JP2007109567A - Control device of fuel cell system - Google Patents

Control device of fuel cell system Download PDF

Info

Publication number
JP2007109567A
JP2007109567A JP2005300611A JP2005300611A JP2007109567A JP 2007109567 A JP2007109567 A JP 2007109567A JP 2005300611 A JP2005300611 A JP 2005300611A JP 2005300611 A JP2005300611 A JP 2005300611A JP 2007109567 A JP2007109567 A JP 2007109567A
Authority
JP
Japan
Prior art keywords
fuel cell
required power
fuel
oxidant
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005300611A
Other languages
Japanese (ja)
Other versions
JP4984484B2 (en
Inventor
Hitoshi Igarashi
仁 五十嵐
Kenichi Goto
健一 後藤
Mitsuhiro Kokubo
光浩 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005300611A priority Critical patent/JP4984484B2/en
Publication of JP2007109567A publication Critical patent/JP2007109567A/en
Application granted granted Critical
Publication of JP4984484B2 publication Critical patent/JP4984484B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of a fuel cell which eliminates shortage in supply of a transient reaction gas, at the startup of required power and achieves high response with response to the required output. <P>SOLUTION: A hydrogen supply/compressor shutdown decision section 34 makes a decision on the idle stop of a suspension of the hydrogen supply and compressor operation, based on the required power for a fuel cell system, the battery storage amounts, and status of the fuel cell system. A required power change rate deducing unit 35 deduces the change rate of the required power during the idle stop time, based on the vehicle velocity and accelerator operation variation amounts. A target determination section 38 of anode hydrogen amount/cathode oxygen amount determines target values for cathode oxygen residue and anode hydrogen residue, according to the deduced value for the required power change rate, and controls a hydrogen supply valve controller 39 and a compressor controller 40 so that actual values for the cathode oxygen residue and the anode hydrogen residue are be not less than the target values, thereby replenishing the hydrogen and air to the fuel cell which is placed into the idle stop state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池システムに係り、特に燃料電池車両等の移動体の動力源に好適なアイドルストップ性能を向上させた燃料電池システムの制御装置に関する。   The present invention relates to a fuel cell system, and more particularly to a control device for a fuel cell system with improved idle stop performance suitable for a power source of a moving body such as a fuel cell vehicle.

燃料電池は、水素ガスなどの燃料ガスと酸素を有する酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。すなわち、燃料電池車両は、高圧水素タンク、液体水素タンク、水素吸蔵合金タンクなどの水素貯蔵装置を車両に搭載し、そこから供給される水素と、酸素を含む空気とを燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギで駆動輪につながるモータを駆動するものであり、排出物質は水だけであるという究極のクリーン車両である。   In a fuel cell, a fuel gas such as hydrogen gas and an oxidizing gas containing oxygen are electrochemically reacted through an electrolyte, and electric energy is directly taken out between electrodes provided on both surfaces of the electrolyte. In particular, solid polymer fuel cells using solid polymer electrolytes are attracting attention as power sources for electric vehicles because of their low operating temperature and easy handling. That is, a fuel cell vehicle is equipped with a hydrogen storage device such as a high-pressure hydrogen tank, a liquid hydrogen tank, or a hydrogen storage alloy tank in the vehicle, and reacts by supplying hydrogen supplied therefrom and oxygen-containing air to the fuel cell. This is the ultimate clean vehicle that drives the motor connected to the drive wheels with the electric energy extracted from the fuel cell, and that the only exhaust material is water.

ところで、燃料電池は、出力が小さい領域では、発電効率が低いために、二次電池やコンデンサ等の蓄電装置と併用するシステムがある。このシステムでは、要求負荷が小さい領域では、燃料電池の発電を停止して蓄電装置から電力供給するアイドルストップを行うことにより、発電効率の低い運転を回避し、燃料電池システムの燃費性能を向上させることができる。   By the way, since the fuel cell has low power generation efficiency in a region where the output is small, there is a system that is used in combination with a power storage device such as a secondary battery or a capacitor. In this system, in a region where the required load is small, by stopping the power generation of the fuel cell and performing idle stop to supply power from the power storage device, the operation with low power generation efficiency is avoided and the fuel efficiency performance of the fuel cell system is improved. be able to.

このアイドルストップ状態からの再始動性を確保するために、アイドルストップ中に間歇的に反応ガス供給する例がある。例えば特許文献1に開示されているアイドルストップ状態は、所定時間経過する毎に、或いは残存ガス圧力が所定圧力より低下したときに、一時的にコンプレッサを駆動したり水素供給バルブを開いて、燃料電池へ空気、水素を供給している。
特開2004−172028号公報(第8頁、図3)
In order to ensure restartability from the idle stop state, there is an example in which the reaction gas is intermittently supplied during the idle stop. For example, in the idle stop state disclosed in Patent Document 1, every time a predetermined time elapses or when the residual gas pressure falls below a predetermined pressure, the compressor is temporarily driven or the hydrogen supply valve is opened to Air and hydrogen are supplied to the battery.
JP 2004-172028 A (page 8, FIG. 3)

しかしながら上記従来例を適用した燃料電池車両においては、高速時にアクセルを離している状態では、燃料電池に対する要求出力は低い状態にあり、アイドルストップすることになるが、その状態からアクセルを全開に踏み込むと、急激な要求出力変化率が発生する。このとき、反応ガス供給系の配管長や容積等による反応ガスの供給遅れがある一方、コンプレッサや水素供給弁の動特性による空気供給の変化率や水素供給の変化率には限界があり、過渡的に反応ガスの供給不足が生じるという問題点があった。   However, in the fuel cell vehicle to which the above conventional example is applied, when the accelerator is released at high speed, the required output for the fuel cell is low and the engine stops idling, but the accelerator is fully opened from that state. As a result, a rapid required output change rate occurs. At this time, there is a delay in the reaction gas supply due to the piping length and volume of the reaction gas supply system, but there is a limit to the rate of change in the air supply and the rate of change in the hydrogen supply due to the dynamic characteristics of the compressor and hydrogen supply valve. In particular, there was a problem of insufficient supply of reaction gas.

上記問題点を解決するために、本発明は、燃料極と酸化剤極との間に電解質膜を挟持させてなる燃料電池と、前記燃料極に燃料ガスを供給する燃料供給手段と、前記酸化剤極に酸化剤ガスを供給する酸化剤供給手段と、前記燃料電池の状態量を検出する状態量検出手段と、燃料電池の発電電力が不足する場合に電力供給する蓄電装置と、を備えた燃料電池システムにおいて、燃料電池に対する要求電力が所定値以下となった場合に、前記酸化剤供給手段から前記酸化剤極へ酸化剤の供給を一時停止する酸化剤供給制御部と、前記酸化剤供給制御部の判断により酸化剤の供給を一時停止後に、燃料電池に対する要求電力の変化率を推定する要求電力変化率推定部と、を備え、前記酸化剤供給制御部は、酸化剤供給の一時停止後の酸化剤極内の残存酸化剤量が、前記要求電力変化率推定部が推定した要求電力の変化率に応じた量以上となるように前記酸化剤供給手段を制御することを要旨とする燃料電池システムの制御装置である。   In order to solve the above problems, the present invention provides a fuel cell in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, fuel supply means for supplying fuel gas to the fuel electrode, and the oxidation An oxidant supply unit that supplies an oxidant gas to the agent electrode, a state quantity detection unit that detects a state quantity of the fuel cell, and a power storage device that supplies power when the generated power of the fuel cell is insufficient. In the fuel cell system, an oxidant supply control unit for temporarily stopping the supply of the oxidant from the oxidant supply means to the oxidant electrode when the required power for the fuel cell becomes a predetermined value or less; And a required power change rate estimating unit that estimates a rate of change of required power for the fuel cell after the supply of the oxidant is temporarily stopped by the determination of the control unit, the oxidant supply control unit temporarily stopping the oxidant supply The remaining in the oxidizer pole after A control device for a fuel cell system, characterized in that the oxidant supply means is controlled such that an oxidant amount is equal to or greater than an amount corresponding to a change rate of required power estimated by the required power change rate estimation unit. .

本発明によれば、燃料電池に要求される要求電力変化率を推定し、推定結果に基づいて、酸化剤供給一時停止中の燃料電池に酸化剤を供給することができ、要求電力の立ち上がり時に過渡的な反応ガスの供給不足を解消し、要求出力に対する応答性が高い燃料電池システムを提供することができるという効果がある。   According to the present invention, it is possible to estimate the required power change rate required for the fuel cell, and to supply the oxidant to the fuel cell in which the oxidant supply is temporarily stopped based on the estimation result. There is an effect that it is possible to provide a fuel cell system that solves the transient supply shortage of reactive gas and has high responsiveness to the required output.

次に図面を参照して、本発明の実施の形態を詳細に説明する。尚、以下の実施例は、特に限定されないが、燃料電池を主な電源とする燃料電池車両について説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings. Although the following embodiments are not particularly limited, a fuel cell vehicle using a fuel cell as a main power source will be described.

図1は、本発明に係る燃料電池システムの制御装置を備えた燃料電池車両の概略構成を示すシステム構成図である。燃料電池システム1は、例えば固体高分子型の燃料電池2を備えている。燃料電池2は、電解質膜3をアノード(燃料極)4とカソード(酸化剤極)5で挟持した単電池(セル)が複数積層された構造を有するが単電池のみ図示している。アノード4には燃料として水素ガス、カソード5には酸化剤ガスとして空気が供給され、以下に示す電極反応が進行され、電力が発電される。   FIG. 1 is a system configuration diagram showing a schematic configuration of a fuel cell vehicle including a control device for a fuel cell system according to the present invention. The fuel cell system 1 includes, for example, a polymer electrolyte fuel cell 2. The fuel cell 2 has a structure in which a plurality of unit cells (cells) in which an electrolyte membrane 3 is sandwiched between an anode (fuel electrode) 4 and a cathode (oxidant electrode) 5 are stacked, but only the unit cell is illustrated. Hydrogen gas is supplied as fuel to the anode 4 and air is supplied as oxidant gas to the cathode 5, and the electrode reaction shown below proceeds to generate electric power.

アノード(燃料極) :H2 → 2H+ +2e- …(1)
カソード(酸化剤極):2H+ +2e- +(1/2)O2 → H2O …(2)
燃料ガスとしての水素は、水素タンク6から水素タンク元弁7、減圧弁8、水素供給弁9を通じてアノード4へ供給される。水素タンク6から供給される高圧水素は、減圧弁8で機械的に所定の圧力まで減圧され、さらに水素供給弁9でアノード4の入口の水素圧力が所望の圧力となるように減圧される。アノード入口の水素圧力は、アノード入口圧力センサ10aにより検出され、コントローラ30に入力される。
Anode (fuel electrode): H 2 → 2H + + 2e (1)
Cathode (oxidant electrode): 2H + + 2e + (1/2) O 2 → H 2 O (2)
Hydrogen as a fuel gas is supplied from the hydrogen tank 6 to the anode 4 through the hydrogen tank main valve 7, the pressure reducing valve 8, and the hydrogen supply valve 9. The high-pressure hydrogen supplied from the hydrogen tank 6 is mechanically reduced to a predetermined pressure by the pressure reducing valve 8 and further reduced by the hydrogen supply valve 9 so that the hydrogen pressure at the inlet of the anode 4 becomes a desired pressure. The hydrogen pressure at the anode inlet is detected by the anode inlet pressure sensor 10 a and input to the controller 30.

アノード4の出口からアノード4の入口へアノードで消費されなかった燃料ガスを循環させる燃料循環路11が備えられる。循環ポンプ12は、燃料循環路11内の燃料ガスを昇圧させて循環させる循環装置である。循環ポンプ12は図示しない電動機によって駆動され、この電動機の電流を電流センサ13によって検知する。カソード5への空気はコンプレッサ14により供給される。カソード出口には、空気圧調整弁24が設けられ、カソード圧力が制御される。   A fuel circulation path 11 is provided for circulating the fuel gas that has not been consumed at the anode from the outlet of the anode 4 to the inlet of the anode 4. The circulation pump 12 is a circulation device that boosts and circulates the fuel gas in the fuel circulation path 11. Circulation pump 12 is driven by an electric motor (not shown), and current of this electric motor is detected by current sensor 13. Air to the cathode 5 is supplied by the compressor 14. An air pressure adjusting valve 24 is provided at the cathode outlet to control the cathode pressure.

パワーマネージャ15は、燃料電池2から電力を取り出して、負荷装置16もしくはバッテリ17へ電力を供給する。バッテリコントローラ18は、バッテリ17の充放電電流をモニタしてバッテリの蓄電量を算出し、蓄電量をコントローラ30へ送信する。電圧センサ19は、燃料電池2の単電池毎、もしくは単電池が複数直列接続された単電池群毎の電圧を測定する。コントローラ30は、燃料電池システムの起動、停止、発電時に、各センサ信号を用いてシステム内の各アクチュエータをコントロールする。   The power manager 15 extracts power from the fuel cell 2 and supplies power to the load device 16 or the battery 17. The battery controller 18 monitors the charge / discharge current of the battery 17 to calculate the amount of electricity stored in the battery, and transmits the amount of electricity stored to the controller 30. The voltage sensor 19 measures the voltage of each unit cell of the fuel cell 2 or each unit cell group in which a plurality of unit cells are connected in series. The controller 30 controls each actuator in the system using each sensor signal at the time of starting, stopping, and generating power of the fuel cell system.

カソード5には、酸化剤として空気を供給するため、化学反応しない窒素が、電解質膜3を透過して、アノード4、燃料循環路11及び循環ポンプ12を含む水素循環系に蓄積する。水素循環系に蓄積した窒素量が多くなりすぎると、水素循環系の気体の質量密度が増加し、循環ポンプ12によるガス循環量を維持できなくなるため、水素循環系内の窒素量を管理する必要がある。したがって、水素循環系内の窒素を含んだガスをパージ弁20により外部に排出し、水素循環系内に存在する窒素量を循環性能が維持できるようにする。アノード出口圧力センサ10bはアノード出口の圧力を測定するセンサ、アノード入口温度センサ21aはアノード入口の気体の温度を測定するセンサ、アノード出口温度センサ21bはアノード出口の気体温度を測定する温度センサであり、それぞれの検出値は、コントローラ30へ入力される。   In order to supply air as an oxidant to the cathode 5, non-chemically reacting nitrogen permeates the electrolyte membrane 3 and accumulates in a hydrogen circulation system including the anode 4, the fuel circulation path 11 and the circulation pump 12. If the amount of nitrogen accumulated in the hydrogen circulation system increases too much, the mass density of the gas in the hydrogen circulation system increases and the gas circulation amount by the circulation pump 12 cannot be maintained, so the amount of nitrogen in the hydrogen circulation system must be managed. There is. Therefore, the gas containing nitrogen in the hydrogen circulation system is discharged to the outside by the purge valve 20 so that the circulation performance can be maintained for the amount of nitrogen present in the hydrogen circulation system. The anode outlet pressure sensor 10b is a sensor that measures the pressure at the anode outlet, the anode inlet temperature sensor 21a is a sensor that measures the temperature of the gas at the anode inlet, and the anode outlet temperature sensor 21b is a temperature sensor that measures the gas temperature at the anode outlet. The detected values are input to the controller 30.

本実施例では、コントローラ30は、CPU、ROM、作業用RAM、入出力インタフェースを備えたマイクロプロセッサで構成されている。そして、コントローラ30は、ROMに格納された制御プログラムを実行することにより、燃料電池システム全体を制御するとともに、本発明における酸化剤供給制御部と、要求電力変化率推定部と、燃料供給制御部とを兼ねるものである。   In this embodiment, the controller 30 is composed of a CPU, a ROM, a working RAM, and a microprocessor having an input / output interface. Then, the controller 30 executes the control program stored in the ROM to control the entire fuel cell system, as well as the oxidant supply control unit, the required power change rate estimation unit, and the fuel supply control unit in the present invention. It also serves as.

図2は、コントローラ30の制御内容を説明する制御ブロック図である。要求電力検知部31は、例えば、図示しない車速センサが検出した車速信号と、図示しないアクセルセンサが検出したアクセル操作量信号とに基づいて、燃料電池に対する要求電力を検知する。バッテリ蓄電量検知部32は、図1のバッテリコントローラ18からバッテリ17の蓄電量を読み込む。燃料電池システム状態量検知部33は、図1の圧力センサ10a、10bが検出した燃料極入口圧力、燃料極出口圧力、温度センサ21a、21bが検出した燃料極入口圧力、燃料極出口圧力、図示しない燃料電池冷却液の温度センサが検出した温度等の燃料電池システム状態信号を読み込み、燃料電池2の暖機が完了したか否かを判定する。燃料電池2の暖機中であれば、要求電力が所定値以下であっても暖機を継続し、アイドルストップを行わないように制御する。   FIG. 2 is a control block diagram for explaining the control contents of the controller 30. The required power detection unit 31 detects the required power for the fuel cell based on, for example, a vehicle speed signal detected by a vehicle speed sensor (not shown) and an accelerator operation amount signal detected by an accelerator sensor (not shown). The battery storage amount detection unit 32 reads the storage amount of the battery 17 from the battery controller 18 of FIG. The fuel cell system state quantity detection unit 33 includes a fuel electrode inlet pressure and a fuel electrode outlet pressure detected by the pressure sensors 10a and 10b in FIG. 1, a fuel electrode inlet pressure and a fuel electrode outlet pressure detected by the temperature sensors 21a and 21b. The fuel cell system state signal such as the temperature detected by the temperature sensor of the fuel cell coolant is not read, and it is determined whether or not the fuel cell 2 has been warmed up. If the fuel cell 2 is warming up, control is performed so that the warm-up is continued even if the required power is equal to or less than a predetermined value, and idling stop is not performed.

水素供給・コンプレッサ停止判断部34は、要求電力検知部31が検知した要求電力が所定値以下、バッテリ蓄電量検知部32が検知したバッテリ蓄電量が所定値以上、燃料電池システム状態が暖機完了を判定していれば、水素供給及びコンプレッサ14の一時停止であるアイドルストップを判断し、水素供給弁制御部39及びコンプレッサ制御部40へアイドルストップによる供給一時停止を指示する。水素供給弁制御部39は、アイドルストップによる供給一時停止の指示を受けると、水素供給弁9を閉じてアノード4への水素供給を停止する。このとき同時に燃料循環路11に燃料を循環させる循環ポンプ12を停止させる。コンプレッサ制御部40は、アイドルストップによる供給一時停止の指示を受けると、コンプレッサ14の駆動を停止させるとともに、空気圧調整弁24を閉止させる。   The hydrogen supply / compressor stop determination unit 34 determines that the required power detected by the required power detection unit 31 is a predetermined value or less, the battery storage amount detected by the battery storage amount detection unit 32 is a predetermined value or more, and the fuel cell system state is warmed up. Is determined, the hydrogen supply and the idle stop which is the temporary stop of the compressor 14 are determined, and the hydrogen supply valve control unit 39 and the compressor control unit 40 are instructed to stop the supply by the idle stop. The hydrogen supply valve control unit 39 closes the hydrogen supply valve 9 and stops the supply of hydrogen to the anode 4 when receiving an instruction to temporarily stop supply by idle stop. At the same time, the circulation pump 12 that circulates fuel in the fuel circulation path 11 is stopped. When the compressor control unit 40 receives an instruction to temporarily stop supply by idle stop, the compressor control unit 40 stops driving the compressor 14 and closes the air pressure adjusting valve 24.

要求電力変化率推定部35は、図5に示すように、車速センサ信号、アクセル操作量信号、車両の走行抵抗からそれぞれ要求電力変化率を算出し、これらの最大値を求めて、要求電力変化率の推定値として、アノード内水素量・カソード内酸素量目標値決定部38へ出力する。   As shown in FIG. 5, the required power change rate estimation unit 35 calculates a required power change rate from the vehicle speed sensor signal, the accelerator operation amount signal, and the vehicle running resistance, and obtains these maximum values to obtain the required power change. The estimated rate value is output to the target value determination unit 38 for the hydrogen amount in the anode and the oxygen amount in the cathode.

図5において、車速から要求電力変化率を求めるには、車速が高いほど要求電力変化率が大きいとするマップ51を参照して推定する。アクセル操作量信号から要求電力変化率を求めるには、アクセル操作変化量が大きいほど要求電力変化率が大きいとするマップ52を参照して推定する。また、走行抵抗から要求電力変化率を求めるには、車両速度の変化と負荷装置16である車両駆動モータの出力から車両の走行抵抗を推定し、この走行抵抗が小さいほど要求電力変化率大きいとするマップ53を参照して推定する。   In FIG. 5, in order to obtain the required power change rate from the vehicle speed, it is estimated with reference to a map 51 that the required power change rate increases as the vehicle speed increases. In order to obtain the required power change rate from the accelerator operation amount signal, it is estimated by referring to the map 52 that the required power change rate increases as the accelerator operation change amount increases. Further, in order to obtain the required power change rate from the running resistance, the running resistance of the vehicle is estimated from the change in the vehicle speed and the output of the vehicle drive motor as the load device 16, and the smaller the running resistance, the larger the required power change rate. It estimates with reference to the map 53 to be performed.

車速センサ信号、アクセル操作量信号、車両の走行抵抗からそれぞれ要求電力変化率を算出した後に、これら3つの要求電力変化率の最大値を最大値選択部54で選択し、要求電力変化率の推定値とする。そして、アノード内水素量・カソード内酸素量目標値決定部38は、この要求電力変化率の推定値からマップ55を参照して、アノードの目標残水素量、カソードの目標残酸素量を求める。   After calculating the required power change rate from the vehicle speed sensor signal, the accelerator operation amount signal, and the running resistance of the vehicle, the maximum value selection unit 54 selects the maximum value of these three required power change rates and estimates the required power change rate. Value. Then, the anode hydrogen amount / cathode oxygen amount target value determination unit 38 refers to the map 55 from the estimated value of the required power change rate, and obtains the target residual hydrogen amount of the anode and the target residual oxygen amount of the cathode.

アノード水素量検知部36は、アノード圧力センサ10aまたは10bの検出値に基づいてアノード水素量を検知し、アノード内水素量・カソード内酸素量目標値決定部38へ出力する。カソード酸素量検知部36は、電圧センサ19の検出値と、コンプレッサ14の一時停止からの経過時間とに基づいてカソード酸素量を検知する。このとき、アノード水素量検知部36が十分な水素量を検知していれば、電圧センサ19の検出値に基づいてカソード酸素量を検知し、アノード水素量検知部36が十分な水素量を検知していなければ、コンプレッサ14の一時停止からの経過時間に基づいてカソード酸素量を検知する。検知した酸素量は、アノード内水素量・カソード内酸素量目標値決定部38へ出力する。   The anode hydrogen amount detection unit 36 detects the anode hydrogen amount based on the detection value of the anode pressure sensor 10a or 10b, and outputs it to the anode hydrogen amount / cathode oxygen amount target value determination unit 38. The cathode oxygen amount detection unit 36 detects the cathode oxygen amount based on the detection value of the voltage sensor 19 and the elapsed time from the temporary stop of the compressor 14. At this time, if the anode hydrogen amount detector 36 detects a sufficient amount of hydrogen, the cathode oxygen amount is detected based on the detection value of the voltage sensor 19, and the anode hydrogen amount detector 36 detects a sufficient amount of hydrogen. If not, the cathode oxygen amount is detected based on the elapsed time from the temporary stop of the compressor 14. The detected oxygen amount is output to the anode hydrogen amount / cathode oxygen amount target value determination unit 38.

アノード内水素量・カソード内酸素量目標値決定部38は、要求電力変化率推定部35が推定した燃料電池システムに対する要求電力の変化率に対応したアノード内水素量目標値及びカソード内酸素量目標値を決定する。この決定には、要求電力の変化率から予め記憶した図5の符号55に示したような目標値マップを参照して目標値を求める。このマップは、要求電力の変化率が大きいほど目標値が大きくなるマップであり、燃料電池の出力立ち上がり性能として所望の性能を満たす値を実機による実験、或いは計算機シミュレーションにより求めたものである。   The anode hydrogen amount / cathode oxygen amount target value determination unit 38 includes an anode hydrogen amount target value and cathode oxygen amount target corresponding to the change rate of the required power for the fuel cell system estimated by the required power change rate estimation unit 35. Determine the value. For this determination, a target value is obtained by referring to a target value map as indicated by reference numeral 55 in FIG. This map is a map in which the target value increases as the rate of change in the required power increases, and a value that satisfies the desired performance as the output rise performance of the fuel cell is obtained by experiments with a real machine or computer simulation.

そして、アノード内水素量・カソード内酸素量目標値決定部38が決定したアノード内水素量目標値に、アノード水素量検知部36が検知した水素量が達していなければ、水素供給弁制御部39へ制御信号を出力し、アノード水素量が目標値以上となるように制御する。同様に、カソード内酸素量目標値に、カソード酸素量検知部37が検知した酸素量が達していなければ、コンプレッサ制御部40へ制御信号を出力して、カソード酸素量が目標値以上となるように制御する。   If the hydrogen amount detected by the anode hydrogen amount detection unit 36 does not reach the anode hydrogen amount target value determined by the anode hydrogen amount / cathode oxygen amount target value determination unit 38, the hydrogen supply valve control unit 39. A control signal is output to control the anode hydrogen amount to be equal to or higher than the target value. Similarly, if the oxygen amount detected by the cathode oxygen amount detection unit 37 has not reached the target oxygen amount in the cathode, a control signal is output to the compressor control unit 40 so that the cathode oxygen amount becomes equal to or greater than the target value. To control.

次に、図3のフローチャートを参照して、コントローラ30による通常発電制御の状態からアイドルストップ状態への移入について説明する。   Next, transfer from the normal power generation control state to the idle stop state by the controller 30 will be described with reference to the flowchart of FIG.

まず、ステップ(以下、ステップをSと略す)301において、燃料電池システム内の各センサから燃料電池システムの状態量を読み込む。S302で、バッテリコントローラ18からバッテリ17の蓄電量を読み込む。S303で、車速センサが検知した車速及びアクセルセンサが検知したアクセル操作量に基づいて燃料電池システムに対する要求電力を検知する。   First, in step (hereinafter abbreviated as S) 301, the state quantity of the fuel cell system is read from each sensor in the fuel cell system. In step S <b> 302, the storage amount of the battery 17 is read from the battery controller 18. In S303, the required power for the fuel cell system is detected based on the vehicle speed detected by the vehicle speed sensor and the accelerator operation amount detected by the accelerator sensor.

次いで、S304で、燃料電池温度が所定の暖機温度(固体高分子型燃料電池では、電極触媒の活性度が高まる例えば70℃)以上となったか否かを判定することにより、燃料電池2の暖機が完了したか否かを判定する。暖機が完了していなければ、S309の通常発電制御に移る。   Next, in S304, it is determined whether or not the fuel cell temperature is equal to or higher than a predetermined warm-up temperature (in the case of a polymer electrolyte fuel cell, the degree of activity of the electrode catalyst is increased to 70 ° C., for example). Determine whether the warm-up is complete. If the warm-up has not been completed, the routine proceeds to normal power generation control in S309.

暖機が完了していれば、S305でバッテリ17の蓄電量が所定値以上であるか否かを判定する。この所定値は、バッテリ17の全容量、負荷装置16の消費電力等を考慮して決定される。バッテリ17の蓄電量が所定値未満であれば、S309の通常発電制御へ移る。バッテリ17の蓄電量が所定値以上であれば、S306で燃料電池システムに対する要求電力が所定値以下であるか否かを判定する。この所定値は、燃料電池システムの発電効率が所望の効率より低下する発電電力であり、燃料電池2に使用する電解質膜3の性質、アノード4及びカソード5に使用する電極触媒の性質、カソード5に空気供給するコンプレッサ14の効率等により決まる値である。一般に、固体高分子型燃料電池では、発電出力を低下させると、発電電力に対する補機(コンプレッサ14,循環ポンプ12,図示しない冷却水循環ポンプ等)消費電力の比率が高まり、発電効率が低下する。   If the warm-up has been completed, it is determined in S305 whether or not the storage amount of the battery 17 is equal to or greater than a predetermined value. This predetermined value is determined in consideration of the total capacity of the battery 17, the power consumption of the load device 16, and the like. If the amount of electricity stored in the battery 17 is less than the predetermined value, the process proceeds to normal power generation control in S309. If the amount of power stored in the battery 17 is equal to or greater than a predetermined value, it is determined in S306 whether the required power for the fuel cell system is equal to or less than a predetermined value. This predetermined value is generated power at which the power generation efficiency of the fuel cell system is lower than the desired efficiency. The property of the electrolyte membrane 3 used for the fuel cell 2, the property of the electrode catalyst used for the anode 4 and the cathode 5, the cathode 5 This value is determined by the efficiency of the compressor 14 that supplies air to the air. Generally, in a polymer electrolyte fuel cell, when the power generation output is reduced, the ratio of power consumption of auxiliary equipment (compressor 14, circulation pump 12, cooling water circulation pump not shown) to the generated power increases, and the power generation efficiency decreases.

S306の判定で要求電力が所定値を超えていれば、S309の通常発電制御へ移る。S306の判定で、要求電力が所定値以下であれば、アイドルストップを行うべく、S307へ進む。S307では、水素供給弁9を閉止するとともに循環ポンプ12を停止させ、S308でコンプレッサ14を停止させるとともに、空気圧調整弁24を閉じて、アイドルストップ状態へ移入する。   If the required power exceeds the predetermined value in the determination in S306, the process proceeds to the normal power generation control in S309. If it is determined in S306 that the required power is equal to or less than the predetermined value, the process proceeds to S307 to perform idle stop. In S307, the hydrogen supply valve 9 is closed and the circulation pump 12 is stopped. In S308, the compressor 14 is stopped, and the air pressure adjusting valve 24 is closed to enter the idle stop state.

図4は、アイドルストップ状態におけるコントローラ30の制御内容を説明するフローチャートである。   FIG. 4 is a flowchart for explaining the control contents of the controller 30 in the idle stop state.

まず、S401において要求電力が所定値以下か否かを判定する。この所定値は、S306の判定で使用した所定値と同じ値である。要求電力が所定値以下でなければ、アイドルストップ状態から通常発電状態へ復帰すべく、S414へ進む。S414では、水素供給弁9を開いて水素供給を開始し、S415でコンプレッサ14の稼動を開始して、アイドルストップ状態を終了し、通常発電制御へ移る。   First, in S401, it is determined whether the required power is equal to or less than a predetermined value. This predetermined value is the same value as the predetermined value used in the determination in S306. If the required power is not less than the predetermined value, the process proceeds to S414 to return from the idle stop state to the normal power generation state. In S414, the hydrogen supply valve 9 is opened and hydrogen supply is started. In S415, the operation of the compressor 14 is started, the idle stop state is terminated, and the normal power generation control is started.

S401の判定で要求電力が所定値以下であれば、S402へ進み、バッテリ17の蓄電量が所定値以上か否かを判定する。この所定値は、S305の判定で使用した所定値と同じ値である。S402の判定で、蓄電量が所定値以上でなければ、アイドルストップ状態から通常発電状態へ復帰すべく、S414へ進む。   If it is determined in S401 that the required power is equal to or smaller than the predetermined value, the process proceeds to S402, and it is determined whether or not the stored amount of the battery 17 is equal to or larger than the predetermined value. This predetermined value is the same value as the predetermined value used in the determination of S305. If it is determined in S402 that the charged amount is not equal to or greater than the predetermined value, the process proceeds to S414 to return from the idle stop state to the normal power generation state.

S402の判定で蓄電量が所定値以上であれば、S403で車速センサの検出値を読み込み、S404でアクセル操作変化量を計算し、S405で車両の走行抵抗を検知する。車両の走行抵抗は、負荷装置16である車両駆動モータの出力と車速の変化から求められる。   If it is determined in S402 that the charged amount is equal to or larger than the predetermined value, the detected value of the vehicle speed sensor is read in S403, the accelerator operation change amount is calculated in S404, and the running resistance of the vehicle is detected in S405. The running resistance of the vehicle is obtained from the output of the vehicle drive motor that is the load device 16 and the change in the vehicle speed.

次いで、S405で要求電力変化率を推定する。この推定は、図5で説明したように、車速、アクセル操作変化量、走行抵抗からそれぞれ要求電力変化率を求め、これらの中で最大のものを要求電力変化率の推定値とする。   Next, the required power change rate is estimated in S405. In this estimation, as described with reference to FIG. 5, the required power change rate is obtained from the vehicle speed, the accelerator operation change amount, and the travel resistance, and the maximum of these is used as the estimated value of the required power change rate.

次いで、S407で要求電力変化率の推定値が所定値以上か否かを判定する。所定値以上でなければ、S408へ進む。所定値以上であれば、並列処理可能なS410とS412とへ移る。   Next, in S407, it is determined whether the estimated value of the required power change rate is equal to or greater than a predetermined value. If not, the process proceeds to S408. If it is equal to or greater than the predetermined value, the process proceeds to S410 and S412 that can be processed in parallel.

S408では、カソード内残酸素量が所定値以上であるか否かを判定する。これには、電圧センサ19が検出する燃料電池電圧から換算した残酸素量、或いはアイドルストップ状態に移入してからの経過時間から換算した残酸素量と、所定値とを比較する。S408の判定で、カソード内残酸素量が所定値以上であれば、S409へ進み、パワーマネージャー15に指示して燃料電池2から電流取り出しを行うことにより、カソード内残酸素量を低下させて、アイドルストップ中の燃料電池2の電圧を低下させ、電解質膜3、及びアノード4,カソード5の電極触媒の劣化を抑制する(図8)。そして、S401へ戻る。   In S408, it is determined whether the residual oxygen amount in the cathode is equal to or greater than a predetermined value. For this purpose, the residual oxygen amount converted from the fuel cell voltage detected by the voltage sensor 19 or the residual oxygen amount converted from the elapsed time since entering the idle stop state is compared with a predetermined value. If it is determined in S408 that the amount of oxygen remaining in the cathode is equal to or greater than the predetermined value, the process proceeds to S409, and the power manager 15 is instructed to take out current from the fuel cell 2 to reduce the amount of oxygen remaining in the cathode. The voltage of the fuel cell 2 during the idle stop is lowered to suppress the deterioration of the electrolyte membrane 3, and the electrode catalyst of the anode 4 and the cathode 5 (FIG. 8). Then, the process returns to S401.

S410では、カソード内酸素量が要求電力変化率に応じて定まる下限酸素量である所定値以下か否かを判定し、所定値以下であれば、S411へ進み、コンプレッサ14を一時的に稼動させて、カソード5へ空気を供給し(図7)、S401へ戻る。S410の判定でカソード内酸素量が所定値以下でなければ、S411を飛び越してS401へ戻る。   In S410, it is determined whether or not the amount of oxygen in the cathode is equal to or less than a predetermined value that is a lower limit oxygen amount determined according to the required power change rate. Then, air is supplied to the cathode 5 (FIG. 7), and the process returns to S401. If it is determined in S410 that the amount of oxygen in the cathode is not less than the predetermined value, the process skips S411 and returns to S401.

S412では、アノード内水素量が要求電力変化率に応じて定まる下限水素量である所定値以下か否かを判定し、所定値以下であれば、S413へ進み、水素供給弁9を一時的に開いて、アノード4へ水素を供給し、S401へ戻る。S412の判定でアノード内水素量が所定値以下でなければ、S413を飛び越してS401へ戻る。   In S412, it is determined whether or not the amount of hydrogen in the anode is equal to or less than a predetermined value that is a lower limit hydrogen amount determined according to the required power change rate. If it is equal to or less than the predetermined value, the process proceeds to S413 and the hydrogen supply valve 9 is temporarily set. Open, supply hydrogen to the anode 4, and return to S401. If it is determined in S412 that the amount of hydrogen in the anode is not less than the predetermined value, the process skips S413 and returns to S401.

次に、図6を参照して、本発明の効果を説明する。図6には、アクセル操作量が0の状態から、アクセル踏込速度が小さい場合(実線の折れ線で示す)と、アクセル踏込速度が大きい場合(破線の折れ線で示す)との燃料電池に必要な空気流量と、コンプレッサが供給可能な空気流量を示している。いずれの場合にも、コンプレッサ稼動開始、即ち電流取り出しが開始される時点からコンプレッサ供給空気流量が不足するが、本発明によれば、要求電力変化率の推測結果に応じて、燃料電池カソードの残存酸素量(実際には残存空気)を保持しているので、この残存酸素を用いてアクセル操作開始時の発電ができるようになり、アクセル操作に対する電力供給の遅れを無くすことができるという効果がある。   Next, the effect of the present invention will be described with reference to FIG. FIG. 6 shows the air required for the fuel cell when the accelerator operation amount is 0 and when the accelerator depression speed is low (indicated by a solid line) and when the accelerator depression speed is high (indicated by a broken line). The flow rate and the air flow rate that the compressor can supply are shown. In either case, the compressor supply air flow rate becomes insufficient from the start of compressor operation, that is, when current extraction is started. However, according to the present invention, the remaining fuel cell cathode remains in accordance with the estimated result of the required power change rate. Since the amount of oxygen (actually residual air) is maintained, it is possible to generate power at the start of the accelerator operation using this residual oxygen, and there is an effect that it is possible to eliminate a delay in power supply with respect to the accelerator operation. .

本発明に係る燃料電池システムの制御装置が適用される燃料電池システムの構成図である。1 is a configuration diagram of a fuel cell system to which a control device for a fuel cell system according to the present invention is applied. FIG. 実施例の燃料電池システムの制御装置であるコントローラの制御ブロック図である。It is a control block diagram of the controller which is a control apparatus of the fuel cell system of an Example. 通常運転状態からアイドルストップ状態への移入を説明するフローチャートである。It is a flowchart explaining transfer from a normal driving | running state to an idle stop state. アイドルストップ状態における制御フローチャートである。It is a control flowchart in an idle stop state. 要求電力変化率の推定から残水素量・残酸素量の目標値算出を説明するブロック図である。It is a block diagram explaining target value calculation of the amount of remaining hydrogen and the amount of remaining oxygen from estimation of a request | requirement electric power change rate. 本発明の効果を説明するタイムチャートである。It is a time chart explaining the effect of the present invention. アイドルストップ中の残空気量の制御を説明するタイムチャートである。It is a time chart explaining control of the amount of remaining air during idle stop. アイドルストップ中に電流取り出しする場合のタイムチャートである。It is a time chart in the case of taking out an electric current during idle stop.

符号の説明Explanation of symbols

30…コントローラ
31…要求電力検知部
32…バッテリ蓄電量検知部
33…燃料電池システム状態量検知部
34…水素供給・コンプレッサ停止判断部
35…要求電力変化率推定部
36…アノード水素量検知部
37…カソード酸素量検知部
38…アノード内水素量・カソード内酸素量目標値決定部
39…水素供給弁制御部
40…コンプレッサ制御部
DESCRIPTION OF SYMBOLS 30 ... Controller 31 ... Required power detection part 32 ... Battery storage amount detection part 33 ... Fuel cell system state quantity detection part 34 ... Hydrogen supply / compressor stop judgment part 35 ... Required power change rate estimation part 36 ... Anode hydrogen amount detection part 37 ... cathode oxygen amount detection unit 38 ... anode hydrogen amount / cathode oxygen amount target value determination unit 39 ... hydrogen supply valve control unit 40 ... compressor control unit

Claims (7)

燃料極と酸化剤極との間に電解質膜を挟持させてなる燃料電池と、
前記燃料極に燃料ガスを供給する燃料供給手段と、
前記酸化剤極に酸化剤ガスを供給する酸化剤供給手段と、
前記燃料電池の状態量を検出する状態量検出手段と、
燃料電池の発電電力が不足する場合に電力供給する蓄電装置と、
を備えた燃料電池システムにおいて、
燃料電池に対する要求電力が所定値以下となった場合に、前記酸化剤供給手段から前記酸化剤極へ酸化剤の供給を一時停止する酸化剤供給制御部と、
前記酸化剤供給制御部の判断により酸化剤の供給を一時停止後に、燃料電池に対する要求電力の変化率を推定する要求電力変化率推定部と、を備え、
前記酸化剤供給制御部は、酸化剤供給の一時停止後の酸化剤極内の残存酸化剤量が、前記要求電力変化率推定部が推定した要求電力の変化率に応じた量以上となるように前記酸化剤供給手段を制御することを特徴とする燃料電池システムの制御装置。
A fuel cell having an electrolyte membrane sandwiched between a fuel electrode and an oxidant electrode;
Fuel supply means for supplying fuel gas to the fuel electrode;
An oxidant supply means for supplying an oxidant gas to the oxidant electrode;
State quantity detection means for detecting a state quantity of the fuel cell;
A power storage device that supplies power when the power generated by the fuel cell is insufficient,
In a fuel cell system comprising:
An oxidant supply control unit for temporarily stopping the supply of the oxidant from the oxidant supply means to the oxidant electrode when the required power for the fuel cell becomes a predetermined value or less;
A required power change rate estimating unit for estimating a change rate of required power for the fuel cell after temporarily stopping the supply of the oxidant according to the determination of the oxidant supply control unit,
The oxidant supply control unit is configured so that the amount of residual oxidant in the oxidant electrode after the oxidant supply is temporarily stopped is equal to or greater than the amount according to the required power change rate estimated by the required power change rate estimation unit. The fuel cell system control apparatus further controls the oxidant supply means.
燃料電池に対する要求電力が所定値以下となった場合に、前記燃料供給手段から前記燃料極へ燃料の供給を一時停止する燃料供給制御部と、
前記燃料供給制御部の判断により燃料の供給を一時停止後に、燃料電池に対する要求電力の変化率を推定する要求電力変化率推定部と、を備え、
前記燃料供給制御部は、燃料供給の一時停止後の燃料極内の残存燃料量が、前記要求電力変化率推定部が推定した要求電力の変化率に応じた量以上となるように前記燃料供給手段を制御することを特徴とする請求項1に記載の燃料電池システムの制御装置。
A fuel supply control unit that temporarily stops the supply of fuel from the fuel supply means to the fuel electrode when the required power for the fuel cell becomes a predetermined value or less;
A required power change rate estimating unit for estimating a change rate of required power for the fuel cell after the fuel supply is temporarily stopped by the determination of the fuel supply control unit,
The fuel supply control unit is configured to supply the fuel such that the amount of remaining fuel in the anode after the fuel supply is temporarily stopped is equal to or greater than the amount corresponding to the change rate of the required power estimated by the required power change rate estimation unit. 2. The fuel cell system control device according to claim 1, wherein the control means is controlled.
前記酸化剤極内の残存酸化剤量は、酸化剤供給の一時停止後の経過時間と、酸化剤極と燃料極との電位差との、少なくとも一方に基づいて推定されることを特徴とする請求項1または請求項2に記載の燃料電池システムの制御装置。   The amount of residual oxidant in the oxidant electrode is estimated based on at least one of an elapsed time after the suspending of oxidant supply and a potential difference between the oxidant electrode and the fuel electrode. The control device for a fuel cell system according to claim 1 or 2. 前記燃料極内の残存燃料量は、燃料極の圧力に基づいて推定されることを特徴とする請求項2に記載の燃料電池システムの制御装置。   The fuel cell system control device according to claim 2, wherein the remaining fuel amount in the fuel electrode is estimated based on a pressure of the fuel electrode. 前記要求電力推定部が推定した要求電力の変化率が所定値より小さい場合に、燃料電池電圧が所定電圧以下となるように、燃料電池から電流を取り出すことを特徴する請求項1乃至請求項4の何れか1項に記載の燃料電池システムの制御装置。   5. The current is taken out from the fuel cell so that the fuel cell voltage becomes a predetermined voltage or less when the change rate of the required power estimated by the required power estimation unit is smaller than a predetermined value. The control apparatus for a fuel cell system according to any one of the above. 前記燃料電池システムは、移動体の動力源に電力を供給するものであって、
前記要求電力推定部は、移動体の速度に基づいて要求電力の変化率を推定することを特徴する請求項1乃至請求項5の何れか1項に記載の燃料電池システムの制御装置。
The fuel cell system supplies power to a power source of a moving body,
6. The control apparatus for a fuel cell system according to claim 1, wherein the required power estimation unit estimates a change rate of the required power based on a speed of a moving body.
前記要求電力推定部は、移動体の加速要求の変化量に基づいて要求電力の変化率を推定することを特徴する請求項6に記載の燃料電池システムの制御装置。   The fuel cell system control device according to claim 6, wherein the required power estimation unit estimates a change rate of the required power based on a change amount of the acceleration request of the moving body.
JP2005300611A 2005-10-14 2005-10-14 Control device for fuel cell system Expired - Fee Related JP4984484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300611A JP4984484B2 (en) 2005-10-14 2005-10-14 Control device for fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300611A JP4984484B2 (en) 2005-10-14 2005-10-14 Control device for fuel cell system

Publications (2)

Publication Number Publication Date
JP2007109567A true JP2007109567A (en) 2007-04-26
JP4984484B2 JP4984484B2 (en) 2012-07-25

Family

ID=38035272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300611A Expired - Fee Related JP4984484B2 (en) 2005-10-14 2005-10-14 Control device for fuel cell system

Country Status (1)

Country Link
JP (1) JP4984484B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182091A (en) * 2011-03-03 2012-09-20 Honda Motor Co Ltd Idle stop method of fuel battery system for vehicle
CN110457639A (en) * 2019-07-26 2019-11-15 武汉格罗夫氢能汽车有限公司 A kind of stack system matching process of hydrogen fuel cell electric vehicle
CN111430750A (en) * 2020-04-02 2020-07-17 重庆大学 Intelligent control system for anode pressure of fuel cell automobile stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157874A (en) * 2001-11-20 2003-05-30 Honda Motor Co Ltd Fuel circulation type fuel cell system
JP2003249236A (en) * 2001-12-19 2003-09-05 Toyota Motor Corp Power supply device
JP2003303605A (en) * 2002-04-11 2003-10-24 Toyota Motor Corp Power supply system and its control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157874A (en) * 2001-11-20 2003-05-30 Honda Motor Co Ltd Fuel circulation type fuel cell system
JP2003249236A (en) * 2001-12-19 2003-09-05 Toyota Motor Corp Power supply device
JP2003303605A (en) * 2002-04-11 2003-10-24 Toyota Motor Corp Power supply system and its control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182091A (en) * 2011-03-03 2012-09-20 Honda Motor Co Ltd Idle stop method of fuel battery system for vehicle
CN110457639A (en) * 2019-07-26 2019-11-15 武汉格罗夫氢能汽车有限公司 A kind of stack system matching process of hydrogen fuel cell electric vehicle
CN111430750A (en) * 2020-04-02 2020-07-17 重庆大学 Intelligent control system for anode pressure of fuel cell automobile stack
CN111430750B (en) * 2020-04-02 2023-02-17 重庆大学 Intelligent control system for anode pressure of fuel cell automobile stack

Also Published As

Publication number Publication date
JP4984484B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4811626B2 (en) Fuel cell system for vehicle and electric vehicle
JP5233312B2 (en) Fuel cell system
JP5051273B2 (en) Fuel cell system and control method thereof
KR101046559B1 (en) Fuel cell system, its control method and moving body
JP5087833B2 (en) Fuel cell system
EP2712015B1 (en) Fuel cell system
JP4893745B2 (en) Fuel cell system
JP2002313388A (en) Control method for fuel cell and fuel cell electric vehicle
JP2004342461A (en) Fuel cell system
JP2009200005A (en) Fuel cell system and method of controlling the same
JP4516093B2 (en) Fuel cell system and starting method thereof
JP2017204407A (en) Fuel cell system and control method thereof
JP2005129252A (en) Fuel cell system
JP2008103228A (en) Fuel cell system
JP4569350B2 (en) Electric motor system and method for controlling electric motor system
JP4893919B2 (en) Fuel cell system and moving body
JP2006318764A (en) Fuel cell system
JP4734821B2 (en) Fuel cell control system
JP2006302836A (en) Fuel cell system
JP4984484B2 (en) Control device for fuel cell system
JP2008034309A (en) Fuel battery system
KR101851830B1 (en) Fuel cell system and control method of the same
JP4682572B2 (en) Fuel cell power generation control device
JP2006092801A (en) Fuel cell system
JP5720584B2 (en) Fuel cell system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees