JP2004271090A - Method of operating heat storage tank for cold transporting medium - Google Patents

Method of operating heat storage tank for cold transporting medium Download PDF

Info

Publication number
JP2004271090A
JP2004271090A JP2003063964A JP2003063964A JP2004271090A JP 2004271090 A JP2004271090 A JP 2004271090A JP 2003063964 A JP2003063964 A JP 2003063964A JP 2003063964 A JP2003063964 A JP 2003063964A JP 2004271090 A JP2004271090 A JP 2004271090A
Authority
JP
Japan
Prior art keywords
slurry
aqueous solution
section
heat storage
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063964A
Other languages
Japanese (ja)
Other versions
JP2004271090A5 (en
Inventor
Hidemasa Ogose
英雅 生越
Shingo Takao
信吾 高雄
Naoyuki Furumoto
直行 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003063964A priority Critical patent/JP2004271090A/en
Publication of JP2004271090A publication Critical patent/JP2004271090A/en
Publication of JP2004271090A5 publication Critical patent/JP2004271090A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of operating a heat storage tank for a cold transporting medium for efficiently extracting hydrate slurry while suppressing the formation of a liquid path in a layer of the hydrate slurry. <P>SOLUTION: The method of operating the heat storage tank for the cold transporting medium is provided for storing water solution of a guest compound for producing hydrate at a temperature higher than 0°C and the hydrate slurry to be produced by cooling the solution. The heat storage tank has a plurality of sections for sectioning the heat storage tank, water solution pipes connected to the sections, water solution pipe on-off valves provided in the water solution pipes in the sections, slurry pipes connected to the sections, and slurry pipe on-off valves provided in the slurry pipes in the sections. The water solution pipe on-off valves and the slurry pipe on-off valves are operated so that the hydrate slurry is extracted from one section during cold utilizing operation and the water solution is stored in the other sections. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は冷熱輸送媒体用蓄熱槽の運転方法に関する。
【0002】
【従来の技術】
ビル空調や地域冷暖房における冷熱輸送媒体として、冷水や氷スラリの代わりに、水和物スラリを用いることが着目されている。すなわち、ゲスト化合物(たとえばテトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩、トリiso−アミルスルホニウム塩などの各種塩類)を含む水溶液を冷却すると、ホスト分子である水分子によって構成された籠状の包接格子内にゲスト化合物が包み込まれて結晶化し、水和物(液系包接水和物)が生成する。この水和物は、大気圧下において0℃以上の温度で生成でき、しかも潜熱が大きく冷水に比較して数倍の熱量の冷熱を貯留することができる。また、微細な結晶粒子である水和物が水溶液中に浮遊している水和物スラリは、比較的流動性が高い点で氷スラリよりも優れている。このため、こうした水和物スラリは、冷熱輸送媒体として好ましい特性を有している。
【0003】
冷熱輸送媒体として水和物スラリを用いるシステムでは、夜間電力の有効利用及び電力負荷平準化を図るために、夜間に水和物スラリを製造して蓄熱槽に貯留しておき、昼間に水和物スラリを蓄熱槽から抜き出して冷熱源として利用するという方法が一般に用いられる。
【0004】
図6に、冷熱輸送媒体として水和物スラリを用いた冷熱利用システムを示す。
このような冷熱利用システムの典型的な運転方法は以下の通りである。夜間(蓄熱運転時)には、蓄熱槽101内の水溶液を1次ポンプ102によりスラリ製造装置103に送って冷却することにより水和物スラリを製造し、製造された水和物スラリを蓄熱槽101に戻して貯留する。昼間(冷熱利用運転時)には、蓄熱槽101に貯留されている水和物スラリを2次ポンプ104により負荷側空調機105に送って、その冷熱を利用する。水和物スラリは室内の空気との熱交換により水溶液となるので、この水溶液を蓄熱槽101に戻す。
【0005】
しかし、図6に示したような蓄熱槽では、水和物スラリを抜き出そうとする際に、水溶液のみが抜き出され、水和物スラリを効率的に抜き出せないという問題を生じることがあった。これは、水和物スラリの粘性と水溶液の粘性とが大きく異なり、水和物スラリの層内にいわゆる液みち(水溶液の通路)が形成されるために生じる現象である。
【0006】
従来、水溶液と水和物スラリが貯留された蓄熱槽から水和物スラリを抜き出す方法を工夫して、この問題を解決することが提案されている(たとえば特許文献1参照)。具体的には、(1)水和物スラリの取出流量を脈動させる、(2)水和物スラリを抜き出す配管の近傍に設けた攪拌翼を回転させる、(3)蓄熱槽内に設置した攪拌翼を回転させる、(4)水和物スラリを抜き出す配管の近傍に配設したノズルから水和物スラリを噴出させる、などの方法が開示されている。しかし、これらの方法は、主に液みちが形成されたことを検出してから対策を講じるものであり、しかも液みちの形成を抑制する効果が不十分なため、水和物スラリを抜き出す効率には改善の余地がある。また、蓄熱槽内の液表面を移動自在な浮体から釣り下げられた複数の抵抗体により、液みちの形成を抑制または形成された液みちを消滅させる方法も開示されているが、やはり液みちの形成を抑制する効果は不十分なうえに、抵抗体が水和物スラリ配管の入口をふさぐおそれがあった。特に、これらの方法では、大容量の蓄熱槽が必要となる場合に、液みちの形成を抑制することが困難であった。
【0007】
【特許文献1】
特開2002−333166号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、水和物スラリの層内に水溶液の液みちが形成されるのを抑制して、大容量の蓄熱が要求される場合でも水和物スラリを効率よく抜き出すことができる冷熱輸送媒体用蓄熱槽の運転方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明に係る冷熱輸送媒体用蓄熱槽の運転方法は、0℃より高い温度で水和物を生成するゲスト化合物の水溶液と、水溶液を冷却することにより製造される水和物スラリとを貯留する冷熱輸送媒体用蓄熱槽の運転方法であって、前記蓄熱槽は、蓄熱槽を区分する複数の区画と、各区画に接続された水溶液配管と、各区画の水溶液配管に設けられた水溶液配管開閉弁と、各区画に接続されたスラリ配管と、各区画のスラリ配管に設けられたスラリ配管開閉弁とを有し、冷熱利用運転時に1つの区画から水和物スラリを抜き出して他の区画に水溶液を貯留するように前記水溶液配管開閉弁およびスラリ配管開閉弁が操作されることを特徴とする。
【0010】
本発明の冷熱輸送媒体用蓄熱槽の運転方法においては、前記蓄熱槽は3つ以上の区画を有し、2つ以上の区画に水和物スラリが貯留された状態から冷熱利用運転を開始して、1つの区画から水和物スラリを抜き出して隣接する区画に水溶液を貯留する操作を、操作対象とする区画を順次移動しながら行うことが好ましい。
【0011】
【発明の実施の形態】
本発明の冷熱輸送媒体用蓄熱槽では、蓄熱槽を複数の区画に区分し、冷熱利用運転時に1つの区画から水和物スラリを抜き出して他の区画に水溶液を貯留するように水溶液配管開閉弁およびスラリ配管開閉弁を操作する。
【0012】
このように、水和物スラリが抜き出される区画と冷熱利用後の水溶液が戻ってくる区画とが異なっており、水和物スラリが抜き出される区画に水溶液を混入させないようにしているので、液みちの形成を抑制して水和物スラリを効率的に抜き出すことができる。
【0013】
特に、蓄熱槽を3つ以上の多くの区画に区分し、2つ以上の区画に水和物スラリが貯留された状態から冷熱利用運転を開始して、1つの区画から水和物スラリを抜き出して隣接する区画に水溶液を貯留する操作を、操作対象とする区画を順次移動しながら行うようにすると、多くの区画にわたって水和物スラリの効率的な抜き出しを実現できるので、蓄熱槽の容量を増大させる場合に有効である。
【0014】
なお、本発明の目的は、冷熱利用運転時に水和物スラリを抜き出す際に、水和物スラリの層中に液みちが形成させるのを抑制することにあるため、冷熱利用運転時にのみ上述した水溶液配管開閉弁およびスラリ配管開閉弁の操作を行えばよい。ただし、蓄熱運転時にも、1つの区画から水溶液を抜き出して他の区画に水和物スラリを貯留するように水溶液配管開閉弁およびスラリ配管開閉弁を操作してもよい。また、蓄熱槽を3つ以上の多くの区画に区分し、2つ以上の区画に水溶液が貯留された状態から蓄熱運転を開始して、1つの区画から水溶液を抜き出して隣接する区画に水和物スラリを貯留する操作を、操作対象とする区画を順次移動しながら行うようにしてもよい。
【0015】
【実施例】
以下、図面を参照しながら本発明の実施例を説明する。
図1は、本発明に係る冷熱輸送媒体用蓄熱槽を備えた冷熱利用システムを示す系統図である。図2は、図1の蓄熱槽の平面図である。図1および図2において、蓄熱槽1は、たとえば4つの区画1a、1b、1c、1dに区分されている。
4つの区画1a、1b、1c、1dには水溶液配管2が接続され、それぞれの区画に対応して水溶液配管2を開閉する水溶液配管開閉弁3a、3b、3c、3dが設けられている。同様に、4つの区画1a、1b、1c、1dにはスラリ配管4が接続され、それぞれの区画に対応してスラリ配管4を開閉するスラリ配管開閉弁5a、5b、5c、5dが設けられている。水溶液配管開閉弁およびスラリ配管開閉弁の開閉は制御器6によって制御される。
【0016】
図3に区画1b(蓄熱槽1)の断面図の一例を示す。図3においては、区画1b(蓄熱槽1)の底部の両端部にそれぞれ水溶液配管2とスラリ配管4が設けられている。水溶液配管2から内側へ向かってノズルが設けられており、このノズルに水溶液配管開閉弁3bが取り付けられている。同様に、スラリ配管4から内側へ向かってノズルが設けられており、このノズルにスラリ配管開閉弁5bが取り付けられている。
【0017】
図4に区画1b(蓄熱槽1)の断面図の他の例を示す。図4においては、区画1b(蓄熱槽1)の上部の両端部にそれぞれ水溶液配管2とスラリ配管4が設けられている。水溶液配管2から下側へ向かって区画1bの底部近傍に達するノズルが設けられており、このノズルに水溶液配管開閉弁3bが取り付けられている。同様に、スラリ配管4から下側へ向かって区画1bの底部近傍に達するノズルが設けられており、このノズルにスラリ配管開閉弁5bが取り付けられている。
【0018】
図3および図4に示すように、水溶液配管2およびスラリ配管4に設けられるノズルの向きは限定されないが、ノズルは各々の区画の底部近傍に配置することが好ましい。
【0019】
図1に示す冷熱利用システムのおおまかな動作は以下の通りである。蓄熱運転時には、蓄熱槽1内の水溶液を1次ポンプ7によりスラリ製造装置8に送って冷却することにより水和物スラリを製造し、製造された水和物スラリを蓄熱槽1に戻して貯留する。スラリ製造装置8は、たとえば冷凍機に接続された熱交換器からなる。冷熱利用運転時には、蓄熱槽1に貯留されている水和物スラリを2次ポンプ9により負荷側空調機10に送って、その冷熱を利用する。水和物スラリは室内の空気との熱交換により水溶液となるので、この水溶液を蓄熱槽1に戻す。
【0020】
本発明に係る冷熱輸送媒体用蓄熱槽では、冷熱利用運転時に蓄熱槽1を構成する複数の区画1a〜1dのうち1つの区画から水和物スラリを抜き出して他の区画に水溶液を貯留するように水溶液配管開閉弁およびスラリ配管開閉弁が操作される。
【0021】
図5(a)〜(d)と図1とを参照して、本発明に係る冷熱輸送媒体用蓄熱槽の操作についてより詳細に説明する。なお、本発明では冷熱利用運転時にのみ上記の操作を行えば十分であるが、図5(a)〜(d)では蓄熱運転時にも冷熱利用運転時とほぼ逆の操作を行う場合について説明する。
【0022】
図5(a)〜(d)は蓄熱槽1の各区画1a〜1dに貯留される水溶液11または水和物スラリ12の変化を時間の経過とともに示している。図5では水溶液配管開閉弁3a〜3dおよびスラリ配管開閉弁5a〜5dの操作により(1)から(8)の順に変化する。
【0023】
(1)蓄熱運転開始前には、4つの区画1a〜1dのうち、一端の区画1aから3つの区画1a〜1cにはほぼいっぱいに水溶液11が貯留され、他端の区画1dにはわずかな水和物スラリ12が貯留されているものとする(図5a)。
【0024】
(2)区画1cの水溶液配管開閉弁3cと区画1dのスラリ配管開閉弁5dを開にして蓄熱運転を開始し、区画1cの水溶液を抜き出して水和物スラリ製造装置8での冷却により製造された水和物スラリを区画1dに貯留する。この結果、区画1cの水溶液が減少し、区画1dの水和物スラリが増加する(図5b)。
【0025】
(3)区画1cの水溶液がカラに近くなり、区画1dの水和物スラリがいっぱいになったら、開閉弁を切り替え、区画1bの水溶液配管開閉弁3bと区画1cのスラリ配管開閉弁5cを開にして蓄熱運転を継続し、区画1bの水溶液を抜き出して区画1cに水和物スラリを貯留する。この結果、区画1bの水溶液が減少し、区画1cの水和物スラリが増加する(図5c)。
【0026】
(4)区画1bの水溶液がカラに近くなり、区画1cの水和物スラリがいっぱいになったら、開閉弁を切り替え、区画1aの水溶液配管開閉弁3aと区画1bのスラリ配管開閉弁5bを開にして蓄熱運転を継続し、区画1aの水溶液を抜き出して区画1bに水和物スラリを貯留する。この結果、区画1aの水溶液が減少し、区画1bの水和物スラリが増加する(図5d)。この時点で蓄熱運転を終了する。
【0027】
(5)図5(d)の蓄熱運転終了時の状態は、冷熱利用運転開始前の状態でもある。冷熱利用運転開始前には、4つの区画1a〜1dのうち、一端の区画1aにわずかな水溶液11が貯留され、残りの3つの区画1b〜1dにはほぼいっぱいに水和物スラリ12が貯留されている(図5d)。区画1bのスラリ配管開閉弁5bと区画1aの水溶液配管開閉弁3aを開にして冷熱利用運転を開始し、区画1bの水和物スラリを抜き出して負荷側空調機10での冷熱利用により生じた水溶液を区画1aに貯留する。この結果、区画1bの水和物スラリが減少し、区画1aの水溶液が増加する。
【0028】
(6)区画1bの水和物スラリがカラに近くなり、区画1aの水溶液がいっぱいになったら、開閉弁を切り替え、区画1cのスラリ配管開閉弁5cと区画1bの水溶液配管開閉弁3bとを開にして冷熱利用運転を継続し、区画1cの水和物スラリを抜き出して区画1bに水溶液を貯留する。この結果、区画1cの水和物スラリが減少し、区画1bの水溶液が増加する(図5c)。
【0029】
(7)区画1cの水和物スラリがカラに近くなり、区画1bの水溶液がいっぱいになったら、開閉弁を切り替え、区画1dのスラリ配管開閉弁5dと区画1cの水溶液配管開閉弁3cとを開にして冷熱利用運転を継続し、区画1dの水和物スラリを抜き出して区画1cに水溶液を貯留する。この結果、区画1dの水和物スラリが減少し、区画1cの水溶液が増加する(図5b)。
【0030】
(8)さらに、冷熱利用運転を継続すると、区画1a〜1cにはほぼいっぱいに水溶液11が貯留され、他端の区画1dにはわずかな水和物スラリ12が貯留された状態となる(図5a)。
【0031】
上記の(5)〜(8)の操作で説明したように、蓄熱槽1の区画1a〜1dのうち、水和物スラリが抜き出される区画と冷熱利用後の水溶液が戻ってくる区画とが異なっており、水和物スラリが抜き出される区画に水溶液を混入させないようにしているので、液みちの形成を抑制して水和物スラリを効率的に抜き出すことができる。したがって、大容量の蓄熱槽が要求される場合に有利である。
【0032】
なお、本発明では、蓄熱槽を最低で2つの区画に区分すればよいが、蓄熱槽を3つ以上(たとえば上記実施形態のように4つ)の区画に区分し、2つ以上の区画に水和物スラリが貯留された状態から冷熱利用運転を開始して、1つの区画から水和物スラリを抜き出して隣接する区画に水溶液を貯留する操作を、操作対象とする区画を順次移動しながら行うようにすることがより効率的である。
【0033】
【発明の効果】
以上詳述したように本発明によれば、水和物スラリの層内に水溶液の液みちが形成されるのを抑制して、水和物スラリを効率よく抜き出すことができる冷熱輸送媒体用蓄熱槽を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る冷熱輸送媒体(水和物スラリ)用蓄熱槽を備えた冷熱利用システムを示す系統図。
【図2】本発明に係る冷熱輸送媒体用蓄熱槽の平面図。
【図3】本発明に係る冷熱輸送媒体用蓄熱槽の一例を示す断面図。
【図4】本発明に係る冷熱輸送媒体用蓄熱槽の他の例を示す断面図。
【図5】本発明に係る冷熱輸送媒体用蓄熱槽の操作を説明する図。
【図6】従来の水和物スラリを用いた冷熱利用システムを示す系統図。
【符号の説明】
1…蓄熱槽、1a、1b、1c、1d…区画、2…水溶液配管、3a、3b、3c、3d…水溶液配管開閉弁、4…スラリ配管、5a、5b、5c、5d…スラリ配管開閉弁、6…制御器、7…1次ポンプ、8…スラリ製造装置、9…2次ポンプ、10…負荷側空調機。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for operating a heat storage tank for a cold transport medium.
[0002]
[Prior art]
Attention has been paid to using a hydrate slurry instead of cold water or ice slurry as a cooling / transporting medium in building air conditioning or district heating / cooling. That is, when an aqueous solution containing a guest compound (for example, various salts such as tetra-n-butylammonium salt, tetra-iso-amyl ammonium salt, tetra-iso-butylphosphonium salt, and tri-iso-amyl sulfonium salt) is cooled, water as a host molecule is cooled. The guest compound is wrapped and crystallized in a cage-shaped clathrate lattice composed of molecules, and a hydrate (liquid clathrate hydrate) is generated. This hydrate can be formed at a temperature of 0 ° C. or higher under atmospheric pressure, and has a large latent heat and can store cold heat several times as much as cold water. A hydrate slurry in which a hydrate, which is fine crystal particles, is suspended in an aqueous solution is superior to an ice slurry in that it has relatively high fluidity. For this reason, such a hydrate slurry has favorable characteristics as a cold transport medium.
[0003]
In a system that uses hydrate slurry as a cold and heat transport medium, hydrate slurry is manufactured and stored in a thermal storage tank at night, and hydrated during the day, in order to make effective use of power at night and level the power load. A method is generally used in which material slurry is extracted from a heat storage tank and used as a cold heat source.
[0004]
FIG. 6 shows a cold heat utilization system using a hydrate slurry as a cold heat transport medium.
A typical operation method of such a cold heat utilization system is as follows. At night (during heat storage operation), the aqueous solution in the heat storage tank 101 is sent to the slurry manufacturing apparatus 103 by the primary pump 102 and cooled to produce hydrate slurry, and the produced hydrate slurry is stored in the heat storage tank. Return to 101 and store. In the daytime (at the time of the operation using cold heat), the hydrate slurry stored in the heat storage tank 101 is sent to the load side air conditioner 105 by the secondary pump 104 to use the cold heat. Since the hydrate slurry becomes an aqueous solution by heat exchange with indoor air, this aqueous solution is returned to the heat storage tank 101.
[0005]
However, in the heat storage tank as shown in FIG. 6, when attempting to extract the hydrate slurry, only the aqueous solution is extracted, and there is a problem that the hydrate slurry cannot be efficiently extracted. Was. This is a phenomenon that occurs because the viscosity of the hydrate slurry and the viscosity of the aqueous solution are greatly different, and a so-called liquid path (aqueous solution passage) is formed in the layer of the hydrate slurry.
[0006]
Conventionally, it has been proposed to solve this problem by devising a method of extracting a hydrate slurry from a heat storage tank in which an aqueous solution and a hydrate slurry are stored (for example, see Patent Document 1). Specifically, (1) pulsating the flow rate of the hydrate slurry taken out, (2) rotating a stirring blade provided in the vicinity of a pipe for extracting the hydrate slurry, (3) stirring installed in the heat storage tank Methods of rotating the blades, (4) ejecting the hydrate slurry from a nozzle disposed near a pipe for extracting the hydrate slurry, and the like are disclosed. However, these methods mainly take countermeasures after detecting the formation of liquid channels, and the efficiency of extracting hydrate slurry is insufficient because the effect of suppressing the formation of liquid channels is insufficient. Has room for improvement. Also disclosed is a method of suppressing the formation of a liquid passage or extinguishing the formed liquid passage by using a plurality of resistors suspended from a movable floating body on the liquid surface in the heat storage tank. The effect of suppressing the formation of the hydrate slurry is insufficient, and the resistor may block the inlet of the hydrate slurry pipe. In particular, in these methods, when a large-capacity heat storage tank is required, it has been difficult to suppress the formation of liquid channels.
[0007]
[Patent Document 1]
JP-A-2002-333166
[Problems to be solved by the invention]
An object of the present invention is to control the formation of a liquid path of an aqueous solution in a layer of a hydrate slurry, and to efficiently extract a hydrate slurry even when a large amount of heat storage is required. An object of the present invention is to provide a method of operating a heat storage tank for a transport medium.
[0009]
[Means for Solving the Problems]
The operation method of the heat storage tank for a cold transport medium according to the present invention stores an aqueous solution of a guest compound that generates hydrate at a temperature higher than 0 ° C., and a hydrate slurry produced by cooling the aqueous solution. A method of operating a heat storage tank for a cold heat transport medium, wherein the heat storage tank includes a plurality of sections that divide the heat storage tank, an aqueous solution pipe connected to each section, and an aqueous solution pipe provided in the aqueous solution pipe of each section. A valve, a slurry pipe connected to each section, and a slurry pipe opening / closing valve provided in the slurry pipe of each section, and withdraws hydrate slurry from one section during cold utilization operation to another section. The aqueous solution piping on-off valve and the slurry piping on-off valve are operated so as to store the aqueous solution.
[0010]
In the operation method of the heat storage tank for a cold transport medium according to the present invention, the heat storage tank has three or more sections, and starts the cold heat utilization operation from a state in which the hydrate slurry is stored in the two or more sections. The operation of extracting the hydrate slurry from one compartment and storing the aqueous solution in an adjacent compartment is preferably performed while sequentially moving the compartments to be operated.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the heat storage tank for a cold heat transport medium of the present invention, the heat storage tank is divided into a plurality of sections, and an aqueous solution pipe opening / closing valve is provided so that a hydrate slurry is extracted from one section and stored in another section during cold utilization operation. And operate the slurry piping on-off valve.
[0012]
As described above, the section from which the hydrate slurry is extracted is different from the section from which the aqueous solution is returned after using the cold energy, and the aqueous solution is not mixed into the section from which the hydrate slurry is extracted. Hydrate slurry can be efficiently extracted by suppressing the formation of liquid channels.
[0013]
In particular, the heat storage tank is divided into many sections of three or more, and the hydrate slurry is stored in the two or more sections, and the operation using the cold heat is started to extract the hydrate slurry from one section. If the operation of storing the aqueous solution in the adjacent compartments is performed while sequentially moving the compartments to be operated, efficient extraction of the hydrate slurry can be realized over many compartments, so that the capacity of the heat storage tank is reduced. It is effective when increasing.
[0014]
Note that the purpose of the present invention is to suppress the formation of a liquid path in the layer of the hydrate slurry when extracting the hydrate slurry during the cold heat operation, and the above is described only during the cold heat operation. The operation of the aqueous solution piping on-off valve and the slurry piping on-off valve may be performed. However, even during the heat storage operation, the aqueous solution pipe opening / closing valve and the slurry pipe opening / closing valve may be operated so as to extract the aqueous solution from one section and store the hydrate slurry in another section. In addition, the heat storage tank is divided into three or more compartments, the heat storage operation is started from a state in which the aqueous solution is stored in two or more compartments, the aqueous solution is extracted from one compartment, and hydrated in the adjacent compartment. The operation of storing the object slurry may be performed while sequentially moving the section to be operated.
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing a cold heat utilization system including a heat storage tank for a cold heat transport medium according to the present invention. FIG. 2 is a plan view of the heat storage tank of FIG. 1 and 2, the heat storage tank 1 is divided into, for example, four sections 1a, 1b, 1c, and 1d.
An aqueous solution pipe 2 is connected to the four sections 1a, 1b, 1c, and 1d, and aqueous solution pipe opening / closing valves 3a, 3b, 3c, and 3d for opening and closing the aqueous solution pipe 2 are provided for the respective sections. Similarly, a slurry pipe 4 is connected to the four sections 1a, 1b, 1c, and 1d, and slurry pipe opening / closing valves 5a, 5b, 5c, and 5d for opening and closing the slurry pipe 4 are provided corresponding to the respective sections. I have. The controller 6 controls opening and closing of the aqueous solution pipe opening and closing valve and the slurry pipe opening and closing valve.
[0016]
FIG. 3 shows an example of a sectional view of the section 1b (heat storage tank 1). In FIG. 3, an aqueous solution pipe 2 and a slurry pipe 4 are provided at both ends of the bottom of the section 1b (heat storage tank 1). A nozzle is provided from the aqueous solution pipe 2 toward the inside, and the aqueous solution pipe opening / closing valve 3b is attached to this nozzle. Similarly, a nozzle is provided inward from the slurry pipe 4, and a slurry pipe open / close valve 5b is attached to the nozzle.
[0017]
FIG. 4 shows another example of a sectional view of the section 1b (heat storage tank 1). In FIG. 4, an aqueous solution pipe 2 and a slurry pipe 4 are provided at both ends of an upper portion of the section 1b (heat storage tank 1). A nozzle is provided from the aqueous solution pipe 2 to the lower side near the bottom of the section 1b, and an aqueous solution pipe opening / closing valve 3b is attached to this nozzle. Similarly, a nozzle is provided from the slurry pipe 4 to the lower side near the bottom of the section 1b, and a slurry pipe opening / closing valve 5b is attached to this nozzle.
[0018]
As shown in FIGS. 3 and 4, the directions of the nozzles provided in the aqueous solution pipe 2 and the slurry pipe 4 are not limited, but the nozzles are preferably arranged near the bottom of each section.
[0019]
The general operation of the cold heat utilization system shown in FIG. 1 is as follows. During the heat storage operation, the aqueous solution in the heat storage tank 1 is sent to the slurry manufacturing device 8 by the primary pump 7 and cooled to produce a hydrate slurry, and the manufactured hydrate slurry is returned to the heat storage tank 1 for storage. I do. The slurry manufacturing device 8 is composed of, for example, a heat exchanger connected to a refrigerator. During the operation using cold heat, the hydrate slurry stored in the heat storage tank 1 is sent to the load-side air conditioner 10 by the secondary pump 9 to use the cold heat. Since the hydrate slurry becomes an aqueous solution by heat exchange with indoor air, this aqueous solution is returned to the heat storage tank 1.
[0020]
In the heat storage tank for the cold transport medium according to the present invention, the hydrate slurry is extracted from one of the plurality of sections 1a to 1d constituting the heat storage tank 1 at the time of the cold energy utilization operation, and the aqueous solution is stored in the other section. The on-off valve for the aqueous solution pipe and the on-off valve for the slurry pipe are operated.
[0021]
With reference to FIGS. 5 (a) to 5 (d) and FIG. 1, the operation of the cold storage medium for heat storage according to the present invention will be described in more detail. In the present invention, it is sufficient to perform the above-described operation only during the cold-heat operation. However, FIGS. 5A to 5D illustrate a case in which the heat storage operation is performed in a substantially reverse operation to the cold-heat operation. .
[0022]
FIGS. 5A to 5D show changes of the aqueous solution 11 or the hydrate slurry 12 stored in each of the sections 1a to 1d of the heat storage tank 1 over time. In FIG. 5, the order changes from (1) to (8) by the operation of the aqueous solution piping on-off valves 3a to 3d and the slurry piping on-off valves 5a to 5d.
[0023]
(1) Before starting the heat storage operation, of the four sections 1a to 1d, the aqueous solution 11 is almost fully stored in the one section 1a to the three sections 1a to 1c, and a slight amount is stored in the other section 1d. It is assumed that the hydrate slurry 12 is stored (FIG. 5a).
[0024]
(2) The heat storage operation is started by opening the aqueous solution pipe opening / closing valve 3c in the section 1c and the slurry pipe opening / closing valve 5d in the section 1d, and the aqueous solution in the section 1c is extracted and produced by cooling in the hydrate slurry manufacturing apparatus 8. The hydrated slurry is stored in section 1d. As a result, the aqueous solution in section 1c decreases and the hydrate slurry in section 1d increases (FIG. 5b).
[0025]
(3) When the aqueous solution in the section 1c is close to empty and the hydrate slurry in the section 1d is full, the on-off valve is switched, and the aqueous solution pipe on-off valve 3b in the section 1b and the slurry pipe on-off valve 5c in the section 1c are opened. Then, the heat storage operation is continued, the aqueous solution in the section 1b is extracted, and the hydrate slurry is stored in the section 1c. As a result, the aqueous solution in section 1b decreases and the hydrate slurry in section 1c increases (FIG. 5c).
[0026]
(4) When the aqueous solution in the section 1b is close to empty and the hydrate slurry in the section 1c is full, the on-off valve is switched, and the aqueous solution pipe on-off valve 3a in the section 1a and the slurry pipe on-off valve 5b in the section 1b are opened. Then, the heat storage operation is continued, the aqueous solution in the section 1a is extracted, and the hydrate slurry is stored in the section 1b. As a result, the aqueous solution in section 1a decreases and the hydrate slurry in section 1b increases (FIG. 5d). At this point, the heat storage operation ends.
[0027]
(5) The state at the end of the heat storage operation in FIG. 5D is also the state before the start of the cold heat utilization operation. Before the operation using the cold heat, a small amount of the aqueous solution 11 is stored in one of the four compartments 1a to 1d, and the hydrate slurry 12 is stored almost completely in the remaining three compartments 1b to 1d. (FIG. 5d). Opening the slurry pipe opening / closing valve 5b in the section 1b and the aqueous solution pipe opening / closing valve 3a in the section 1a to start the cold utilization operation, extracting the hydrate slurry in the section 1b, and using the cold heat in the load side air conditioner 10 The aqueous solution is stored in the compartment 1a. As a result, the hydrate slurry in the section 1b decreases, and the aqueous solution in the section 1a increases.
[0028]
(6) When the hydrate slurry in the section 1b is close to empty and the aqueous solution in the section 1a is full, the on / off valve is switched, and the slurry pipe on / off valve 5c in the section 1c and the aqueous solution on / off valve 3b in the section 1b are connected. Open and continue the cold-heat utilization operation, extract the hydrate slurry in section 1c, and store the aqueous solution in section 1b. As a result, the hydrate slurry in section 1c decreases and the aqueous solution in section 1b increases (FIG. 5c).
[0029]
(7) When the hydrate slurry in section 1c is close to empty and the aqueous solution in section 1b is full, the on / off valve is switched, and the slurry pipe on / off valve 5d in section 1d and the aqueous solution on / off valve 3c in section 1c are connected. Open to continue the cold-heat utilization operation, extract the hydrate slurry in section 1d, and store the aqueous solution in section 1c. As a result, the hydrate slurry in section 1d decreases and the aqueous solution in section 1c increases (FIG. 5b).
[0030]
(8) Further, when the operation using the cold heat is continued, the aqueous solution 11 is stored almost completely in the sections 1a to 1c, and a small amount of the hydrate slurry 12 is stored in the section 1d at the other end (FIG. 5a).
[0031]
As described in the above operations (5) to (8), of the sections 1a to 1d of the heat storage tank 1, the section from which the hydrate slurry is extracted and the section from which the aqueous solution after using the cold heat returns. The difference is that the aqueous solution is not mixed into the section from which the hydrate slurry is extracted, so that the formation of liquid channels can be suppressed and the hydrate slurry can be efficiently extracted. Therefore, it is advantageous when a large-capacity heat storage tank is required.
[0032]
In the present invention, the heat storage tank may be divided into at least two sections. However, the heat storage tank is divided into three or more sections (for example, four as in the above embodiment) and divided into two or more sections. The operation of using the cold heat from the state where the hydrate slurry is stored is started, and the operation of extracting the hydrate slurry from one section and storing the aqueous solution in the adjacent section is performed while sequentially moving the section to be operated. It is more efficient to do so.
[0033]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to suppress the formation of a liquid path of an aqueous solution in a layer of a hydrate slurry, and to efficiently extract a hydrate slurry. A tank can be provided.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a cold heat utilization system including a heat storage tank for a cold heat transport medium (hydrate slurry) according to the present invention.
FIG. 2 is a plan view of the heat storage tank for a cold transport medium according to the present invention.
FIG. 3 is a cross-sectional view showing an example of a heat storage tank for a cold heat transport medium according to the present invention.
FIG. 4 is a cross-sectional view showing another example of the heat storage tank for a cold transport medium according to the present invention.
FIG. 5 is a view for explaining the operation of the heat storage tank for a cold heat transport medium according to the present invention.
FIG. 6 is a system diagram showing a conventional cold heat utilization system using a hydrate slurry.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Thermal storage tank, 1a, 1b, 1c, 1d ... Section: 2 ... Aqueous solution piping, 3a, 3b, 3c, 3d ... Aqueous solution piping opening / closing valve, 4 ... Slurry piping, 5a, 5b, 5c, 5d ... Slurry piping opening / closing valve , 6 ... Controller, 7 ... Primary pump, 8 ... Slurry manufacturing device, 9 ... Secondary pump, 10 ... Load side air conditioner.

Claims (2)

0℃より高い温度で水和物を生成するゲスト化合物の水溶液と、水溶液を冷却することにより製造される水和物スラリとを貯留する冷熱輸送媒体用蓄熱槽の運転方法であって、前記蓄熱槽は、蓄熱槽を区分する複数の区画と、各区画に接続された水溶液配管と、各区画の水溶液配管に設けられた水溶液配管開閉弁と、各区画に接続されたスラリ配管と、各区画のスラリ配管に設けられたスラリ配管開閉弁とを有し、冷熱利用運転時に1つの区画から水和物スラリを抜き出して他の区画に水溶液を貯留するように前記水溶液配管開閉弁およびスラリ配管開閉弁が操作されることを特徴とする冷熱輸送媒体用蓄熱槽の運転方法。A method of operating a heat storage tank for a cold transport medium storing an aqueous solution of a guest compound that produces hydrate at a temperature higher than 0 ° C. and a hydrate slurry produced by cooling the aqueous solution, The tank includes a plurality of sections for dividing the heat storage tank, an aqueous solution pipe connected to each section, an aqueous solution opening / closing valve provided for the aqueous solution pipe of each section, a slurry pipe connected to each section, and each section. A slurry pipe opening / closing valve provided in the slurry pipe of the first embodiment, wherein the aqueous solution pipe opening / closing valve and the slurry pipe opening / closing so as to extract a hydrate slurry from one section and store an aqueous solution in another section at the time of operation using cold heat. A method for operating a heat storage tank for a cold transport medium, wherein a valve is operated. 前記蓄熱槽は3つ以上の区画を有し、2つ以上の区画に水和物スラリが貯留された状態から冷熱利用運転を開始して、1つの区画から水和物スラリを抜き出して隣接する区画に水溶液を貯留する操作を、操作対象とする区画を順次移動しながら行うことを特徴とする請求項1記載の冷熱輸送媒体用蓄熱槽の運転方法。The heat storage tank has three or more sections, starts a cold-heat utilization operation from a state in which the hydrate slurry is stored in two or more sections, extracts the hydrate slurry from one section, and adjoins the hydrate slurry. The method according to claim 1, wherein the operation of storing the aqueous solution in the compartment is performed while sequentially moving the compartment to be operated.
JP2003063964A 2003-03-10 2003-03-10 Method of operating heat storage tank for cold transporting medium Pending JP2004271090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063964A JP2004271090A (en) 2003-03-10 2003-03-10 Method of operating heat storage tank for cold transporting medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063964A JP2004271090A (en) 2003-03-10 2003-03-10 Method of operating heat storage tank for cold transporting medium

Publications (2)

Publication Number Publication Date
JP2004271090A true JP2004271090A (en) 2004-09-30
JP2004271090A5 JP2004271090A5 (en) 2007-01-18

Family

ID=33125410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063964A Pending JP2004271090A (en) 2003-03-10 2003-03-10 Method of operating heat storage tank for cold transporting medium

Country Status (1)

Country Link
JP (1) JP2004271090A (en)

Similar Documents

Publication Publication Date Title
US10267570B2 (en) Coolant heat exchanger having a scraper for each heat exchange interface surface
JP2004271090A (en) Method of operating heat storage tank for cold transporting medium
JP2007085672A (en) Ice thermal storage equipment and its operating method
CN207438871U (en) High-efficiency environment friendly air-source water heater
JP2007132658A (en) Generation suppression method of liquid passage of hydrate slurry
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
JP3947780B2 (en) Remodeling existing air conditioning system
JP2002349910A (en) Heat-storing device
JPH05340567A (en) Ice heat accumulating device
JP2003167089A (en) Nuclear energy facility internal cooling system
JPH05773Y2 (en)
JP2004212008A (en) Heat storage system and structure having the heat storage system
JPH0727456A (en) Dynamic type ice heat accumulation device
JPH10325657A (en) Ice thermal storage device
JPH06300398A (en) Preventing method for freezing of ice-making heat exchanger for ice heat storage in supercooling ice-making method
JPH11148751A (en) Ice machine
JPH0451329Y2 (en)
JPH06229592A (en) Storage type water cooling apparatus
JPH1123116A (en) Ice heat storage system
JPH05248666A (en) Ice heat storage device
JP3270152B2 (en) Ice storage method
JPH0359335A (en) Thermal accumulation system
JP4905690B2 (en) Heat storage device
JPH02130393A (en) Cold heat accumulating device
JP2547918B2 (en) Latent heat storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209