JP2004271904A - Negative dispersion optical fiber, optical transmission path, and method for measuring characteristics of optical fiber - Google Patents

Negative dispersion optical fiber, optical transmission path, and method for measuring characteristics of optical fiber Download PDF

Info

Publication number
JP2004271904A
JP2004271904A JP2003062433A JP2003062433A JP2004271904A JP 2004271904 A JP2004271904 A JP 2004271904A JP 2003062433 A JP2003062433 A JP 2003062433A JP 2003062433 A JP2003062433 A JP 2003062433A JP 2004271904 A JP2004271904 A JP 2004271904A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
wavelength
dispersion
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003062433A
Other languages
Japanese (ja)
Other versions
JP4346328B2 (en
Inventor
Kazunori Mukasa
和則 武笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003062433A priority Critical patent/JP4346328B2/en
Publication of JP2004271904A publication Critical patent/JP2004271904A/en
Application granted granted Critical
Publication of JP4346328B2 publication Critical patent/JP4346328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new development to greatly enlarge an effective sectional area Aeff of a core at a wavelength 1.55 μm and to suppress optical transmission characteristics and PMD while imparting negative dispersion and negative dispersion slope characteristic comparable to those of the conventional RDF. <P>SOLUTION: An optical transmission path is constituted by cascade connecting a single mode optical fiber of a pre-stage and a multimode (MM) optical transmission type optical fiber (MMF) of a post stage. As a result, during the propagation light signal propagates in the single mode optical fiber of the pre-stage, the propagation of higher modes do not take place any more and the propagation of only the basic mode (base mode) of the lowermost order is made possible even with the post stage optical fiber of the multimode (MM) design and the optical fiber of the post stage having excellent characteristics can be constructed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、波長分割多重(WDM)光伝送用の負分散光ファイバ、WDM光伝送用の光伝送路、及び光ファイアの測定方法に関するものである。
【0002】
【従来の技術】
波長1.31μmで零分散を有するシングルモード光ファイバ(SMF)は、非線形性や光伝送損失、偏波モード分散(PMD)等の点で大変優れた光伝送路である。しかしながら、波長1.55μm帯で大きな正の分散値と分散スロープを有するため、分散を補償してやらないと、波長1.55μm帯での光伝送は困難である。そこで、モジュール型の分散補償光ファイバ(DCF)が盛んに検討されている。例えば、海底光伝送用等においては、分散補償を短い光ファイバで達成させるために、クラッドの屈折率に対するセンターコアの比屈折率差(Δ1)を2.0%以上に高くして、波長1.55μm帯でマイナス100ps/nm/km以下の大きな分散補償を達成したものが開発されている。
【0003】
また、新しいアプローチとして、SMFと逆分散特性を有する線路型の分散補償光ファイバ(RDF)が提案された(非特許文献1)。この提案以来、様々なタイプのRDFが開発されてきた。これらの光ファイバは−15〜−60ps/nm/km程度の分散値を有しており、SMFと繋いで光伝送路として用いる事を目的として開発されてきた。
【0004】
このようなRDFは、DCFに比べ、光伝送損失やPMDが小さく、有効コア断面積Aeffが拡大されている為、光伝送路として有利な特性を有している。それでも、その光伝送損失は、一般的に0.23dB/km以上と、従来の光伝送路と比べると、まだ大きな値であった。
【0005】
また、従来のRDFは、有効コア断面積Aeffが25μm程度であり、DCFに比べると拡大されているが、通常のNZ‐DSF(50μm程度)に比べると半分程度の値であった。又その後に、有効コア断面積Aeffが40μm程度に拡大された低非線形性の分散補償光ファイバ(N−MDF)も提案された(例えば非特許文献2)。しかし、これを上回る分散補償光ファイバは未だ提案されていなかった。
【0006】
【非特許文献1】
ECOC’97 Vol.1 P127
【非特許文献2】
ECOC’00 2−4−2
【0007】
【発明が解決しようとする課題】
よって、従来のRDFと同程度の負分散、負分散スロープ特性を持たせながら、波長1.55μmでの有効コア断面積Aeffを大幅に拡大し、光伝送特性やPMDを抑制する新たな開発が望まれていた。
【0008】
【課題を解決するための手段】
本発明は、係る課題を、シングルモード光ファイバの後にマルチモード(MM)光伝送型光ファイバ(MMF)を縦続接続し、光伝送路を構成した場合、伝搬光信号が前段のシングルモード光ファイバを伝搬する間に、高次モードの伝搬が行われなくなるため、マルチモード(MM)設計の後段光ファイバでも最下位の基本モード(基底モード)のみが伝搬するという知見に基づくものである。
【0009】
従って、後段の光ファイバとしてマルチモード型の光ファイバが使用でき、シングルモード型を必須としていた従来の設計に比較してより自由度の増した光伝送路の設計を行うことができる。勿論、このような光伝送路であっても従来と同様に、光信号をシングルモードで光伝送することができるものである。
【0010】
本発明は、後段の光ファイバが1.55μm帯で1550nm以上の実効的なカットオフ波長を有することで、有効コア断面積Aeffが50um以上の新しいタイプの後段の光ファイバを構築することができる。本発明は、実効的なカットオフ波長を信号帯域よりも短く設計するという従来の手法とは、明らかに異なるものである。以下は、その例として、SMFとRDFを用いた光伝送路を中心に説明する。
【0011】
光伝送路を正分散光ファイバと負分散光ファイバとを接続して構成すると、光伝送路全体の分散が0近辺にマネージされるので、分散による光伝送特性の劣化を抑制できるという観点から有利である。
【0012】
もちろん、WDM光伝送に対応するため、分散だけでなく、分散スロープも補償することが要求されるので、正分散スロープファイバと負分散スロープファイバを組み合わせることがさらに有利である。
【0013】
光伝送帯域は、光ファイバの低損失帯、エルビュームドープ型光ファイバ(EDFA)の動作波長帯と言うことを考えると、1.5μm帯(例えば、1520nm−1620nm)が好ましい。波長1520nm以下は、OHによる光ファイバの損失増加が懸念されるし、また、波長1620nmは、光ファイバの曲げ損失による損失増加が懸念されるためである。更に、この波長領域においては、従来のEDFAを用いて、高効率な光増幅を行うことが可能である。その信号帯域で、SMFの様な正分散ファイバと、RDFを用いた系が、本発明の効果を非常に発揮できる構成の一つであるので、以下に詳述する。しかし本発明は係る構成を限定するものではない。
【0014】
各種正分散光ファイバの特性を表1に示す。いずれの正分散光ファイバも、λcが1500nm以下になっており、信号帯域でのSM動作が補償されている。本発明は、このような、正分散光ファイバをペアの光ファイバとして用いることを想定する。
【0015】
【表1】

Figure 2004271904
【0016】
前述の様なSMFと組み合わされて用いられるRDFは、分散スロープを負にするため、ディプレスト層を有した屈折率プロファイルを用いることが多い。そこで、図1、または図2の様な屈折率プロファイルが、用いられることが多い。図1、図2において、1はセンターコア、2は第1サイドコア、3は第2サイドコア、4はクラッド層の領域を示す。
【0017】
クラッド層4の屈折率に対するセンターコア1の比屈折率差(Δ1)は、一般的に、1.5%−2.5%のDCFと比べると小さく、概ね0.7%−1.5%の範囲である。図1の屈折率プロファイルにおいて、センターコア1の径(2a)/第1サイドコア2の径(2b)で定義される径比Raとセンターコア1の径(1a)を調整しながら、1.55μmの分散/分散スロープ(DPS)を300nm一定にして、Δ1を変化させた場合の、1.55μmの特性の変化を図3に示す。
【0018】
図3から明らかな様に、Δ1を小さくしていけば、Aeffは拡大し、光伝送損失は低減していく事が分かる。このように、Δ1を小さくしていくことは、Aeff拡大、光伝送損失低減の面から、有利な特性である。では、Δ1をずっと下げていけば行くほど、有利な特性が得られる、と言うことになりそうであるが、実際はそう言うわけにはいかない。実際に、さらにΔ1を低くしていった場合の光伝送損失特性を調べているので、その結果を図4に示すが、1%付近を境に、光伝送損失が逆に増大してしまっている。
【0019】
これは、1.0%以下のところで、DPS 300nm程度を保とうとすると、曲げ損失が増大してしまい、長波長側の損失が増大する傾向にある為である。その長波長損失増加が、1.55μmの光伝送損失も大きくしていると考えられる。しかし、Δ1を小さくしていく事は、Aeffを拡大できるという点から魅力がある。そこで、図2の屈折率プロファイルが有効になる。
【0020】
図5に、図1のW型RDFと図2のW−Seg型RDFの損失特性を示すが、図5から明らかなように、W型屈折率プロファイルではΔ1の小さいところで、先ほど述べた様な、曲げ損失に起因する損失の増加が起きている。一方のW−Seg型では、Δ1を小さくしていっても、さらに光伝送損失が低減できていることが示されている。よって、このW−Seg型屈折率プロファイルを使うことは、曲げ損失を抑制しながら、Aeffの拡大と光伝送損失低減を実現する際には、有効な手段である。しかし、W−Seg型でもΔ1が0.7−0.8%以下になってくると、さすがに曲げ損失による光伝送損失の増大が徐々に起こってくる。
【0021】
ここで、曲げ損失を増大させない為には、カットオフ波長を調整することが必要となってくる。例えば、曲げ損失を20mmφで5dB/m一定としたときの、Δ1とλcの関係を図6に示す。図6から明らかなように、RDFのAeff拡大という観点からは、Δ1を小さくしていくことが、非常に有効である事が分かる。確かにλcは大きくなってしまうが、本発明はカットオフ波長を長波長側に移動できるので、その点は問題にならない。このように、従来のRDFの範囲外であったΔ1が0.7%以下の時の様なλcが22mでもSMにならないであろうと思われる領域が、当発明の領域である。
【0022】
本発明は、上記の様な領域を用いることで、曲げ損失を増大させることなく、従来、達成できなかったような特性が達成できる。これは、前段にSM光伝送する光ファイバを設置し、後段には、MM設計の光ファイバをおくという、当発明の概念から可能となった光伝送特性と言える。
【0023】
図2のW−Seg型屈折率プロファイルで、低非線形性の可能性を追求してみた。Δ1を0.45%にして、DPSを300nm程度にした場合は、λcを例えば1550nmに保とうとすると、曲げ損失は、20mmφで1000dB/m以上と大きくなってしまい損失増加を招いていた。よって、λcは3000nm以上になってしまうが、曲げ損失を5dB/mとして、最適化設計をした場合の、屈折率プロファイルを表2に、(基底モードの伝搬)特性を表3に示す。
【0024】
【表2】
Figure 2004271904
【0025】
【表3】
Figure 2004271904
【0026】
表2,3から明らかな様に、従来のRDFでは40μm程度が限界だったが、その限界を遙かに上回るAeff特性を得ている。よって、本発明により、今まで不可能であった光伝送特性の実現が可能となることが確認された。先述したように、この手法は、RDFに限らず、あらゆる2種類の光ファイバ以上で構成される光中継区間の光伝送路に適用可能である。
【0027】
本発明のMM−RDFを用いたシステムの実施形態は、図7に示すようなSMF+RDFで構成する光伝送路が考えられる。図7において、TXは光送信局、EDFAはエルビュームドープ光ファイバを用いた光増幅装置、RXは光受信局であり、図には、シングルモード光ファイバSMFと負分散光ファイバRDFとが縦続接続されて光伝送路が構成されている例が示されている。SMF伝搬中にSM動作が補償されるだけでなく、長さを適切量に調整することで、WDM光伝送用のフラットな分散特性も得られる。なお、SMF+RDFで構成される光伝送路は、一中継区間(TX−EDFA2間、EDFA2−RX間)内に複数組存在しても良い。
【0028】
このように、超低非線形性を有する新しいタイプのRDF(MM−RDF)が開発された。このRDFで開発された手法は、WDM光伝送路として盛んに検討されている2種類以上の光ファイバで構成されるあらゆる系の光伝送路に適応可能である。よって、伝送容量を格段に改善する際に有効な新たな手法が確定されたと言える。
【0029】
【実施例】
以下、実施例により、本発明の有効性を確認する。表2、3に示したW−Seg型屈折率プロファイルのシミュレーション結果のうち、No.2のシミュレーション結果を参考に、VAD法で光ファイバの試作を行った。試作の結果を、従来型のRDFの特性と合わせて、表4に示す。
【0030】
【表4】
Figure 2004271904
【0031】
これにより、−16ps/nm/km以下の分散と260nm程度のDPS(SMFと接続した場合に、1550nmの分散スロープをほぼ0ps/nm/kmにする事が可能な特性)を維持しながら、従来達成不可能であった、1.55mmにおいて80mm程度の大Aeffと、0.20dB/km以下の超低光伝送損失の特性を得ることができた。
よって、本発明により、従来提案された負分散光ファイバ(DCF、RDF)においては、到底達成不可能であると思われてきた特性を達成することができた。
【0032】
係る開発された長さ10.0kmの試作負分散光ファイバRDFの前に、分散が16ps/nm/kmであるSMFを10.0km、縦続接続して光伝送路を光ファイバボビン上に作成し、その光伝送路を下記測定法により測定してみた。その結果、試作RDFにおいて基底モードのみの伝搬が達成されるのを確認できた。
【0033】
なお、上記試作例の負分散光ファイバRDFは、λcは3000nm以上であるが、前段のSM光ファイバを通して光伝送させることにより、試作RDFにおいて基底モードのみの伝搬が達成された。
試作RDFが基底モードの伝送を行うことは、下記本発明の測定法により確認することができた。
【0034】
本発明の測定方法は、図8に概略図を示すが、始めに、SMF(10km以上が必要)とRDFとを縦続接続し、SMF+RDFの特性を評価する。その後、SMFの特性を差し引きし、RDFの特性とする。
また、短尺でのモードフィールド径などのモードフィルド分布などを測定する場合は、始め、SMF+RDFを光伝送させた後のRDF出射端で測定を行う事により、求めた。
【0035】
本発明は、上記のように、SMFとMMFを組み合わせる光伝送路という新規概念、及びその概念を用いた光ファイバ、光システムはもちろんのこと、それに付随するあらゆる技術、測定法自体等を含むものである。
【0036】
【効果】
本発明は、上述のように、光信号波長よりも短波長側にカットオフ波長を持つ前段光ファイバと光信号伝搬波長よりも長波長側にカットオフ波長を持つ後段光ファイバとを縦続接続して構成してなることを特徴とする光伝送路である。従って、本発明は、後段光ファイバとして、波長1.55μmでの基底モードの分散が負で、分散スロープが負で、且つ有効コア断面積Aeffが50μm以上の光ファイバをシングルモード伝送路用として用いることができる優れた効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例による屈折率プロファイル。
【図2】本発明の他の実施例による屈折率プロファイル。
【図3】Δ1の変化に対する1.55μmのAeff、および光伝送損失を示す特性図。
【図4】Δ1の変化に対する1.55μmでの光伝送損失を示す特性図。
【図5】Δ1の変化に対するW型RDFとW−Seg型RDFの1.55μmにおける光伝送損失を示す特性図。
【図6】Δ1の変化に対するW−Seg型RDFのλc及び1.55μmのAeffを示す特性図。
【図7】本発明の一実施形態の光伝送路を用いたシステムの形態を示す構成図。
【図8】本発明の一実施形態による光ファイバの測定法を示す測定法概念図。
【符号の説明】
1 センターコア
2 第1サイドコア
3 第2サイドコア
4 クラッド層[0001]
[Industrial applications]
The present invention relates to a negative dispersion optical fiber for wavelength division multiplexing (WDM) optical transmission, an optical transmission line for WDM optical transmission, and an optical fire measuring method.
[0002]
[Prior art]
A single mode optical fiber (SMF) having a wavelength of 1.31 μm and having zero dispersion is a very excellent optical transmission line in terms of nonlinearity, optical transmission loss, polarization mode dispersion (PMD) and the like. However, since it has a large positive dispersion value and a large dispersion slope in the wavelength band of 1.55 μm, it is difficult to transmit light in the wavelength band of 1.55 μm unless dispersion is compensated. Therefore, a modular dispersion compensating optical fiber (DCF) has been actively studied. For example, in undersea optical transmission, etc., in order to achieve dispersion compensation with a short optical fiber, the relative refractive index difference (Δ1) of the center core with respect to the refractive index of the cladding is increased to 2.0% or more, and the wavelength 1 One that has achieved large dispersion compensation of less than -100 ps / nm / km in the .55 μm band has been developed.
[0003]
As a new approach, a line-type dispersion-compensating optical fiber (RDF) having an inverse dispersion characteristic with SMF has been proposed (Non-Patent Document 1). Since this proposal, various types of RDF have been developed. These optical fibers have a dispersion value of about -15 to -60 ps / nm / km, and have been developed for the purpose of being used as an optical transmission line by connecting to an SMF.
[0004]
Such an RDF has advantageous characteristics as an optical transmission line because the optical transmission loss and PMD are smaller than the DCF and the effective core area Aeff is enlarged. Nevertheless, the optical transmission loss is generally 0.23 dB / km or more, which is still a large value as compared with the conventional optical transmission line.
[0005]
Further, the conventional RDF has an effective core area Aeff of about 25 μm 2, which is larger than that of DCF, but is about half that of normal NZ-DSF (about 50 μm 2 ). Thereafter, a dispersion compensation optical fiber (N-MDF) with low nonlinearity in which the effective core area Aeff is enlarged to about 40 μm 2 has also been proposed (for example, Non-Patent Document 2). However, a dispersion compensating optical fiber exceeding this has not been proposed yet.
[0006]
[Non-patent document 1]
ECOC '97 Vol. 1 P127
[Non-patent document 2]
ECOC'00 2-4-2
[0007]
[Problems to be solved by the invention]
Therefore, a new development that suppresses optical transmission characteristics and PMD by greatly increasing the effective core area Aeff at a wavelength of 1.55 μm while providing the same negative dispersion and negative dispersion slope characteristics as those of the conventional RDF. Was desired.
[0008]
[Means for Solving the Problems]
An object of the present invention is to provide a multimode (MM) optical transmission type optical fiber (MMF) that is cascaded after a single mode optical fiber to form an optical transmission line. Since the propagation of the higher-order mode is not performed during the propagation of the multimode (MM), only the lowest fundamental mode (fundamental mode) propagates in the post-stage optical fiber of the multi-mode (MM) design.
[0009]
Therefore, a multi-mode optical fiber can be used as an optical fiber at the subsequent stage, and an optical transmission line with more flexibility can be designed as compared with a conventional design that requires a single-mode optical fiber. Of course, even in such an optical transmission line, an optical signal can be optically transmitted in a single mode as in the related art.
[0010]
According to the present invention, a new type of post-stage optical fiber having an effective core area Aeff of 50 μm 2 or more can be constructed because the post-stage optical fiber has an effective cutoff wavelength of 1550 nm or more in the 1.55 μm band. it can. The present invention is clearly different from the conventional method of designing the effective cutoff wavelength shorter than the signal band. Hereinafter, as an example, an optical transmission line using SMF and RDF will be mainly described.
[0011]
When the optical transmission line is configured by connecting a positive dispersion optical fiber and a negative dispersion optical fiber, the dispersion of the entire optical transmission line is managed near 0, which is advantageous from the viewpoint that deterioration of optical transmission characteristics due to dispersion can be suppressed. It is.
[0012]
Of course, in order to cope with WDM optical transmission, it is required to compensate not only dispersion but also dispersion slope. Therefore, it is more advantageous to combine a positive dispersion slope fiber and a negative dispersion slope fiber.
[0013]
The optical transmission band is preferably a 1.5 μm band (for example, 1520 nm to 1620 nm) in consideration of the low loss band of the optical fiber and the operating wavelength band of the erbium-doped optical fiber (EDFA). At a wavelength of 1520 nm or less, there is a concern about an increase in loss of the optical fiber due to OH, and at a wavelength of 1620 nm, there is a concern about an increase in loss due to bending loss of the optical fiber. Further, in this wavelength region, highly efficient optical amplification can be performed using a conventional EDFA. In the signal band, a system using a positive dispersion fiber such as an SMF and an RDF is one of the configurations that can greatly exhibit the effects of the present invention, and will be described in detail below. However, the present invention does not limit such a configuration.
[0014]
Table 1 shows the characteristics of various positive dispersion optical fibers. In each of the positive dispersion optical fibers, λc is 1500 nm or less, and the SM operation in the signal band is compensated. The present invention assumes that such a positive dispersion optical fiber is used as a pair of optical fibers.
[0015]
[Table 1]
Figure 2004271904
[0016]
The RDF used in combination with the SMF as described above often uses a refractive index profile having a depressed layer in order to make the dispersion slope negative. Therefore, a refractive index profile as shown in FIG. 1 or FIG. 2 is often used. 1 and 2, reference numeral 1 denotes a center core, 2 denotes a first side core, 3 denotes a second side core, and 4 denotes a cladding layer region.
[0017]
The relative refractive index difference (Δ1) of the center core 1 with respect to the refractive index of the cladding layer 4 is generally smaller than the DCF of 1.5% to 2.5%, and is approximately 0.7% to 1.5%. Range. In the refractive index profile of FIG. 1, the diameter ratio Ra defined by the diameter (2a) of the center core 1 / the diameter (2b) of the first side core 2 and the diameter (1a) of the center core 1 are adjusted to 1.55 μm. FIG. 3 shows a change in the characteristic of 1.55 μm when the dispersion / dispersion slope (DPS) of the sample is fixed at 300 nm and Δ1 is changed.
[0018]
As is clear from FIG. 3, it can be understood that if Δ1 is reduced, Aeff is increased and the optical transmission loss is reduced. As described above, decreasing Δ1 is an advantageous characteristic from the viewpoint of Aeff expansion and reduction of optical transmission loss. Then, it is likely that as the value of Δ1 is further reduced, more advantageous characteristics will be obtained, but in practice this is not the case. Actually, the optical transmission loss characteristics when Δ1 is further reduced are shown in FIG. 4. The results are shown in FIG. 4. However, the optical transmission loss increases around 1%. I have.
[0019]
This is because, if the DPS is set to about 300 nm at 1.0% or less, the bending loss increases, and the loss on the long wavelength side tends to increase. It is considered that the increase in the long wavelength loss also increases the optical transmission loss of 1.55 μm. However, reducing Δ1 is attractive in that Aeff can be increased. Then, the refractive index profile of FIG. 2 becomes effective.
[0020]
FIG. 5 shows the loss characteristics of the W-type RDF of FIG. 1 and the W-Seg type RDF of FIG. 2. As is clear from FIG. 5, where the Δ1 is small in the W-type refractive index profile, as described above, However, an increase in loss due to bending loss has occurred. On the other hand, it is shown that the optical transmission loss can be further reduced in the W-Seg type even when Δ1 is reduced. Therefore, using this W-Seg type refractive index profile is an effective means for realizing expansion of Aeff and reduction of optical transmission loss while suppressing bending loss. However, when Δ1 becomes 0.7-0.8% or less even in the W-Seg type, the optical transmission loss due to the bending loss gradually increases.
[0021]
Here, in order not to increase the bending loss, it is necessary to adjust the cutoff wavelength. For example, FIG. 6 shows the relationship between Δ1 and λc when the bending loss is constant at 5 dB / m at 20 mmφ. As is clear from FIG. 6, from the viewpoint of expanding the Aeff of the RDF, it is understood that reducing Δ1 is very effective. Although λc certainly increases, the present invention does not pose a problem since the cutoff wavelength can be shifted to the longer wavelength side. As described above, the region where the λc is 22 m, which is considered to be not SM even when Δ1 is 0.7% or less, which is outside the range of the conventional RDF, is the region of the present invention.
[0022]
According to the present invention, by using such a region, characteristics that could not be achieved conventionally can be achieved without increasing bending loss. This can be said to be an optical transmission characteristic made possible by the concept of the present invention, in which an optical fiber for transmitting SM light is installed at the front stage and an optical fiber of MM design is installed at the rear stage.
[0023]
In the W-Seg type refractive index profile of FIG. 2, the possibility of low nonlinearity was pursued. When Δ1 is set to 0.45% and the DPS is set to about 300 nm, if λc is to be kept at, for example, 1550 nm, the bending loss becomes as large as 1000 dB / m or more at 20 mmφ, causing an increase in loss. Therefore, although λc becomes 3000 nm or more, Table 2 shows the refractive index profile and Table 3 shows the characteristics (propagation of the fundamental mode) when the bending loss is 5 dB / m and the optimization design is performed.
[0024]
[Table 2]
Figure 2004271904
[0025]
[Table 3]
Figure 2004271904
[0026]
As is clear from Tables 2 and 3, the limit was about 40 μm 2 in the conventional RDF, but an Aeff characteristic far exceeding the limit was obtained. Therefore, it has been confirmed that the present invention makes it possible to realize optical transmission characteristics that have been impossible up to now. As described above, this method is not limited to the RDF, and can be applied to an optical transmission line in an optical repeater section including at least two types of optical fibers.
[0027]
In the embodiment of the system using the MM-RDF of the present invention, an optical transmission line configured by SMF + RDF as shown in FIG. 7 can be considered. In FIG. 7, TX is an optical transmitting station, EDFA is an optical amplifier using an erbium-doped optical fiber, and RX is an optical receiving station. In the figure, a single mode optical fiber SMF and a negative dispersion optical fiber RDF are shown. An example in which an optical transmission line is configured by cascade connection is shown. Not only is the SM operation compensated during SMF propagation, but also by adjusting the length to an appropriate amount, a flat dispersion characteristic for WDM optical transmission can be obtained. Note that a plurality of optical transmission lines configured by SMF + RDF may exist in one relay section (between TX and EDFA2, between EDFA2 and RX).
[0028]
Thus, a new type of RDF having ultra-low nonlinearity (MM-RDF) has been developed. The method developed by this RDF is applicable to any type of optical transmission line composed of two or more types of optical fibers which are being actively studied as WDM optical transmission lines. Therefore, it can be said that a new method effective for significantly improving the transmission capacity has been determined.
[0029]
【Example】
Hereinafter, the effectiveness of the present invention will be confirmed by examples. Among the simulation results of the W-Seg type refractive index profile shown in Tables 2 and 3, among the simulation results of No. An optical fiber was prototyped by the VAD method with reference to the simulation result of No. 2. Table 4 shows the results of the prototype together with the characteristics of the conventional RDF.
[0030]
[Table 4]
Figure 2004271904
[0031]
Thereby, while maintaining the dispersion of -16 ps / nm / km or less and the DPS of about 260 nm (a characteristic that the dispersion slope of 1550 nm can be made almost 0 ps / nm 2 / km when connected to the SMF), It was possible to obtain characteristics of a large Aeff of about 80 mm 2 at 1.55 mm and an ultra-low optical transmission loss of 0.20 dB / km or less, which could not be achieved conventionally.
Therefore, according to the present invention, it was possible to achieve the characteristics that were considered to be impossible to achieve in the conventionally proposed negative dispersion optical fibers (DCF, RDF).
[0032]
Before such a developed negative dispersion optical fiber RDF having a length of 10.0 km, an SMF having a dispersion of 16 ps / nm / km was cascaded for 10.0 km to form an optical transmission line on the optical fiber bobbin. The optical transmission line was measured by the following measurement method. As a result, it was confirmed that propagation of only the fundamental mode was achieved in the prototype RDF.
[0033]
Note that, in the negative dispersion optical fiber RDF of the above-mentioned prototype, although λc is 3000 nm or more, by propagating light through the SM optical fiber at the preceding stage, propagation of only the fundamental mode was achieved in the prototype RDF.
The fact that the prototype RDF transmits in the fundamental mode could be confirmed by the measurement method of the present invention described below.
[0034]
The measurement method of the present invention is schematically shown in FIG. 8. First, SMF (requiring 10 km or more) and RDF are cascaded, and the characteristics of SMF + RDF are evaluated. Thereafter, the characteristics of the SMF are subtracted to obtain the characteristics of the RDF.
In the case of measuring the mode field distribution such as the mode field diameter in a short length, the measurement was first performed by performing the measurement at the RDF emission end after the SMF + RDF was optically transmitted.
[0035]
As described above, the present invention includes a novel concept of an optical transmission line that combines SMF and MMF, and includes not only an optical fiber and an optical system using the concept, but also all the accompanying technologies and measurement methods themselves. .
[0036]
【effect】
As described above, the present invention cascade-connects a pre-stage optical fiber having a cut-off wavelength on a shorter wavelength side than an optical signal wavelength and a post-stage optical fiber having a cut-off wavelength on a longer wavelength side than an optical signal propagation wavelength. An optical transmission line characterized by being configured with: Accordingly, the present invention provides an optical fiber having a negative fundamental mode dispersion at a wavelength of 1.55 μm, a negative dispersion slope, and an effective core area Aeff of 50 μm 2 or more as a post-stage optical fiber for a single mode transmission line. There is an excellent effect that can be used as.
[Brief description of the drawings]
FIG. 1 is a refractive index profile according to one embodiment of the present invention.
FIG. 2 is a refractive index profile according to another embodiment of the present invention.
FIG. 3 is a characteristic diagram showing 1.55 μm Aeff and optical transmission loss with respect to a change in Δ1.
FIG. 4 is a characteristic diagram showing an optical transmission loss at 1.55 μm with respect to a change in Δ1.
FIG. 5 is a characteristic diagram showing optical transmission loss at 1.55 μm of a W-type RDF and a W-Seg type RDF with respect to a change in Δ1.
FIG. 6 is a characteristic diagram showing λc of the W-Seg type RDF and Aeff of 1.55 μm with respect to a change in Δ1.
FIG. 7 is a configuration diagram showing an embodiment of a system using an optical transmission line according to an embodiment of the present invention.
FIG. 8 is a conceptual diagram of a measuring method showing an optical fiber measuring method according to an embodiment of the present invention.
[Explanation of symbols]
1 center core 2 first side core 3 second side core 4 cladding layer

Claims (13)

波長1.55μmでの基底モードの分散が負で、分散スロープが負で、且つ有効コア断面積Aeffが50μm以上であることを特徴とする負分散光ファイバ。A negative dispersion optical fiber having a negative fundamental mode dispersion at a wavelength of 1.55 μm, a negative dispersion slope, and an effective core area Aeff of 50 μm 2 or more. 波長1.55μmでの基底モードの分散が負で、分散スロープが負で、且つ22mの実効的なカットオフ波長が1550μm以上であることを特徴とする負分散光ファイバ。A negative dispersion optical fiber having a negative fundamental mode dispersion at a wavelength of 1.55 μm, a negative dispersion slope, and an effective cutoff wavelength of 22 m of 1550 μm or more. 波長1.55μmでの基底モードの分散が‐10ps/nm/km以下で、分散/分散スロープ(DPS)の値が400nm以下であることを特徴とする請求項1又は請求項2に記載の負分散光ファイバ。The dispersion of a fundamental mode at a wavelength of 1.55 μm is -10 ps / nm / km or less, and the value of dispersion / dispersion slope (DPS) is 400 nm or less, the negative mode according to claim 1 or 2, wherein Dispersion optical fiber. 波長1.55μmでの基底モードの光伝送損失が0.24dB/km以下であることを特徴とする請求項1乃至請求項3のいずれか1に記載の負分散光ファイバ。4. The negative dispersion optical fiber according to claim 1, wherein an optical transmission loss in a fundamental mode at a wavelength of 1.55 [mu] m is 0.24 dB / km or less. 波長1.55μmでの基底モードの20mmφでの曲げ光伝送損失が10dB/m以下であることを特徴とする請求項1乃至請求項4のいずれか1に記載の負分散光ファイバ。5. The negative dispersion optical fiber according to claim 1, wherein a bending optical transmission loss at a wavelength of 1.55 μm in a fundamental mode at 20 mmφ is 10 dB / m or less. 光信号波長よりも短波長側にカットオフ波長を持つ前段光ファイバと光信号伝搬波長よりも長波長側にカットオフ波長を持つ後段光ファイバとを縦続接続して構成してなることを特徴とする光伝送路。It is characterized by cascading a pre-stage optical fiber having a cut-off wavelength on the shorter wavelength side than the optical signal wavelength and a post-stage optical fiber having a cut-off wavelength on the longer wavelength side than the optical signal propagation wavelength. Optical transmission path. 光信号の伝搬方向に前段光ファイバと後段光ファイバとをこの順序で縦続接続してなることを特徴とする請求項6記載の光伝送路光伝送路。7. The optical transmission line according to claim 6, wherein the upstream optical fiber and the downstream optical fiber are cascaded in this order in the propagation direction of the optical signal. 光信号波長が波長1.5μm帯であることを特徴とする請求項6又は請求項7に記載の光伝送路。The optical transmission line according to claim 6, wherein an optical signal wavelength is in a wavelength band of 1.5 μm. 前段光ファイバが波長1.55μmで正分散特性を有し、後段光ファイバが負分散特性を有していることを特徴とする請求項6乃至請求項8のいずれか1に記載の光伝送路。9. The optical transmission line according to claim 6, wherein the upstream optical fiber has a positive dispersion characteristic at a wavelength of 1.55 [mu] m, and the downstream optical fiber has a negative dispersion characteristic. . 前段光ファイバが波長1.55μmで正分散スロープの特性を有し、後段光ファイバが負分散スロープの特性を有していることを特徴とする請求項6乃至請求項9のいずれか1に記載の光伝送路。10. The optical fiber according to claim 6, wherein the first optical fiber has a characteristic of a positive dispersion slope at a wavelength of 1.55 μm, and the second optical fiber has a characteristic of a negative dispersion slope. Optical transmission path. 長さ10km以上の正分散光ファイバと、請求項1乃至請求項5のいずれか1の負分散光ファイバとを縦続接続し、波長1.5μm帯(1400nm〜1650nm)の任意の波長における基底モードの分散を低分散に抑えたことを特徴とする光伝送路。A cascade connection of a positive dispersion optical fiber having a length of 10 km or more and the negative dispersion optical fiber according to any one of claims 1 to 5, and a fundamental mode at an arbitrary wavelength in a 1.5 μm band (1400 nm to 1650 nm). An optical transmission line characterized in that dispersion of light is suppressed to low dispersion. 長さ10km以上のシングルモード光ファイバと被測定光ファイバとを縦続接続した全体の光特性を測定し、その後にシングルモード光ファイバ分の特性を差し引き、被測定光ファイバの光特性を求めることを特徴とする光ファイバの測定方法。Measure the overall optical characteristics of a single mode optical fiber having a length of 10 km or more and the optical fiber to be measured in cascade, and then subtract the characteristics of the single mode optical fiber to obtain the optical characteristics of the optical fiber to be measured. Characteristic optical fiber measurement method. 長さ10km以上のシングルモード光ファイバと被測定光ファイバとを縦続接続し、被測定光ファイバから出射する光によりシングルモード光ファイバと被測定光ファイバとの全体の光特性を測定し、その後にシングルモード光ファイバ分の特性を差し引き、被測定光ファイバの光特性を求めることを特徴とする光ファイバの測定方法。A single mode optical fiber having a length of 10 km or more is cascaded with the optical fiber to be measured, and the entire optical characteristics of the single mode optical fiber and the optical fiber to be measured are measured by light emitted from the optical fiber to be measured. A method for measuring an optical fiber, wherein a characteristic of a single mode optical fiber is subtracted to obtain an optical characteristic of an optical fiber to be measured.
JP2003062433A 2003-03-07 2003-03-07 Optical transmission line Expired - Fee Related JP4346328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062433A JP4346328B2 (en) 2003-03-07 2003-03-07 Optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062433A JP4346328B2 (en) 2003-03-07 2003-03-07 Optical transmission line

Publications (2)

Publication Number Publication Date
JP2004271904A true JP2004271904A (en) 2004-09-30
JP4346328B2 JP4346328B2 (en) 2009-10-21

Family

ID=33124357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062433A Expired - Fee Related JP4346328B2 (en) 2003-03-07 2003-03-07 Optical transmission line

Country Status (1)

Country Link
JP (1) JP4346328B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492999B2 (en) 2007-03-12 2009-02-17 The Furukawa Electric Co., Ltd. Optical fiber and optical-fiber transmission line
US7613374B2 (en) 2006-10-04 2009-11-03 The Furukawa Electric Co., Ltd. Optical fiber and optical-fiber transmission line
JP2009271528A (en) * 2008-04-30 2009-11-19 Ofs Fitel Llc All-fiber module for femtosecond pulse compression and supercontinuum generation
US7773845B2 (en) 2007-03-12 2010-08-10 The Furukawa Electric Co., Ltd. Optical fiber and optical-fiber transmission line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613374B2 (en) 2006-10-04 2009-11-03 The Furukawa Electric Co., Ltd. Optical fiber and optical-fiber transmission line
US7492999B2 (en) 2007-03-12 2009-02-17 The Furukawa Electric Co., Ltd. Optical fiber and optical-fiber transmission line
US7773845B2 (en) 2007-03-12 2010-08-10 The Furukawa Electric Co., Ltd. Optical fiber and optical-fiber transmission line
JP2009271528A (en) * 2008-04-30 2009-11-19 Ofs Fitel Llc All-fiber module for femtosecond pulse compression and supercontinuum generation

Also Published As

Publication number Publication date
JP4346328B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
USRE38086E1 (en) Dispersion compensating fiber and optical transmission system including the same
JP3286487B2 (en) Products including dispersion-compensating optical waveguides
JP3760557B2 (en) Dispersion compensating fiber and optical transmission system including the same
JP3893877B2 (en) Dispersion compensating fiber
US6941054B2 (en) Optical transmission link with low slope, raman amplified fiber
US7164832B2 (en) Optical fiber and optical communication system employing the optical fiber
JP2003241000A (en) Optical fiber, and optical amplifier and optical transmission system using the optical fiber
EP1314268A2 (en) Optical transmission link with low slope, raman amplified fiber
JP6255772B2 (en) Optical fiber and optical transmission system
JP2004271904A (en) Negative dispersion optical fiber, optical transmission path, and method for measuring characteristics of optical fiber
JP2001296444A (en) Dispersion compensating optical fiber, optical transmission line and dispersion compensating module
JP4206623B2 (en) Negative dispersion optical fiber and optical transmission line
JP2001159721A (en) Dispersion compensating optical fiber
JP2004126148A (en) Optical fiber and optical transmission line using the same
JP2005196231A (en) Optical transmission system
JP2001264569A (en) Dispersion compensating optical fiber and optical transmission system
JP4481014B2 (en) Optical fiber transmission line
JP3833555B2 (en) Dispersion compensating optical fiber and dispersion compensating optical fiber module
JP4570388B2 (en) Optical transmission line
JP4070106B2 (en) Dispersion shifted optical fiber and optical communication system using the same
JP4134547B2 (en) Optical transmission line
JP4216298B2 (en) Dispersion compensating optical fiber and dispersion compensating optical fiber module
JP5028706B2 (en) Optical fiber and optical transmission system
JP4028409B2 (en) Wavelength division multiplexing optical fiber
JP2000275461A (en) Dispersed shift optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080403

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees