1に供給する空気の酸素濃度を計測する酸素センサ6と、燃料電池1の発電電圧を計測する電圧計7と、燃料電池1の出力電流を計測する電流計8と、ブロワ4へ出力する目標回転速度と負荷装置10へ出力する目標電力を算出する制御装置9とを備えている。
【0020】
電圧計7及び電流計8は、燃料電池の状態を検出する状態検出手段である。制御装置9は、燃料電池1の状態として、電圧計7が検出する燃料電池1の出力電圧と、電流計8が検出する燃料電池1の出力電流を入力している。
【0021】
制御装置9には、負荷装置10と、目標発電量算出装置11が接続されている。負荷装置10は、燃料電池1の発電電力を消費する装置であり、例えば、燃料電池車両の場合は、直流発電電力を図示しない車両駆動用モータの交流電力に変換するインバータである。目標発電量算出装置11は、燃料電池1が発電すべき目標発電量を算出する装置であり、例えば燃料電池車両の場合には、車両速度とアクセルペダルの踏込量から目標発電量を算出する。
【0022】
また、制御装置9には、流量センサ5及び酸素センサ6が検出した空気流量および酸素濃度が入力され、ブロア4へ目標回転速度が出力される。
【0023】
さらに、制御装置9は、燃料電池の状態毎に適正ストイキ比を予め記憶する状態ストイキ比曲線記憶手段23と、電流計8(状態検出手段)が検出した状態に応じた適正ストイキ比を状態ストイキ比曲線記憶手段23から読み出して、該適正ストイキ比を発電に必要な酸素量に乗じて目標酸化剤流量を算出する目標酸化剤流量算出手段24と、燃料電池の運転中に酸化剤流量を増減させた場合の燃料電池の状態に基づいて、適正ストイキ比を探索する適正ストイキ比探索手段21と、適正ストイキ比探索手段21が探索した適正ストイキ比と、燃料電池の状態から算出した酸化剤消費量と、酸化剤流量及び酸化剤酸素濃度より算出した実際に燃料電池に供給されている実ストイキ比とに基づいて、状態ストイキ比曲線記憶手段23の記憶内容を更新する状態ストイキ比曲線更新手段22と、を備えている。
【0024】
尚、制御装置9は、特に限定されないが本実施形態では、I/Oインタフェースと、プログラムROMと、作業用RAMと、CPUとを備えたマイクロプロセッサで構成されている。
【0025】
本実施形態では、図示しないが、燃料供給装置2は、水素タンクと流量制御弁を備え、目標流量になるように弁開度を調整する装置を装備していて、発電に十分な水素を供給するように制御されている。
【0026】
ブロワ4は、制御装置9から目標回転速度を受け取り、ブロワ回転速度が目標回転速度で動作するように制御される。
【0027】
流量センサ5は、ブロワ4より燃料電池1に供給される空気の流量を計測し、制御装置9に空気流量の値を出力する。酸素センサ6はブロワ4より燃料電池1に供給される空気の酸素濃度を計測し、制御装置9に酸素濃度の値を出力する。
【0028】
次に、本実施形態における制御装置9の動作を図3のフローチャートを参照して説明する。
【0029】
制御装置9は図3のフローチャートのSTART からEND までを一定周期で繰り返し演算し、空気流量、酸素濃度、目標発電量、出力電圧、出力電流を用いてブロワ4の目標回転速度と負荷装置10の目標電力を算出する装置である。
【0030】
図3において、まずS10では、目標発電量検出装置11が検出した目標発電量を取得し、S20へ進む。燃料電池システムを車両に適用した場合には、ドライバのアクセル開度、車両速度、車両重量などから目標発電量が計算される。
【0031】
S20では、目標発電量を前回値と比較することにより、目標発電量変化率を算出し、S30へ進む。目標発電量変化率を算出する方法は前回値のみでなく前々回値などの過去複数に渡る値を用いて求めるなどでもよい。
【0032】
S30では、電流計8から燃料電池1が発電している出力電流値を取得し、S40へ進む。あるいは燃料電池の電圧と電流の特性をあらわすI−Vカーブと目標発電量を用いて燃料電池1から目標発電量を取り出したときに出力されると推定される出力電流値を算出してもよい。
【0033】
S40では、出力電流値から必要酸素量を算出し、S50へ進む。燃料電池1では以下の電気化学反応が起こり、電流が発生する。
【0034】
【化1】
燃料極 H → 2H + 2e
酸化剤極 2H + 2e + (1/2)O → H
酸化剤極における酸素消費率1[mol/s] から取り出せる電流値は、4×96500[A] なので、出力電流をI[A] とすると、必要酸素量O2in[mol/s] は、式(1)となる。
【0035】
【数1】
2in =I/(4×96500) [mol/s] …(1)
ただしこの必要酸素量は、燃料電池のセル数によって変化するので、例えば200セルの場合は必要酸素量は200倍となる。
【0036】
S50では、制御装置9はS30で算出した出力電流と状態ストイキ比曲線より、S30で算出した出力電流を取り出すための適正ストイキ比を算出して、S60に進む。
【0037】
状態ストイキ比曲線は出力電流に応じた適正ストイキ比を算出する曲線である。図4のように横軸に電流、縦軸に適正ストイキ比をもつ初期状態の状態ストイキ比曲線をあらかじめ設定しておく。状態ストイキ比曲線の初期状態は、例えば出力電流がどの値であっても適正ストイキ比を1.5に設定する。
【0038】
状態ストイキ比曲線は、状態ストイキ比曲線更新手段22によって時々刻々と更新され、状態ストイキ比曲線記憶手段23に記憶される。更新方法は後述する。
【0039】
燃料電池システムを車両に適用した場合、ドライバのアクセル開度、車両速度、車両重量などから目標発電量が計算されると、制御装置9はブロワ4の目標回転速度を算出し空気流量を制御して燃料電池1は電力を発電する。しかしながら、電力変動時に目標発電量の変化と同時に制御装置9が負荷装置10に出力する目標電力を変化させると、ブロワの応答時間などから燃料電池1の発電状態が変化していないのに負荷が変化してしまう。
【0040】
このため制御装置9は車両の負荷装置である駆動モータへの指令値の変化に対し、燃料電池1の発電状態の変化に対応する所定の遅れを持たせている。また燃料電池1へ供給する空気は加湿されており、空気流量の変化に伴い供給空気の加湿状態も変化し、燃料電池内部の生成水の生成状態も変化する。
【0041】
よって制御装置9は、目標発電量が増加あるいは減少する場合、状態ストイキ比曲線によって算出された適正ストイキ比を補正し、この補正したストイキ比を用いて算出した空気量を燃料電池1に供給する。
【0042】
図5のように目標発電量が増加した場合、まず最初にブロワの目標回転速度が上昇し、実際にブロワが電流を取り出すのに必要な酸素量を供給しはじめてから、目標電力が上昇して負荷装置10が電力を取り出し、出力電流が上昇するように制御装置9が目標回転速度と目標電力を制御している。
【0043】
しかしながら燃料電池システムの要求としては目標発電量が増加した場合、より短い時間で負荷を取り出したいので、目標発電量増加時にはブロワの応答時間を考慮して目標回転速度を高めにするためにストイキ比を増加させるように補正する。
【0044】
燃料電池システムを車両に適用した場合で図9のように目標発電量が減少した場合、制御装置9は車両の加減速が滑らかになるように負荷装置10に対する目標電力に変化率制限を設定していて出力電流の減少は目標発電量の減少に比べ遅れて発生するように制御している。
【0045】
この際にブロア4の目標回転速度を目標発電量の減少と同時に減少させてしまうと、空気不足による電圧低下が発生してしまうので、出力電流が減少するのと同等の遅れを目標回転速度に設定しなければならない。
【0046】
また過渡状態における燃料電池の不測の発電状態変化に対応すべく、所定の安全率を考慮してストイキ比の補正量を決定する。ストイキ比の補正量はあらかじめストイキ比補正量と負荷変動のタイミングを変化させる実験を行い出力電圧、出力電流から判断して決定し、その値に所定の安全率を考慮して決定する。
【0047】
S60では、S20で算出した目標発電量変化率に応じて、S50で得たストイキ比を補正する。
【0048】
目標発電量が増加する場合は、図6のように目標発電量の変化率である微分値を算出し、図7のようなあらかじめ実験によって求められた目標発電量微分値とストイキ比補正量の関係から補正量を算出し、所定の安全率を考慮して決定する。このように目標発電量が過渡的に増加したときに、適正ストイキ比を調節しているので、負荷増加時の酸化剤供給装置の応答遅れや、燃料電池へ供給する空気流量が増加することによって発生する不測の発電への影響などに対し所定の安全率を考慮して目標酸化剤流量を算出することができるので、燃料電池の発電状態が低下することなく燃料電池を運転することができる。
【0049】
目標発電量が減少する場合は、図10のように目標発電量の微分値の絶対値を算出し、図11のようなあらかじめ実験によって求められた目標発電量微分値の絶対値とストイキ比補正量の関係から補正量を算出し、所定の安全率を考慮して補正量を決定する。補正量に考慮する所定の安全率は例えば決定した補正量を1.1倍すればよい。
【0050】
このように目標発電量が過渡的に減少したときに、適正ストイキ比を調節しているので、目標発電量が減少してから、実際の取り出し電流が減少するまでに時間差が存在する場合や、燃料電池へ供給する空気流量が減少することによって、発生する不測の発電への影響などに対し所定の安全率を考慮して目標酸化剤流量を算出することができるので、燃料電池の発電性能が低下することなく燃料電池を運転することができる。
【0051】
ストイキ比の補正量が算出されたら、状態ストイキ比曲線から算出された適正ストイキ比に補正量を加えることによって実際に用いるストイキ比を算出する。さらに目標発電量減少時には算出される目標回転速度を目標発電量の変化と出力電流の変化の時間差だけ遅らせてブロワに出力する。この時間差はさまざまな時間差を用いて実験をして、電圧低下が起きない範囲の適切な値を求めて用いればよい。S70に進む。
【0052】
S70では、S40で算出した必要酸素量[mol/s]と、S60で決定したストイキ比と、酸素センサより得られた空気中の酸素濃度[%]から、目標空気流量[l/s]を算出する。
【0053】
目標空気流量に算出には、まず、必要酸素量[mol/s]と図示しない大気圧力センサと温度センサが出力する圧力[atm]と温度[K]により、必要酸素流量[l/s]を式(2)によって算出する。ここで、R[atm・l/mol・K]は気体定数とする。
【0054】
【数2】
必要酸素流量[l/s]
=必要酸素量[mol/s]×R[atm・l/mol・K]×温度[K]/圧力[atm] …(2)
次いで、空気中の酸素濃度[%]より必要酸素流量[l/s]から必要空気流量[l/s]を式(3)で算出し、ストイキ比を乗じることにより目標空気流量[l/s]を式(4)によって算出し(以上、目標酸化剤流量算出手段に相当)、S80に進む。
【0055】
【数3】
必要空気流量[l/s]=必要酸素流量[l/s]×100/酸素濃度[%] …(3)
目標空気流量[l/s]=必要空気流量[l/s]×ストイキ比 …(4)
ここでは、燃料電池の状態である出力電流を検出しているので、燃料電池の負荷に応じて状態ストイキ比曲線から最適なストイキ比を算出することができ、負荷に応じて無駄のない目標酸化剤流量が算出できる。
【0056】
S80では、S70で算出した目標空気流量[l/s]を実現するブロワの目標回転速度[Hz]を図2のブロワ4の特性より算出し、S110に進む。
【0057】
次に、状態ストイキ比曲線を更新(補正)する方法を記述する。
【0058】
状態ストイキ比曲線は、出力電流に対する適正ストイキ比の曲線であり、常に最適のストイキ比を算出できるように最新の燃料電池の状態から学習を行い曲線を補正する。出力電流に対する適正ストイキ比探索は、出力電流が大きく変化している場合は、探索が行いづらいので、所定の範囲内に出力電流変化率が入っているときに適正ストイキ比の探索を実施する。
【0059】
S110では、状態ストイキ比曲線補正モードに移行する条件が成立しているかを判断する。
【0060】
図8のように燃料電池の出力電流の微分値を算出し、微分値が所定の範囲内(状態ストイキ比曲線補正モード移行条件1)に入っている状態が所定の時間(状態ストイキ比曲線補正モード移行条件2)の間成立していればS120に進み、成立していなければ処理を終了する。
【0061】
S120では、空気流量と酸素濃度と出力電流から燃料電池の実ストイキ比を算出する。
【0062】
空気流量[l/s]と酸素濃度[%]と図示しない大気圧力センサと温度センサが出力する圧力[atm]と温度[K]から、燃料電池の酸化剤極に供給された酸素量[mol/s]を式(5)のように算出する。
【0063】
【数4】

Figure 2004273162
次いでS40と同様の方法で、出力電流[A]から発電に使用した酸素量[mol/s]を算出する。供給された酸素量[mol/s]を発電に使用した酸素量[mol/s]で割ることによって、燃料電池の実ストイキ比を算出する。S130に進む。
【0064】
S130では、ストイキ比を所定の探索量だけ増加させ、S140に進む。
【0065】
S140では、S130でストイキ比を増加させた結果、出力電圧が上昇あるいは出力電流が低下するかを調べ、出力電圧が上昇あるいは出力電流が低下すればS130に進み、そうでなければS150に進む。
【0066】
S150では、S130からS140に進みS130に戻ることなくS150に進んできたか否かを調べる。S130に戻ることなくS150に進んできた場合、ストイキ比を増加させても出力電圧が上昇しないあるいは出力電流が低下しなかったので、空気はそのときの負荷に対して十分に供給されていることになりS170に進む。逆に1回以上S130に戻った後にS150に進んできた場合、1回以上ストイキ比を増加させて出力電圧が増加あるいは出力電流が低下したので空気がそのときの負荷に対して十分に供給されていなかったことになりS160に進む。
【0067】
S160では、供給空気流量が現在の状態ストイキ比曲線が算出したストイキ比では不足していて、ストイキ比を増加して調節を行った結果、発電に必要な供給空気流量に到達したので、このときの出力電流と調節後のストイキ比あるいは出力電流と調節後に算出した実ストイキ比で状態ストイキ比曲線を更新し(状態ストイキ比曲線更新手段)、処理を終了する。
【0068】
更新方法は、補正前の状態ストイキ比曲線の情報と得られた調節後の情報の加重平均を新たな状態ストイキ比曲線の値とするように更新すればよい。更新方法の加重平均は1例に過ぎず他の更新方法を用いてもよい。
【0069】
S170では、供給空気流量が現在の出力電流を発電するのに状態ストイキ比曲線が算出したストイキ比では十分であることを意味し、逆に過剰の空気を供給してブロワの消費電力が無駄になっている可能性があるためストイキ比を所定の探索量だけ減少させる。S180に進む。
【0070】
S180では、S170でストイキ比を減少させた結果、出力電圧が低下あるいは出力電流が上昇するかを調べ、出力電圧が低下あるいは出力電流が上昇すればS190に進み、そうでなければS170に進む。以上のS120〜S150,S170,S180が適正ストイキ比探索手段に相当する。
【0071】
S190では、供給空気流量が現在の状態ストイキ比曲線が算出したストイキ比では過剰であり、ストイキ比を減少して調節を行った結果、発電に最低限必要な供給空気流量に到達したので、このときの出力電流と調節後のストイキ比あるいは出力電流と調節後に算出した実ストイキ比で状態ストイキ比曲線を更新し(状態ストイキ比曲線更新手段)、処理を終了する。更新方法はS160と同様である。
【0072】
以上の処理の繰り返しにより、図12のように各出力電流における適正なストイキ比が状態ストイキ比曲線に得られるので、空気供給量が発電に必要な供給量よりも多くて空気供給装置の動力が無駄になることを回避し、かつ発電に最低限必要な空気量を燃料電池に供給することができるという効果がある。また負荷変動時には状態ストイキ比曲線から読み出したストイキ比を補正することにより、電圧が降下することがなく安定した発電を行うことができるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る燃料電池システムの一実施形態を示す構成図である。
【図2】目標空気流量とブロアの目標回転速度との関係例を示す図である。
【図3】実施形態の制御装置による制御動作を説明するフローチャートである。
【図4】初期状態の状態ストイキ比曲線の例を示す図である。
【図5】目標発電量増加時1におけるブロアの目標回転速度を示す図である。
【図6】目標発電量増加時2における目標発電量微分値を説明する図である。
【図7】目標発電量増加時のストイキ比補正量を説明する図である。
【図8】状態ストイキ比曲線補正モードへ移行する条件を説明する図である。
【図9】目標発電量減少時1におけるブロアの目標回転速度を示す図である。
【図10】目標発電量減少時2における目標発電量微分値を説明する図である。
【図11】目標発電量減少時のストイキ比補正量を説明する図である。
【図12】更新後の状態ストイキ比曲線の例を示す図である。
【符号の説明】
1…燃料電池
2…燃料供給装置
3…空気供給装置
4…ブロア
5…流量センサ
6…酸素センサ
7…電圧計
8…電流計
9…制御装置
10…負荷装置
11…目標発電量算出装置
21…適正ストイキ比探索手段
22…状態ストイキ比曲線更新手段
23…状態ストイキ比曲線記憶手段
24…目標酸化剤流量算出手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell system, and more particularly to a fuel cell system in which a stoichiometric ratio, which is a ratio of an actually supplied oxidant supply amount to an oxidant supply amount corresponding to a power generation amount, is improved.
[0002]
[Prior art]
2. Description of the Related Art In a fuel cell, a fuel gas such as a hydrogen gas and an oxidizing gas containing oxygen are electrochemically reacted via an electrolyte, and electric energy is directly taken out between electrodes provided on both surfaces of the electrolyte. In particular, a polymer electrolyte fuel cell using a polymer electrolyte has drawn attention as a power source for electric vehicles because of its low operating temperature and easy handling.
[0003]
That is, a fuel cell vehicle is equipped with a hydrogen storage device such as a high-pressure hydrogen tank, a liquid hydrogen tank, a hydrogen storage alloy tank, etc., and sends hydrogen supplied therefrom and air containing oxygen to the fuel cell to react. Then, the electric energy taken out of the fuel cell drives the motor connected to the driving wheels, and is the ultimate clean vehicle that emits only water.
[0004]
In a polymer electrolyte fuel cell, a membrane-like polymer electrolyte is provided between a fuel electrode (anode and anode) and an oxidant electrode (cathode and cathode), and this functions as a hydrogen ion conductor. At the fuel electrode, hydrogen is dissociated into hydrogen ions and electrons, and the hydrogen ions move through the solid polymer membrane toward the oxidant electrode. The electrons reach the oxidizer electrode from the fuel electrode through an external circuit (load). At the oxidant electrode, water is generated from oxygen, hydrogen ions, and electrons.
[0005]
In order for hydrogen ions to move through the solid polymer membrane, the solid polymer membrane needs to contain moisture. For this reason, it is necessary to wet the solid polymer membrane by humidification, and a method of humidifying a hydrogen gas to be supplied to a fuel cell by a humidifier and supplying it to a fuel electrode is known.
[0006]
Further, as an effective method for humidification, a hydrogen circulation system in which hydrogen gas unused in the fuel cell body is recirculated to the fuel cell body and reused is used. Hydrogen slightly more than the amount of hydrogen required for power consumed by the load connected to the outside of the fuel cell body is supplied to the fuel electrode, and unused hydrogen is discharged from the fuel electrode outlet, and this discharged hydrogen (referred to as circulating hydrogen) Again to the fuel electrode entrance for reuse.
[0007]
Since the circulating hydrogen contains a large amount of water vapor, the circulating hydrogen and dry hydrogen supplied from the hydrogen tank are mixed and supplied to the anode, and the hydrogen supplied to the anode is humidified. I have. Regarding the flow rate of hydrogen passing through the fuel electrode inlet of the fuel cell, an extra amount of circulating hydrogen passes in addition to the amount of hydrogen required for power generation. By supplying an excess amount of hydrogen to the fuel electrode in excess of the amount of hydrogen required for power generation, there is an effect that power generation in all cells of the fuel cell is performed at a high rate. If only the amount of hydrogen used for power generation is supplied, hydrogen does not efficiently reach cells near the fuel electrode outlet, and power generation efficiency is reduced.
[0008]
The same can be said for the oxidizer electrode of the fuel cell, so that not only the amount of oxygen necessary for power generation is supplied but also a little extra oxygen is supplied. Such an excess supply rate of the reaction gas is usually called a raw material stoichiometric ratio. When only hydrogen or oxygen used for power generation is supplied, the stoichiometric ratio is 1, but usually the stoichiometric ratio is a value larger than 1 for the above reason.
[0009]
The stoichiometric ratio is set so that power generation by the fuel cell is performed efficiently. However, since the state of the fuel cell changes depending on the environment, operating load, aging, etc., even when the stoichiometric ratio is set to an optimum value for a certain state of the fuel cell, the power generation efficiency is poor due to the operating load or aging. As a result, the variation in cell voltage increases.
[0010]
If a cell in which the cell voltage variation exceeds the allowable range and falls below the lower voltage limit occurs, there is a possibility that the polymer membrane constituting the fuel cell may be deteriorated, so that the cell voltage does not vary. In addition, it is necessary to change the stoichiometric ratio so that the total voltage does not decrease.
[0011]
However, if the stoichiometric ratio is increased whenever the cell voltage varies or the total voltage drops, waste of fuel or power of a blower or compressor for supplying air may be wasted. .
[0012]
If the stoichiometric ratio of the air raw material is set high, the air not used for power generation will be discarded as it is, causing waste of the air raw material supply power.
[0013]
The fuel cell power generation system described in Patent Literature 1 suppresses the power load fluctuation of the fuel cell so as to suppress wasteful power consumption of the air blower due to the power load fluctuation (partial load) and improve the overall power generation efficiency. Air volume control is performed to generate a corresponding appropriate air volume.
[0014]
The power load fluctuation is detected by the current detector, and based on the output signal, data of the air supply amount required for the partial load operation (the relationship between the power load and the required air flow rate supplied to the fuel cell is determined in advance. ), An appropriate rotation speed of the air blower corresponding to the generated air volume is calculated, and the rotation speed of the blower drive motor is controlled based on the calculation result.
[0015]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 7-21336 (page 3, FIG. 1)
[0016]
[Problems to be solved by the invention]
However, since the characteristics of fuel cells change daily due to temperature, humidity, pressure, membrane conditions, operating time, etc., the relationship between the power load and the required air flow supplied to the fuel cells also changes according to the fuel cell conditions. Otherwise, there is a problem that excessive oxygen is supplied to the electric power load and the air supply device consumes excessive power, or there is a possibility that the oxygen is insufficient at the oxidant electrode and the fuel cell body is deteriorated. Was.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a fuel cell that receives fuel and an oxidant at a fuel electrode and an oxidant electrode to generate DC power, and a flow rate of an oxidant supplied to the fuel cell. Oxidant flow rate detecting means for detecting, oxidizing agent concentration detecting means for detecting the oxidizing agent concentration supplied to the fuel cell, state detecting means for detecting the state of the fuel cell, and appropriate for each state of the fuel cell A state stoichiometric ratio storage means for storing a stoichiometric ratio in advance, and an appropriate stoichiometric ratio corresponding to a state detected by the state detecting means from the state stoichiometric ratio curve storing means. Target oxidant flow rate calculating means for calculating a target oxidant flow rate by multiplying the amount, and oxidant flow rate controlling means for controlling the supply of the oxidant to the fuel cell at the target oxidant flow rate. It is a fuel cell system according to subject matter and.
[0018]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while the state of a fuel cell changes, an oxidant is supplied more than necessary and the power for oxidant supply is prevented from being wasted. It is possible to prevent the power generated by the battery from decreasing.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a system configuration diagram illustrating an embodiment of a fuel cell system according to the present invention. In FIG. 1, a fuel cell system includes a fuel cell (fuel cell main body) 1 that supplies fuel and an oxidant to a not-shown fuel electrode and an oxidant electrode to generate DC power, and a fuel cell that supplies fuel gas to the fuel cell 1. A fuel supply device 2 for supplying hydrogen, an air supply device 3 for supplying air containing oxygen to the fuel cell 1, a blower 4 for adjusting a flow rate of air supplied to the fuel cell 1, and an air supply to the fuel cell 1. A flow sensor 5 for measuring the flow rate of the fuel cell, an oxygen sensor 6 for measuring the oxygen concentration of the air supplied to the fuel cell 1, a voltmeter 7 for measuring the power generation voltage of the fuel cell 1, and a measurement of the output current of the fuel cell 1 And a control device 9 for calculating a target rotation speed to be output to the blower 4 and a target power to be output to the load device 10.
[0020]
The voltmeter 7 and the ammeter 8 are state detecting means for detecting the state of the fuel cell. The control device 9 receives the output voltage of the fuel cell 1 detected by the voltmeter 7 and the output current of the fuel cell 1 detected by the ammeter 8 as the state of the fuel cell 1.
[0021]
The control device 9 is connected to a load device 10 and a target power generation amount calculation device 11. The load device 10 is a device that consumes the power generated by the fuel cell 1, and for a fuel cell vehicle, for example, is an inverter that converts DC power to AC power of a vehicle drive motor (not shown). The target power generation amount calculation device 11 is a device that calculates a target power generation amount to be generated by the fuel cell 1. For example, in the case of a fuel cell vehicle, the target power generation amount calculation device 11 calculates a target power generation amount from a vehicle speed and an accelerator pedal depression amount.
[0022]
Further, the air flow rate and the oxygen concentration detected by the flow rate sensor 5 and the oxygen sensor 6 are input to the control device 9, and the target rotation speed is output to the blower 4.
[0023]
Further, the control device 9 stores the appropriate stoichiometric ratio in accordance with the state detected by the ammeter 8 (state detecting unit) in the state stoichiometric ratio storage unit 23 which stores the appropriate stoichiometric ratio in advance for each state of the fuel cell. A target oxidant flow rate calculating means 24 for reading out from the ratio curve storage means 23 and multiplying the appropriate stoichiometric ratio by an oxygen amount required for power generation to calculate a target oxidant flow rate; and increasing or decreasing the oxidant flow rate during operation of the fuel cell. The appropriate stoichiometric ratio search means 21 for searching for an appropriate stoichiometric ratio based on the state of the fuel cell in the case where the fuel cell is caused to operate, the appropriate stoichiometric ratio searched by the appropriate stoichiometric ratio search means 21, and the oxidizer consumption calculated from the state of the fuel cell Based on the amount and the actual stoichiometric ratio supplied to the fuel cell calculated from the oxidant flow rate and the oxidant oxygen concentration, the contents stored in the state stoichiometric ratio curve storage means 23 It includes a state stoichiometric ratio curve updating unit 22 to update, the.
[0024]
The control device 9 is not particularly limited, but in the present embodiment, is configured by a microprocessor including an I / O interface, a program ROM, a work RAM, and a CPU.
[0025]
In the present embodiment, although not shown, the fuel supply device 2 includes a hydrogen tank and a flow control valve, and is equipped with a device that adjusts the valve opening degree to a target flow rate, and supplies sufficient hydrogen for power generation. It is controlled to be.
[0026]
The blower 4 receives the target rotation speed from the control device 9 and is controlled so that the blower rotation speed operates at the target rotation speed.
[0027]
The flow rate sensor 5 measures the flow rate of air supplied from the blower 4 to the fuel cell 1 and outputs a value of the air flow rate to the control device 9. The oxygen sensor 6 measures the oxygen concentration of the air supplied from the blower 4 to the fuel cell 1 and outputs the value of the oxygen concentration to the control device 9.
[0028]
Next, the operation of the control device 9 in the present embodiment will be described with reference to the flowchart of FIG.
[0029]
The control device 9 repeatedly calculates from START to END in the flowchart of FIG. 3 at a constant cycle, and uses the air flow rate, the oxygen concentration, the target power generation amount, the output voltage, and the output current to determine the target rotation speed of the blower 4 and the load device 10. This is a device for calculating the target power.
[0030]
In FIG. 3, first, in S10, the target power generation amount detected by the target power generation amount detection device 11 is acquired, and the process proceeds to S20. When the fuel cell system is applied to a vehicle, the target power generation amount is calculated from the driver's accelerator opening, vehicle speed, vehicle weight, and the like.
[0031]
In S20, the target power generation amount change rate is calculated by comparing the target power generation amount with the previous value, and the process proceeds to S30. As a method of calculating the target power generation amount change rate, the target power generation amount change rate may be obtained using not only the previous value but also a value over a plurality of past times, such as a value before the last time.
[0032]
In S30, the output current value that the fuel cell 1 is generating is acquired from the ammeter 8, and the process proceeds to S40. Alternatively, an output current value estimated to be output when the target power generation amount is extracted from the fuel cell 1 may be calculated using an IV curve representing the characteristics of the voltage and current of the fuel cell and the target power generation amount. .
[0033]
In S40, the required oxygen amount is calculated from the output current value, and the process proceeds to S50. In the fuel cell 1, the following electrochemical reaction occurs, and an electric current is generated.
[0034]
Embedded image
Fuel electrode H 2 → 2H + + 2e -
Oxidant electrode 2H + + 2e + (1/2) O 2 → H 2 O
Since the current value that can be extracted from the oxygen consumption rate 1 [mol / s] at the oxidant electrode is 4 × 96500 [A], if the output current is I [A], the required oxygen amount O 2in [mol / s] is expressed by the following equation. (1).
[0035]
(Equation 1)
O 2in = I / (4 × 96500) [mol / s] (1)
However, since the required oxygen amount varies depending on the number of cells of the fuel cell, for example, in the case of 200 cells, the required oxygen amount becomes 200 times.
[0036]
In S50, the control device 9 calculates an appropriate stoichiometric ratio for extracting the output current calculated in S30 from the output current calculated in S30 and the state stoichiometric ratio curve, and proceeds to S60.
[0037]
The state stoichiometric ratio curve is a curve for calculating an appropriate stoichiometric ratio according to the output current. As shown in FIG. 4, an initial state stoichiometric ratio curve having a current on the horizontal axis and an appropriate stoichiometric ratio on the vertical axis is set in advance. In the initial state of the state stoichiometric ratio curve, for example, the appropriate stoichiometric ratio is set to 1.5 regardless of the output current.
[0038]
The state stoichiometric ratio curve is updated every moment by the state stoichiometric ratio updating means 22 and stored in the state stoichiometric ratio curve storing means 23. The updating method will be described later.
[0039]
When the fuel cell system is applied to a vehicle, when a target power generation amount is calculated from a driver's accelerator opening, vehicle speed, vehicle weight, and the like, the control device 9 calculates a target rotation speed of the blower 4 and controls an air flow rate. The fuel cell 1 generates electric power. However, when the control device 9 changes the target power output to the load device 10 at the same time as the change in the target power generation amount at the time of the power fluctuation, the load is increased even though the power generation state of the fuel cell 1 is not changed due to the response time of the blower. Will change.
[0040]
For this reason, the control device 9 gives a predetermined delay corresponding to the change in the power generation state of the fuel cell 1 to the change in the command value to the drive motor which is the load device of the vehicle. Further, the air supplied to the fuel cell 1 is humidified, and the humidification state of the supplied air changes with a change in the air flow rate, and the generation state of the generated water inside the fuel cell also changes.
[0041]
Therefore, when the target power generation amount increases or decreases, the control device 9 corrects the appropriate stoichiometric ratio calculated based on the state stoichiometric ratio curve, and supplies the fuel cell 1 with the air amount calculated using the corrected stoichiometric ratio. .
[0042]
When the target power generation amount increases as shown in FIG. 5, first, the target rotation speed of the blower increases, and after the blower actually supplies an amount of oxygen necessary for extracting current, the target power increases. The load device 10 extracts power, and the control device 9 controls the target rotation speed and the target power so that the output current increases.
[0043]
However, as the demand for the fuel cell system, when the target power generation increases, it is desirable to take out the load in a shorter time. Therefore, when the target power generation increases, the stoichiometric ratio must be increased in consideration of the response time of the blower to increase the target rotation speed. Is corrected to increase.
[0044]
When the fuel cell system is applied to a vehicle and the target power generation amount decreases as shown in FIG. 9, the control device 9 sets a rate-of-change limit on the target power for the load device 10 so that the acceleration and deceleration of the vehicle becomes smooth. Therefore, the control is performed so that the decrease in the output current occurs later than the decrease in the target power generation.
[0045]
At this time, if the target rotation speed of the blower 4 is reduced at the same time as the reduction in the target power generation amount, a voltage drop due to insufficient air will occur. Must be set.
[0046]
Further, in order to cope with an unexpected power generation state change of the fuel cell in the transient state, the correction amount of the stoichiometric ratio is determined in consideration of a predetermined safety factor. The correction amount of the stoichiometric ratio is determined in advance by performing an experiment in which the stoichiometric ratio correction amount and the timing of the load change are changed and determined from the output voltage and the output current, and the value is determined in consideration of a predetermined safety factor.
[0047]
In S60, the stoichiometric ratio obtained in S50 is corrected according to the target power generation amount change rate calculated in S20.
[0048]
When the target power generation increases, a differential value, which is a change rate of the target power generation, is calculated as shown in FIG. 6, and the target power differential and the stoichiometric ratio correction amount obtained by an experiment in advance as shown in FIG. The correction amount is calculated from the relationship, and is determined in consideration of a predetermined safety factor. Since the proper stoichiometric ratio is adjusted when the target power generation amount transiently increases in this manner, the response delay of the oxidizing agent supply device when the load increases and the flow rate of air supplied to the fuel cell increase. Since the target oxidant flow rate can be calculated in consideration of a predetermined safety factor with respect to the unexpected influence on power generation, the fuel cell can be operated without lowering the power generation state of the fuel cell.
[0049]
When the target power generation amount decreases, the absolute value of the differential value of the target power generation amount is calculated as shown in FIG. 10, and the absolute value of the differential value of the target power generation amount obtained in advance by experiment as shown in FIG. The correction amount is calculated from the relationship between the amounts, and the correction amount is determined in consideration of a predetermined safety factor. The predetermined safety factor to be considered for the correction amount may be, for example, 1.1 times the determined correction amount.
[0050]
In this way, when the target power generation decreases transiently, the appropriate stoichiometric ratio is adjusted, so there is a time lag between when the target power generation decreases and the actual extraction current decreases, As the flow rate of air supplied to the fuel cell decreases, the target oxidant flow rate can be calculated in consideration of a predetermined safety factor against unexpected power generation, etc. The fuel cell can be operated without lowering.
[0051]
After the correction amount of the stoichiometric ratio is calculated, the stoichiometric ratio actually used is calculated by adding the correction amount to the appropriate stoichiometric ratio calculated from the state stoichiometric ratio curve. Further, when the target power generation amount decreases, the calculated target rotation speed is output to the blower with a delay by the time difference between the change in the target power generation amount and the change in the output current. The time difference may be determined by conducting an experiment using various time differences and determining an appropriate value within a range in which a voltage drop does not occur. Proceed to S70.
[0052]
In S70, the target air flow rate [l / s] is calculated from the required oxygen amount [mol / s] calculated in S40, the stoichiometric ratio determined in S60, and the oxygen concentration [%] in the air obtained from the oxygen sensor. calculate.
[0053]
To calculate the target air flow rate, first, the required oxygen flow rate [l / s] is calculated based on the required oxygen amount [mol / s] and the pressure [atm] and temperature [K] output from the atmospheric pressure sensor and the temperature sensor (not shown). It is calculated by equation (2). Here, R [atm · l / mol · K] is a gas constant.
[0054]
(Equation 2)
Required oxygen flow [l / s]
= Required oxygen amount [mol / s] x R [atm / l / mol-K] x temperature [K] / pressure [atm] ... (2)
Next, the required air flow rate [l / s] is calculated from the required oxygen flow rate [l / s] based on the oxygen concentration in the air [%] by the equation (3), and the target air flow rate [l / s] is calculated by multiplying the stoichiometric ratio. ] Is calculated by the equation (4) (the above corresponds to the target oxidant flow rate calculating means), and the process proceeds to S80.
[0055]
[Equation 3]
Required air flow [l / s] = required oxygen flow [l / s] × 100 / oxygen concentration [%] (3)
Target air flow rate [l / s] = required air flow rate [l / s] x stoichiometric ratio (4)
Here, since the output current that is the state of the fuel cell is detected, the optimum stoichiometric ratio can be calculated from the state stoichiometric ratio curve according to the load of the fuel cell, and the target oxidation without waste according to the load. The agent flow rate can be calculated.
[0056]
In S80, the target rotation speed [Hz] of the blower that achieves the target air flow rate [l / s] calculated in S70 is calculated from the characteristics of the blower 4 in FIG. 2, and the process proceeds to S110.
[0057]
Next, a method of updating (correcting) the state stoichiometric ratio curve will be described.
[0058]
The state stoichiometric ratio curve is a curve of an appropriate stoichiometric ratio with respect to the output current, and learning is performed from the latest state of the fuel cell to correct the curve so that an optimal stoichiometric ratio can always be calculated. The search for the appropriate stoichiometric ratio with respect to the output current is difficult to perform when the output current is largely changed. Therefore, when the output current change rate falls within a predetermined range, the search for the appropriate stoichiometric ratio is performed.
[0059]
In S110, it is determined whether the condition for shifting to the state stoichiometric ratio curve correction mode is satisfied.
[0060]
As shown in FIG. 8, the differential value of the output current of the fuel cell is calculated, and the state where the differential value is within a predetermined range (state stoichiometric ratio curve correction mode transition condition 1) is maintained for a predetermined time (state stoichiometric ratio curve correction). If the condition is satisfied during the mode transition condition 2), the process proceeds to S120, and if not, the process ends.
[0061]
In S120, the actual stoichiometric ratio of the fuel cell is calculated from the air flow rate, the oxygen concentration, and the output current.
[0062]
From the air flow rate [l / s], oxygen concentration [%], pressure [atm] and temperature [K] output from an atmospheric pressure sensor and a temperature sensor (not shown), the amount of oxygen supplied to the oxidant electrode of the fuel cell [mol] / S] is calculated as in equation (5).
[0063]
(Equation 4)
Figure 2004273162
Next, the amount of oxygen [mol / s] used for power generation is calculated from the output current [A] in the same manner as in S40. The actual stoichiometric ratio of the fuel cell is calculated by dividing the supplied oxygen amount [mol / s] by the oxygen amount [mol / s] used for power generation. Proceed to S130.
[0064]
In S130, the stoichiometric ratio is increased by a predetermined search amount, and the process proceeds to S140.
[0065]
In S140, it is checked whether the output voltage increases or the output current decreases as a result of increasing the stoichiometric ratio in S130. If the output voltage increases or the output current decreases, the process proceeds to S130; otherwise, the process proceeds to S150.
[0066]
In S150, it is determined whether the process proceeds from S130 to S140 and proceeds to S150 without returning to S130. If the process proceeds to S150 without returning to S130, the output voltage did not increase or the output current did not decrease even if the stoichiometric ratio was increased, so that air was sufficiently supplied to the load at that time. And the process proceeds to S170. Conversely, if the process proceeds to S150 after returning to S130 at least once, the stoichiometric ratio is increased at least once to increase the output voltage or the output current, so that air is sufficiently supplied to the load at that time. That is, the process proceeds to S160.
[0067]
In S160, the supply air flow rate is insufficient at the stoichiometric ratio calculated by the current state stoichiometric ratio curve, and the stoichiometric ratio is increased to perform adjustment, so that the supply air flow rate required for power generation has been reached. The state stoichiometric ratio curve is updated with the output current and the adjusted stoichiometric ratio or the output current and the actual stoichiometric ratio calculated after the adjustment (state stoichiometric ratio curve updating means), and the process is terminated.
[0068]
The updating method may be such that the weighted average of the information of the state stoichiometric ratio curve before the correction and the obtained information after the adjustment is used as a new value of the state stoichiometric ratio curve. The weighted average of the updating method is merely an example, and another updating method may be used.
[0069]
At S170, the stoichiometric ratio calculated by the state stoichiometric ratio curve is sufficient for the supply air flow to generate the current output current, and conversely, excessive air is supplied to waste the power consumption of the blower. Since there is a possibility that the stoichiometric ratio has been reached, the stoichiometric ratio is reduced by a predetermined search amount. Proceed to S180.
[0070]
In S180, it is checked whether the output voltage decreases or the output current increases as a result of reducing the stoichiometric ratio in S170. If the output voltage decreases or the output current increases, the process proceeds to S190; otherwise, the process proceeds to S170. S120 to S150, S170, and S180 described above correspond to an appropriate stoichiometric ratio search unit.
[0071]
In S190, the supply air flow rate is excessive at the stoichiometric ratio calculated by the current state stoichiometric ratio curve, and the stoichiometric ratio is reduced and adjusted. The state stoichiometric ratio curve is updated using the output current and the adjusted stoichiometric ratio or the output current and the actual stoichiometric ratio calculated after the adjustment (state stoichiometric ratio curve updating means), and the process ends. The updating method is the same as in S160.
[0072]
By repeating the above processing, an appropriate stoichiometric ratio at each output current can be obtained in the state stoichiometric ratio curve as shown in FIG. 12, so that the air supply amount is larger than the supply amount necessary for power generation and the power of the air supply device is increased. There is an effect that waste can be avoided and the minimum amount of air required for power generation can be supplied to the fuel cell. In addition, at the time of a load change, by correcting the stoichiometric ratio read from the state stoichiometric ratio curve, there is an effect that stable power generation can be performed without voltage drop.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of a fuel cell system according to the present invention.
FIG. 2 is a diagram illustrating an example of a relationship between a target air flow rate and a target rotation speed of a blower.
FIG. 3 is a flowchart illustrating a control operation performed by the control device according to the embodiment.
FIG. 4 is a diagram illustrating an example of a state stoichiometric ratio curve in an initial state.
FIG. 5 is a diagram showing a target rotation speed of a blower when a target power generation amount increases 1;
FIG. 6 is a diagram illustrating a target power generation amount differential value at the time of a target power generation amount increase 2;
FIG. 7 is a diagram illustrating a stoichiometric ratio correction amount when a target power generation amount is increased.
FIG. 8 is a diagram illustrating a condition for shifting to a state stoichiometric ratio curve correction mode.
FIG. 9 is a diagram showing a target rotation speed of a blower when the target power generation amount decreases 1. FIG.
FIG. 10 is a diagram illustrating a target power generation amount differential value at the time of target power generation amount decrease 2;
FIG. 11 is a diagram illustrating a stoichiometric ratio correction amount when a target power generation amount is reduced.
FIG. 12 is a diagram illustrating an example of an updated state stoichiometric ratio curve.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fuel cell 2 fuel supply device 3 air supply device 4 blower 5 flow sensor 6 oxygen sensor 7 voltmeter 8 ammeter 9 control device 10 load device 11 target power generation amount calculation device 21 Appropriate stoichiometric ratio searching means 22 State stoichiometric ratio curve updating means 23 State stoichiometric ratio curve storing means 24 Target oxidant flow rate calculating means

Claims (6)

燃料極および酸化剤極にそれぞれ燃料および酸化剤の供給を受けて直流電力を発電する燃料電池と、
前記燃料電池に供給している酸化剤流量を検出する酸化剤流量検出手段と、
前記燃料電池に供給している酸化剤濃度を検出する酸化剤濃度検出手段と、
前記燃料電池の状態を検出する状態検出手段と、
燃料電池の状態毎に適正ストイキ比を予め記憶する状態ストイキ比曲線記憶手段と、
前記状態検出手段が検出した状態に応じた適正ストイキ比を前記状態ストイキ比曲線記憶手段から読み出して、該適正ストイキ比を発電に必要な酸素量に乗じて目標酸化剤流量を算出する目標酸化剤流量算出手段と、
前記目標酸化剤流量で燃料電池に酸化剤を供給するように制御する酸化剤流量制御手段と、
を備えたことを特徴とする燃料電池システム。
A fuel cell for generating DC power by receiving fuel and oxidant supplied to the fuel electrode and the oxidant electrode, respectively;
Oxidant flow rate detecting means for detecting an oxidant flow rate supplied to the fuel cell,
Oxidant concentration detecting means for detecting an oxidant concentration supplied to the fuel cell,
State detection means for detecting the state of the fuel cell;
State stoichiometric ratio curve storage means for storing in advance an appropriate stoichiometric ratio for each state of the fuel cell,
A target oxidizer for reading a proper stoichiometric ratio corresponding to the state detected by the state detecting means from the state stoichiometric ratio curve storing means, and multiplying the proper stoichiometric ratio by an oxygen amount required for power generation to calculate a target oxidant flow rate. Flow rate calculating means,
Oxidant flow rate control means for controlling the supply of oxidant to the fuel cell at the target oxidant flow rate,
A fuel cell system comprising:
前記燃料電池の運転中に酸化剤流量を増減させた場合の燃料電池の状態に基づいて、適正ストイキ比を探索する適正ストイキ比探索手段と、
該適正ストイキ比探索手段が探索した適正ストイキ比と、前記燃料電池の状態から算出した酸化剤消費量と、前記酸化剤流量及び前記酸化剤酸素濃度より算出した実際に燃料電池に供給されている実ストイキ比と、に基づいて、前記状態ストイキ比曲線記憶手段の記憶内容を更新する状態ストイキ比曲線更新手段と、
を備えたことを特徴とする請求項1記載の燃料電池システム。
A proper stoichiometric ratio searching means for searching for a proper stoichiometric ratio based on the state of the fuel cell when the oxidant flow rate is increased or decreased during the operation of the fuel cell;
The proper stoichiometric ratio searched by the proper stoichiometric ratio searching means, the oxidant consumption calculated from the state of the fuel cell, and the actual oxidant flow calculated from the oxidant flow rate and the oxidant oxygen concentration are supplied to the fuel cell. Based on the actual stoichiometric ratio, based on the state stoichiometric ratio curve storage means for updating the storage content of the state stoichiometric ratio curve storage means,
The fuel cell system according to claim 1, further comprising:
前記状態検出手段が検出する燃料電池の状態は、
燃料電池の出力電流、或いは出力電流及び出力電圧であることを特徴とする請求項1または請求項2記載の燃料電池システム。
The state of the fuel cell detected by the state detecting means is:
3. The fuel cell system according to claim 1, wherein the output current is an output current or an output current and an output voltage of the fuel cell.
前記目標酸化剤流量算出手段は、燃料電池の目標発電量が過渡的に変動したとき、前記適正ストイキ比を調節することを特徴とする請求項1記載の燃料電池システム。2. The fuel cell system according to claim 1, wherein the target oxidant flow rate calculating means adjusts the appropriate stoichiometric ratio when a target power generation amount of the fuel cell fluctuates transiently. 前記目標酸化剤流量算出手段は、前記目標発電量が過渡的に増加したとき、前記目標発電量変動に応じて前記適正ストイキ比を調節することを特徴とする請求項4記載の燃料電池システム。5. The fuel cell system according to claim 4, wherein the target oxidant flow rate calculating means adjusts the appropriate stoichiometric ratio according to the target power generation amount variation when the target power generation amount transiently increases. 前記目標酸化剤流量算出手段は、前記目標発電量が過渡的に減少したとき、前記目標発電量変動に応じて前記適正ストイキ比を調節し、前記目標発電量の変化と前記目標電力の変化の時間差に応じて、目標酸化剤流量の変化を遅らせることを特徴とする請求項4記載の燃料電池システム。The target oxidizer flow rate calculating means adjusts the appropriate stoichiometric ratio in accordance with the target power generation amount variation when the target power generation amount transiently decreases, and calculates a change in the target power generation amount and a change in the target power. The fuel cell system according to claim 4, wherein a change in the target oxidant flow rate is delayed according to the time difference.
JP2003059010A 2003-03-05 2003-03-05 Fuel cell control system Expired - Fee Related JP4734821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059010A JP4734821B2 (en) 2003-03-05 2003-03-05 Fuel cell control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059010A JP4734821B2 (en) 2003-03-05 2003-03-05 Fuel cell control system

Publications (2)

Publication Number Publication Date
JP2004273162A true JP2004273162A (en) 2004-09-30
JP4734821B2 JP4734821B2 (en) 2011-07-27

Family

ID=33121978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059010A Expired - Fee Related JP4734821B2 (en) 2003-03-05 2003-03-05 Fuel cell control system

Country Status (1)

Country Link
JP (1) JP4734821B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141566A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell system and control method of fuel cell
JP2007141565A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell system and control method of fuel cell
JP2008269920A (en) * 2007-04-19 2008-11-06 Toyota Motor Corp Fuel cell system
JP2016096650A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Fuel cell system, fuel cell vehicle and fuel cell system control method
JP2016110861A (en) * 2014-12-08 2016-06-20 エスペック株式会社 Fuel cell evaluation device
JP2019530171A (en) * 2016-10-11 2019-10-17 プロトン モータ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフツングProton Motor Fuel Cell Gmbh Fuel cell system and method for operating fuel cell system
US10886547B2 (en) 2018-02-09 2021-01-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN112213370A (en) * 2020-09-29 2021-01-12 武汉海亿新能源科技有限公司 Method and device for detecting stoichiometric sensitivity of hydrogen fuel cell stack
JPWO2020175284A1 (en) * 2019-02-28 2021-03-11 京セラ株式会社 Fuel cell device
CN114243064A (en) * 2021-12-08 2022-03-25 中国科学院大连化学物理研究所 Method and device for controlling anode hydrogen of fuel cell
CN115751171A (en) * 2022-10-25 2023-03-07 重庆长安新能源汽车科技有限公司 Hydrogenation method and device for fuel cell vehicle
EP4329023A1 (en) 2022-08-26 2024-02-28 Kabushiki Kaisha Toyota Jidoshokki Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JPH09147893A (en) * 1995-11-21 1997-06-06 Mitsubishi Electric Corp Fuel cell power generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JPH09147893A (en) * 1995-11-21 1997-06-06 Mitsubishi Electric Corp Fuel cell power generation device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141566A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell system and control method of fuel cell
JP2007141565A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell system and control method of fuel cell
JP4627487B2 (en) * 2005-11-16 2011-02-09 本田技研工業株式会社 Fuel cell system and fuel cell control method
JP4627486B2 (en) * 2005-11-16 2011-02-09 本田技研工業株式会社 Fuel cell system and fuel cell control method
US8039155B2 (en) 2005-11-16 2011-10-18 Honda Motor Co., Ltd. Fuel-cell system and method of controlling fuel cell
JP2008269920A (en) * 2007-04-19 2008-11-06 Toyota Motor Corp Fuel cell system
WO2008133318A1 (en) * 2007-04-19 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fuel battery system and power supply control method
US20100068574A1 (en) * 2007-04-19 2010-03-18 Yoshiaki Naganuma Fuel cell system and power supply control method
KR101053991B1 (en) * 2007-04-19 2011-08-03 도요타 지도샤(주) Fuel cell system and power control method
US8580449B2 (en) 2007-04-19 2013-11-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and power supply control method
JP2016096650A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Fuel cell system, fuel cell vehicle and fuel cell system control method
JP2016110861A (en) * 2014-12-08 2016-06-20 エスペック株式会社 Fuel cell evaluation device
JP2019530171A (en) * 2016-10-11 2019-10-17 プロトン モータ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフツングProton Motor Fuel Cell Gmbh Fuel cell system and method for operating fuel cell system
JP7126495B2 (en) 2016-10-11 2022-08-26 プロトン モータ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel cell system and method of operating fuel cell system
US11417898B2 (en) 2016-10-11 2022-08-16 Proton Motor Fuel Cell Gmbh Fuel cell system and method of operating a fuel cell system
US10886547B2 (en) 2018-02-09 2021-01-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN113519081A (en) * 2019-02-28 2021-10-19 京瓷株式会社 Fuel cell device
JP7036929B2 (en) 2019-02-28 2022-03-15 京セラ株式会社 Fuel cell device
JPWO2020175284A1 (en) * 2019-02-28 2021-03-11 京セラ株式会社 Fuel cell device
US11742505B2 (en) 2019-02-28 2023-08-29 Kyocera Corporation Fuel cell system
CN113519081B (en) * 2019-02-28 2024-03-26 京瓷株式会社 Fuel cell device
CN112213370A (en) * 2020-09-29 2021-01-12 武汉海亿新能源科技有限公司 Method and device for detecting stoichiometric sensitivity of hydrogen fuel cell stack
CN112213370B (en) * 2020-09-29 2023-02-24 武汉海亿新能源科技有限公司 Method and device for detecting stoichiometric sensitivity of hydrogen fuel cell stack
CN114243064A (en) * 2021-12-08 2022-03-25 中国科学院大连化学物理研究所 Method and device for controlling anode hydrogen of fuel cell
CN114243064B (en) * 2021-12-08 2024-02-13 中国科学院大连化学物理研究所 Fuel cell anode hydrogen control method and device
EP4329023A1 (en) 2022-08-26 2024-02-28 Kabushiki Kaisha Toyota Jidoshokki Fuel cell system
CN115751171A (en) * 2022-10-25 2023-03-07 重庆长安新能源汽车科技有限公司 Hydrogenation method and device for fuel cell vehicle

Also Published As

Publication number Publication date
JP4734821B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP5273244B2 (en) Fuel cell system
WO2011013226A1 (en) Fuel cell system
US20100248055A1 (en) Fuel cell system and method for limiting current thereof
JP2008103250A (en) Fuel cell system, and its operation method
JP4734821B2 (en) Fuel cell control system
JP3928526B2 (en) Fuel cell system
JP4973138B2 (en) Fuel cell system
JP2007103178A (en) Fuel cell system
JP4784076B2 (en) Control device for fuel cell system
JP5076293B2 (en) Fuel cell system
JP4432400B2 (en) Control device for fuel cell system
JP5411443B2 (en) Fuel cell system
JP2004296374A (en) Fuel cell system
JP2007027047A (en) Fuel cell system
JP4682572B2 (en) Fuel cell power generation control device
JP4831437B2 (en) Fuel cell system and control method thereof
JP5103877B2 (en) Fuel cell system
JP2011192458A (en) Fuel cell system, movable body, and control method of fuel cell system
JP2006048483A (en) Power source device, method of correcting incoming and outgoing of power thereof, and method of estimating current-voltage characteristic of power source
JP2004220794A (en) Control device of fuel cell
JP2007109567A (en) Control device of fuel cell system
JP2006004819A (en) Fuel cell system and fuel cell vehicle
JP2002313385A (en) Fuel cell system
JP2005071939A (en) Control device of fuel cell system
JP2004055295A (en) Control device of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees