JP2004271086A - Heat transfer pipe failure detecting device and heat storage device equipped therewith - Google Patents

Heat transfer pipe failure detecting device and heat storage device equipped therewith Download PDF

Info

Publication number
JP2004271086A
JP2004271086A JP2003063924A JP2003063924A JP2004271086A JP 2004271086 A JP2004271086 A JP 2004271086A JP 2003063924 A JP2003063924 A JP 2003063924A JP 2003063924 A JP2003063924 A JP 2003063924A JP 2004271086 A JP2004271086 A JP 2004271086A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer tube
case
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063924A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
渡辺  弘
Wataru Nagao
渉 長尾
Akio Kamioka
章男 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimak Corp
Energy Support Corp
Original Assignee
Fujimak Corp
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimak Corp, Energy Support Corp filed Critical Fujimak Corp
Priority to JP2003063924A priority Critical patent/JP2004271086A/en
Publication of JP2004271086A publication Critical patent/JP2004271086A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer pipe failure detecting device for finding the failure of a heat transfer pipe earlier without stopping operation, and a heat storage device equipped therewith. <P>SOLUTION: The heat storage device 11 comprises a detection chamber 31 provided outside an outer case 23, a temperature sensor 32 for detecting a temperature in the detection chamber 31, and a control device 51 for determining whether the heat transfer pipe 25 is failed or not in accordance with the temperature in the detection chamber 31 detected by the temperature sensor 32. Heat carrier vapor generated in an inner case 21 is guided via a vapor lead-out pipe 41 to the detection chamber 31. When the temperature in the detection chamber 31 reaches a heat transfer pipe failure determining temperature, the control device 51 determines that the heat transfer pipe 25 is failed. The failure of the heat transfer pipe 25 is therefor found earlier. The failure of the heat transfer pipe 25 can be detected without stopping the operation of the heat storage device 11 or emptying the heat transfer pipe 25 once. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内部に熱媒体が流される伝熱管の破損を検出する伝熱管破損検出装置及びそれを備えた蓄熱装置に関するものである。
【0002】
【従来の技術】
従来、次のような蓄熱装置が知られている。即ち、ケースに充填された蓄熱材をヒータで加熱しておき、この状態で蓄熱材に埋設された伝熱管の一方からポンプの駆動により水を供給し、他方から蒸気として取り出す(例えば、特許文献1参照。)。この従来の蓄熱装置においては、経年劣化及び製造上の欠陥等による伝熱管の破損(ピンホール、孔食及び応力腐食割れ等)の有無を確認する検査が定期的(3ヶ月毎又は6ヶ月毎)に行われている。この定期検査の方法としては、例えば伝熱管内に圧力空気を注入する方法及び前記伝熱管内の水を手作業により採取して分析する方法がある。
【0003】
前者の場合、伝熱管に破損があれば、その破損箇所から注入した空気が漏出する。後者の場合、例えば採取した水の含有成分を分析し、伝熱管通過前の水の含有成分と比較する。採取した水の成分に蓄熱材成分が含まれていれば、伝熱管のいずれかの部分が破損していると判断する。伝熱管が破損すると蓄熱材を構成する水溶性の硝酸塩が同伝熱管内を流れる水に溶出するからである。
【0004】
【特許文献1】
特開平3−282101号公報
【0005】
【発明が解決しようとする課題】
ところが、前記従来の蓄熱装置においては、次のような問題があった。即ち、伝熱管の定期検査は行われていたものの、この定期検査後、何らかの原因により伝熱管に孔食等の破損が発生した場合、次回の定期検査まで、伝熱管は破損状態で放置されるおそれがあった。即ち、伝熱管の破損を早期に発見することが困難であった。また、前記従来の伝熱管破損の検査方法では、蓄熱装置の運転を停止させたり伝熱管を一旦空にしたりする必要があった。このため、装置の運転中に伝熱管が破損しても、すぐにこれが検出されることはなかった。
【0006】
本発明は上記問題点を解決するためになされたものであって、その目的は、運転を停止させることなく伝熱管の破損を早期に発見することができる伝熱管破損検出装置及びそれを備えた蓄熱装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、ケース内に配設されると共に内部に熱媒体が流され、当該熱媒体と熱源との間で熱交換を行う伝熱管の破損を検出する伝熱管破損検出装置において、前記ケースの外部に設けられると共に前記ケース内において発生した熱媒体蒸気を検出可能とした蒸気検出部と、前記ケース内において発生した熱媒体蒸気を前記蒸気検出部に導く連通路とを備え、前記連通路からの熱媒体蒸気を検出したときに前記蒸気検出部は伝熱管には破損が発生していると判断するようにしたことを要旨とする。
【0008】
請求項2に記載の発明は、請求項1に記載の発明において、前記ケースにおいて、伝熱管の両端部の導出側とは反対側に、前記蒸気検出部を配置するようにしたことを要旨とする。
【0009】
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記蒸気検出部は、前記ケースの外部に設けられた検出室と、前記検出室内の温度を検出する温度検出手段と、前記温度検出手段により検出された前記検出室内の温度に基づいて前記伝熱管の破損の有無を判断する判断手段とを備え、前記連通路により前記ケースの内部と前記検出室の内部とを連通するようにしたことを要旨とする。
【0010】
請求項4に記載の発明は、請求項3に記載の発明において、前記検出室の上部を閉鎖し、同じく下部には開口部を設けるようにしたことを要旨とする。
請求項5に記載の発明は、ケースに充填された蓄熱材を加熱する電気ヒータと、前記ケース内に配設されると共に内部に熱媒体が流され同熱媒体と前記蓄熱材との間で熱交換を行う伝熱管とを備えた蓄熱装置において、請求項1〜請求項4のうちいずれか一項に記載の伝熱管破損検出装置を備えたことを要旨とする。
【0011】
(作用)
請求項1に記載の発明によれば、例えば伝熱管の破損に起因してケース内に発生した熱媒体蒸気は、連通路を介してケースの外部に設けられた蒸気検出部に導かれる。蒸気検出部は熱媒体蒸気を検出することにより伝熱管に破損が発生したことを検出する。このため、運転を停止させることなく、運転中において伝熱管の破損を常時検出可能となる。
【0012】
請求項2に記載の発明によれば、請求項1に記載の発明の作用に加えて、前記ケースにおいて、伝熱管の両端部の導出側とは反対側に、前記蒸気検出部が配置される。このため、蒸気検出部が伝熱管の導出部からの放熱による温度影響を受けることはない。従って、蒸気検出部による誤検出が抑制される。
【0013】
請求項3に記載の発明によれば、請求項1又は請求項2に記載の発明の作用に加えて、ケース内に発生した熱媒体蒸気は連通路を介してケースの外部に設けられた検出室に導かれる。この検出室内の温度は温度検出手段により検出され、この温度検出手段により検出された検出室内の温度に基づいて伝熱管の破損の有無が判断される。
【0014】
請求項4に記載の発明によれば、請求項3に記載の発明の作用に加えて、検出室の上部は閉鎖され、同じく下部は開口される。検出室の開口部が下方に位置することによりケース内からの漏れ蒸気が当該検出室から逃げにくくなり、当該検出室内にこもる。このため、温度検出手段の検出温度はピーク状態で所定時間だけ維持される。また、漏れ蒸気の量が少ない場合であっても、漏れ蒸気が検出室内にこもることにより、当該検出室内の温度が次第に上昇してピーク値に達し、所定時間だけ維持される。
【0015】
請求項5に記載の発明によれば、蓄熱装置に請求項1〜請求項4のうちいずれか一項に記載の伝熱管破損検出装置が備えられる。このため、運転を停止させることなく伝熱管の破損を検出可能となる。
【0016】
【発明の実施の形態】
以下、本発明を伝熱管破損検出装置及びそれを備えた蓄熱装置に具体化した一実施形態を図1及び図2に従って説明する。
【0017】
図1に示すように、蓄熱装置11を構成する内ケース21はその外周全面が断熱材22により覆われた状態で外ケース23に収容されている。内ケース21の上面に配置された断熱材22の上面と外ケース23の内面とにより空間S1が形成されている。内ケース21内には固体のマグネシア及び所定の蓄熱温度域で液体化する硝酸塩を主成分とする蓄熱材24が充填されている(図1では一部のみ図示する)。
【0018】
内ケース21は上部が開口した箱体状の内ケース本体21a及び当該内ケース本体21aの上部開口部を閉鎖する箱体状の蓋体21bを備えている。内ケース本体21aに充填された蓄熱材24の上面、内ケース本体21aの内面及び蓋体21bにより余裕空間S2が形成されている。蓄熱開始時(初期立ち上げ時)における硝酸塩の融解に伴う体積膨張は余裕空間S2により許容される。内ケース本体21a内には内部に熱媒体(本実施形態では水)が流される螺旋状の伝熱管25及び蓄熱材24を加熱するU字状の電気ヒータ26が配設されている。
【0019】
伝熱管25の両端はそれぞれ内ケース21の蓋体21b、断熱材22及び外ケース23の側壁上部を水密状に貫通して外部に導出されている。伝熱管25の両端はそれぞれ外ケース23の一側壁(図1における左側側壁)を貫通して同一方向に導出されている。この伝熱管25の一端は給水管路27を介して水源(図示略)に接続されており、同給水管路27上には給水ポンプ28が設けられている。伝熱管25の他端は蒸気供給管29を介して負荷側に導かれている。電気ヒータ26の両端はそれぞれ内ケース21の蓋体21b及び上部の断熱材22を水密状に貫通し、余裕空間S2内に導出されている。電気ヒータ26の両端はリード線(図示略)を介して交流電源(図示略)に接続されている。
【0020】
図1に示すように、外ケース23は上部が開口した外ケース本体23a及び当該外ケース本体23aの上部開口部を閉鎖する蓋体23bを備えている。蓋体23bの四辺にはそれぞれ側壁が設けられており、各側壁のうち伝熱管25の両端部の導出方向とは反対側の側壁の中央には、四角筒状の検出室31が設けられている。即ち、検出室31における外ケース23の蓋体23b側の側壁は、当該蓋体23bの側壁の一部を構成している。この検出室31の上部は閉鎖されており、同じく下部には開口部31aが形成されている。また、検出室31の上部は蓋体23bの上面よりも上方に突出している。検出室31の上部側には温度センサ32が設けられており、その検出端部32aは検出室31の内部に導入されている。
【0021】
図1に示すように、内ケース21の蓋体21bには蒸気導出管41の一端が接続されており、同蒸気導出管41の他端は上部の断熱材22を水密状に貫通して外ケース23の余裕空間S2内に導入されている。この蒸気導出管41の他端は外ケース本体23aの側壁上部及び外ケース23における蓋体23bの側壁をそれぞれ貫通して検出室31の下部側に接続されており、余裕空間S2と検出室31の内部とは蒸気導出管41を介して連通している。
【0022】
図1に示すように、蓄熱装置11はCPU等からなる制御装置51を備えている。この制御装置51は、温度センサ32により検出された検出室31内の雰囲気温度に基づいて伝熱管25から蒸気が漏れているか否かの判断、即ち伝熱管25の破損の有無の判断を行う。また、制御装置51は予め組み込まれた制御プログラムに基づいて電気ヒータ26のオン/オフ制御、給水ポンプ28の駆動/停止制御及び伝熱管25の破損表示制御等の各種制御を行う。
【0023】
尚、本実施形態において、検出室31、温度センサ32及び蒸気導出管41は伝熱管破損検出装置Dを構成する。検出室31、温度センサ32及び制御装置51は内ケース21内において発生した熱媒体蒸気を検出する蒸気検出部を構成する。蒸気導出管41は内ケース21の内部と検出室31の内部とを連通する連通路を構成する。温度センサ32は検出室31内の温度を検出する温度検出手段を構成する。内ケース21は蓄熱材24が充填されたケースを構成する。
【0024】
[実施形態の作用]
次に、前述のように構成した伝熱管破損検出装置及び蓄熱装置の作用を正常時と異常時とに分けて順次説明する。正常時とは伝熱管25に破損が発生しておらず蒸気漏れの無い状態での出熱運転時をいう。異常時とは伝熱管25に破損が発生しており蒸気漏れの有る状態での出熱運転時をいう。
【0025】
[正常時]
まず、正常時(通常運転時)における伝熱管破損検出装置D及び蓄熱装置11の作用を説明する。蓄熱装置11の出熱運転は、蓄熱材24が例えば夜間電力による電気ヒータ26の加熱により所定の蓄熱温度(本実施形態では450℃程度)に加熱された状態で開始される。即ち、給水ポンプ28の駆動により伝熱管25の一端側から熱媒体(水)を供給する。すると、この水は伝熱管25を介して蓄熱材24に蓄えられた熱により加熱され、蒸気となって伝熱管25の他方から噴出する。このようにして、伝熱管25に蓄えられた熱は外部に取り出される。
【0026】
内ケース21内の高温雰囲気ガス、即ち蓄熱材24から立ち上る熱気(熱い空気)は蒸気導出管41を介して検出室31内に流れ込む。この熱気の一部は検出室31の下部の開口部31aから外部に放出され、残りは検出室31内の上部にこもる。正常時において、内ケース21内からの熱気は蒸気導出管41及び外ケース23の蓋体23b等を介して放熱し、検出室31内に至る頃にはある程度(予め設定された伝熱管破損判定温度Ts未満)まで冷却される。従って、この正常時において、温度センサ32の検出温度が予め設定された伝熱管破損判定温度Tsに達することはない。温度センサ32の検出温度が伝熱管破損判定温度Ts未満のとき、制御装置51は伝熱管25からの蒸気の漏れ、即ち伝熱管25には破損は発生していないと判断する。
【0027】
[異常時]
次に、異常時における伝熱管破損検出装置D及び蓄熱装置11の作用を説明する。経年劣化及び製造上の欠陥等により伝熱管25が破損(例えばピンホールや応力腐食割れ)する場合がある。この場合、破損の程度によるものの、伝熱管25の破損箇所から同伝熱管25内を流れる水又は蒸気が蓄熱材24内に漏出する。蓄熱材24内に漏出した水は、蓄熱材24の熱により蒸気となる。これらの蒸気は蓄熱材24内(厳密にはマグネシア間)を立ち上り内ケース21内の余裕空間S2内に流れ込む。
【0028】
内ケース21内からの漏れ蒸気は蒸気導出管41を介して検出室31内に流れ込んで、温度センサ32の検出端部に到達する。漏れ蒸気は検出室31内に至るまでの間に放熱しきれず、伝熱管破損判定温度Ts以上の温度を有した状態で温度センサ32の検出端部32aに到達する。この結果、温度センサ32による検出温度は伝熱管破損判定温度Tsに達する。
【0029】
このとき、検出室31の上部が閉鎖されているので、内ケース21内からの漏れ蒸気の一部は検出室31内の上部にこもる。そして、温度センサ32の検出端部は検出室31の開口部31aとは反対側、即ち上部に設けられていることにより、温度センサ32は検出室31内にこもった漏れ蒸気の温度を検出することとなる。
【0030】
このため、温度センサ32の検出温度はピーク状態で所定時間だけ維持される。即ち、温度センサ32の検出温度のピーク値持続時間が確保される。従って、温度センサ32の検出温度が瞬間的にピーク値に達したとしても、制御装置51は異常判定を行うことがなく、これにより温度センサ32のノイズとの混同が避けられる。検出室31の下部が開放されていることにより、内ケース21内からの漏れ蒸気が復水して検出室31内に溜まるおそれもない。
【0031】
また、温度センサ32が急激な検出値の立ち上がりを検出し、蒸気の発生の度にピーク値を検出するようなことがない。ちなみに、内ケース21からの漏れ蒸気をそのまま温度センサ32で受けるようにした場合には、温度センサ32が急激な検出値の立ち上がりを検出し、蒸気の発生の度にピーク値を検出する。
【0032】
即ち、伝熱管25が破損し、この破損箇所から漏れた熱媒体が蒸気となって、爆発的に検出室31へ放出される。しかし、この後、伝熱管25の破損箇所周囲の蓄熱材24が熱媒体により逆に冷やされて漏れ経路を塞ぎ、熱媒体蒸気の放出が停止する。このため、ピーク値が持続されない。この後、伝熱管25の破損箇所周囲の蓄熱材24は、当該蓄熱材24の周囲の蓄熱材24の熱が伝達されることにより加熱されて再び液化する。すると、蒸気の噴出経路が再び形成され、熱媒体蒸気の再噴出が発生する。そして、温度センサ32の検出値が再びピーク値に達する。従って、ピーク値の維持時間が短く、安定した検出動作が得られない。本実施形態によれば、このようなことが回避されるので、温度センサ32の検出動作が安定する。
【0033】
また、伝熱管25の破損の程度が小さく、内ケース21内からの漏れ蒸気の量が少ない場合であっても、正常時の高温雰囲気ガスの温度よりは高い温度を有する漏れ蒸気が継続的に漏れて検出室31内にこもることにより、検出室31内の温度は次第に上昇する。漏れ蒸気の温度は放熱しきれずに検出室へ至る。そして、ある程度の時間を要するものの、検出室31内の検出温度はピーク値に達し、所定時間維持される。このように、内ケース21内からの漏れ蒸気が検出室31内に蓄積されることによって所定の検知条件(本実施形態では、検出室31内の温度が伝熱管破損判定温度Tsに達すること)が満たされる。従って、内ケース21内からの漏れ蒸気の量にかかわらず異常状態(即ち、伝熱管の破損)を確実に検知できる。
【0034】
以上のように、温度センサ32により検出された検出室31内の温度が予め設定された伝熱管破損判定温度Tsに達したとき、制御装置51は内ケース21内からの蒸気漏れを検出する。即ち、制御装置51は伝熱管25に破損が発生していると判断する。そして、制御装置51はLED(発光ダイオード)、ディスプレイ及びスピーカ等の異常報知手段(図示略)に伝熱管破損信号を出力する。
【0035】
(実施形態の効果)
従って、本実施形態によれば、以下の効果を得ることができる。
(1)内ケース21の外部に設けられると共に前記内ケース21内において発生した熱媒体蒸気を検出可能とした蒸気検出部と、内ケース21内に発生した熱媒体蒸気を前記蒸気検出部に導く蒸気導出管41とを備えた。そして、前記蒸気検出部により熱媒体蒸気が検出されたときに伝熱管25には破損が発生していると判断するようにした。
【0036】
具体的には、蒸気検出部は、内ケース21(厳密には、外ケース23)の外部に設けられた検出室31と、検出室31内の温度を検出する温度センサ32と、温度センサ32により検出された検出室31内の温度に基づいて伝熱管25の破損の有無を判断する制御装置51とを備えた。内ケース21内に発生した熱媒体蒸気は蒸気導出管41を介して検出室31に導かれ、この検出室31内の温度が伝熱管破損判定温度Tsに達したとき、制御装置51は伝熱管25に破損が発生していると判断する。
【0037】
このため、何らかの原因により伝熱管25に破損が発生した場合、この伝熱管25の破損を早期に発見することができ、次回の定期検査まで伝熱管25が破損状態で放置されることはない。また、蓄熱装置11の運転を停止させたり伝熱管25を一旦空にしたりすることなく伝熱管25の破損を検出することができる。このため、蓄熱装置11の運転を停止させることなく、運転中において伝熱管25の破損を常時検出可能となる。従って、蓄熱装置11の運転中に伝熱管25が破損した場合、すぐにこれを検出することができる。
【0038】
(2)伝熱管25の両端部の導出側とは反対側に、前記蒸気検出部を配置するようにした。具体的には、伝熱管25の両端部の導出方向とは反対側に検出室31を配置するようにした。このため、検出室31に設けられた温度センサ32が伝熱管25の導出部からの放熱に起因する周囲温度の上昇による影響を受けることはない。従って、漏れ蒸気の誤検出が抑制され、伝熱管25の破損の有無をより正確に検出することができる。
【0039】
(3)検出室31の上部を閉鎖し、同じく下部には開口部31aを設けるようにした。そして、検出室31の開口部31aとは反対側、即ち検出室31の上部に温度センサ32を配置するようにした。検出室31内の上部には内ケース21内からの漏れ蒸気がこもるので、温度センサ32の検出温度はピーク状態で所定時間維持される。従って、温度センサ32の検出動作が安定する。
【0040】
(4)蓄熱装置11には伝熱管破損検出装置Dを備えるようにした。このため、蓄熱装置11の運転を停止させることなく伝熱管25の破損を検出することができる。
【0041】
(別例)
尚、前記実施形態は以下のような別例に変更して実施してもよい。
・本実施形態では、伝熱管25の両端部の導出側とは反対側に検出室31を配置するようにしたが、図2に二点鎖線で示すように、伝熱管25の両端部が導出されている側壁に直交し、且つ互いに対向する一対の側壁のいずれか一方に検出室31を設けるようにしてもよい。このようにしても、外ケース23において、伝熱管25の両端部が導出されている側壁に検出室31を設けるようにした場合に比べて、漏れ蒸気の誤検出を抑制することができる。
【0042】
・本実施形態では、検出室31を蓋体23bと一体的に形成するようにしたが、検出室31を別部材としてもよい。このようにしても、前記第1実施形態における(1)〜(4)番目に記載された効果と同様の効果を得ることができる。
【0043】
・本実施形態では検出室31を四角筒状としたが、この形状に限定されるものではなく、円筒状及び楕円筒状等としてもよい。この場合でも前記第1実施形態と同様の効果が得られる。
【0044】
・本実施形態では、検出室31の略中央部に蒸気導出管41を接続する(即ち、開口させる)ようにしたが、図3(a)又は図3(b)に示すようにしてもよい。即ち、図3(a)に示すように、検出室31の上部に蒸気導出管41を開口させ、その下方に温度センサ32の検出端部32aを配置する。また、図3(b)に示すように、検出室31の上部に蒸気導出管41を開口させ、その略水平位置に温度センサ32の検出端部32aを配置する。換言すれば、蒸気導出管41の開口(蒸気導出管41の検出室31に対する接続部位)に対向するように検出端部32aを配置する。いずれのようにしても、前記第1実施形態における(1)〜(4)番目の効果と同様の効果が得られる。
【0045】
【発明の効果】
本発明によれば、運転を停止させることなく伝熱管の破損を早期に発見することができる。
【図面の簡単な説明】
【図1】本実施形態における蓄熱装置の模式的な構成図。
【図2】本実施形態における蓄熱装置の平面図。
【図3】(a),(b)は、それぞれ別の実施形態における伝熱管破損検出装置の要部拡大断面図。
【符号の説明】
11…蓄熱装置、21…ケースを構成する内ケース、
24…熱源を構成する蓄熱材、25…伝熱管、26…電気ヒータ、
31…蒸気検出部を構成する検出室、
31a…検出室の開口部、
32…温度検出手段及び蒸気検出部を構成する温度センサ、
41…連通路を構成する蒸気導出管、
51…判断手段及び蒸気検出部を構成する制御装置、D…伝熱管破損検出装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat transfer tube damage detection device for detecting damage to a heat transfer tube through which a heat medium flows, and a heat storage device including the same.
[0002]
[Prior art]
Conventionally, the following heat storage devices are known. That is, the heat storage material filled in the case is heated by a heater, and in this state, water is supplied from one of the heat transfer tubes buried in the heat storage material by driving a pump, and the water is taken out from the other as steam (for example, see Patent Document 1). 1). In this conventional heat storage device, inspection for confirming the presence or absence of heat transfer tube damage (pinhole, pitting corrosion, stress corrosion cracking, etc.) due to aging deterioration and manufacturing defects, etc. is performed periodically (every three months or every six months). ) Has been done. As a method of the periodic inspection, for example, there are a method of injecting pressurized air into the heat transfer tube and a method of manually collecting and analyzing water in the heat transfer tube.
[0003]
In the former case, if the heat transfer tube is damaged, the injected air leaks from the damaged portion. In the latter case, for example, the component of the collected water is analyzed and compared with the component of the water before passing through the heat transfer tube. If the heat storage material component is included in the collected water component, it is determined that any part of the heat transfer tube is damaged. This is because when the heat transfer tube is damaged, the water-soluble nitrate constituting the heat storage material elutes into the water flowing in the heat transfer tube.
[0004]
[Patent Document 1]
JP-A-3-282101
[Problems to be solved by the invention]
However, the conventional heat storage device has the following problems. That is, although the heat transfer tube was regularly inspected, if the heat transfer tube is damaged by pitting or the like for some reason after this periodic inspection, the heat transfer tube is left in a broken state until the next periodic inspection. There was a fear. That is, it was difficult to detect the damage of the heat transfer tube at an early stage. Further, in the conventional method for inspecting a heat transfer tube for damage, it was necessary to stop the operation of the heat storage device or to empty the heat transfer tube once. For this reason, even if the heat transfer tube is damaged during operation of the apparatus, this is not immediately detected.
[0006]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a heat transfer tube damage detection device capable of detecting damage to a heat transfer tube at an early stage without stopping operation, and a device for detecting the damage. An object of the present invention is to provide a heat storage device.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a heat transfer tube damage detection device that is disposed in a case and has a heat medium flowing therein, and detects damage to a heat transfer tube that exchanges heat between the heat medium and the heat source. A steam detection unit provided outside the case and capable of detecting the heat medium vapor generated in the case, and a communication path for guiding the heat medium vapor generated in the case to the steam detection unit. The gist of the invention is that when detecting the heat medium vapor from the communication passage, the vapor detection unit determines that the heat transfer tube is damaged.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, in the case, the steam detector is disposed on a side of the case opposite to an outlet side of both ends of the heat transfer tube. I do.
[0009]
According to a third aspect of the present invention, in the first or second aspect of the invention, the steam detection unit includes a detection chamber provided outside the case and a temperature detection unit configured to detect a temperature in the detection chamber. Means, and judging means for judging the presence or absence of breakage of the heat transfer tube based on the temperature in the detection chamber detected by the temperature detecting means, the communication path between the inside of the case and the inside of the detection chamber The point is that the communication is made.
[0010]
According to a fourth aspect of the present invention, in the third aspect, an upper portion of the detection chamber is closed, and an opening is provided in the lower portion.
According to a fifth aspect of the present invention, there is provided an electric heater for heating a heat storage material filled in a case, and a heat medium disposed in the case and having a heat medium flow therein to allow the heat medium to flow between the heat medium and the heat storage material. In a heat storage device provided with a heat transfer tube for performing heat exchange, a heat transfer tube damage detection device according to any one of claims 1 to 4 is provided.
[0011]
(Action)
According to the first aspect of the present invention, the heat medium vapor generated in the case due to, for example, breakage of the heat transfer tube is guided to the vapor detection unit provided outside the case via the communication path. The steam detecting section detects that the heat transfer tube is broken by detecting the heat medium steam. For this reason, the breakage of the heat transfer tube can always be detected during the operation without stopping the operation.
[0012]
According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, in the case, the steam detection unit is disposed on a side of the heat transfer tube opposite to an outlet side of both ends. . For this reason, the steam detector is not affected by the temperature due to the heat radiation from the outlet of the heat transfer tube. Therefore, erroneous detection by the steam detector is suppressed.
[0013]
According to the third aspect of the invention, in addition to the operation of the first or second aspect, the heat medium vapor generated in the case is detected outside the case via the communication passage. Guided to the room. The temperature in the detection chamber is detected by the temperature detection means, and the presence or absence of breakage of the heat transfer tube is determined based on the temperature in the detection chamber detected by the temperature detection means.
[0014]
According to the invention described in claim 4, in addition to the effect of the invention described in claim 3, the upper part of the detection chamber is closed and the lower part is also opened. Since the opening of the detection chamber is located below, it is difficult for steam leaking from the inside of the case to escape from the detection chamber, and the steam is trapped in the detection chamber. Therefore, the temperature detected by the temperature detecting means is maintained in the peak state for a predetermined time. Further, even when the amount of the leaked steam is small, the leaked steam is trapped in the detection chamber, so that the temperature in the detection chamber gradually increases to reach a peak value and is maintained for a predetermined time.
[0015]
According to the invention described in claim 5, the heat storage device is provided with the heat transfer tube damage detection device according to any one of claims 1 to 4. Therefore, it is possible to detect breakage of the heat transfer tube without stopping the operation.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in a heat transfer tube damage detection device and a heat storage device including the same will be described with reference to FIGS.
[0017]
As shown in FIG. 1, the inner case 21 constituting the heat storage device 11 is housed in the outer case 23 with the entire outer periphery thereof covered with a heat insulating material 22. A space S1 is formed by the upper surface of the heat insulating material 22 disposed on the upper surface of the inner case 21 and the inner surface of the outer case 23. The inner case 21 is filled with solid magnesia and a heat storage material 24 mainly composed of nitrate which is liquefied in a predetermined heat storage temperature region (only a part is shown in FIG. 1).
[0018]
The inner case 21 includes a box-shaped inner case main body 21a having an open upper part and a box-shaped lid 21b for closing the upper opening of the inner case main body 21a. The upper surface of the heat storage material 24 filled in the inner case body 21a, the inner surface of the inner case body 21a, and the lid 21b form a margin space S2. Volume expansion accompanying the melting of nitrate at the start of heat storage (at the time of initial startup) is allowed by the surplus space S2. A spiral heat transfer tube 25 through which a heat medium (water in the present embodiment) flows, and a U-shaped electric heater 26 for heating the heat storage material 24 are provided in the inner case main body 21a.
[0019]
Both ends of the heat transfer tube 25 are water-tightly penetrated through the lid 21 b of the inner case 21, the heat insulating material 22, and the upper side wall of the outer case 23, and are led out to the outside. Both ends of the heat transfer tube 25 pass through one side wall (the left side wall in FIG. 1) of the outer case 23 and are led out in the same direction. One end of the heat transfer tube 25 is connected to a water source (not shown) via a water supply line 27, and a water supply pump 28 is provided on the water supply line 27. The other end of the heat transfer tube 25 is guided to a load side via a steam supply tube 29. Both ends of the electric heater 26 penetrate the lid 21b of the inner case 21 and the heat insulating material 22 on the upper part in a watertight manner, and are led out into the spare space S2. Both ends of the electric heater 26 are connected to an AC power supply (not shown) via lead wires (not shown).
[0020]
As shown in FIG. 1, the outer case 23 includes an outer case main body 23a having an open upper part, and a lid 23b for closing an upper opening of the outer case main body 23a. Side walls are provided on the four sides of the lid 23b, and a square cylindrical detection chamber 31 is provided at the center of the side wall of each side wall opposite to the direction in which both ends of the heat transfer tube 25 are led out. I have. That is, the side wall of the outer case 23 on the lid 23b side in the detection chamber 31 forms a part of the side wall of the lid 23b. The upper part of the detection chamber 31 is closed, and the lower part is formed with an opening 31a. The upper part of the detection chamber 31 protrudes above the upper surface of the lid 23b. A temperature sensor 32 is provided on the upper side of the detection chamber 31, and a detection end 32 a is introduced into the detection chamber 31.
[0021]
As shown in FIG. 1, one end of a steam outlet pipe 41 is connected to the lid 21 b of the inner case 21, and the other end of the steam outlet pipe 41 penetrates the upper heat insulating material 22 in a water-tight manner and is connected to the outside. It is introduced into the extra space S2 of the case 23. The other end of the steam outlet pipe 41 penetrates through the upper part of the side wall of the outer case body 23a and the side wall of the lid 23b in the outer case 23, and is connected to the lower part of the detection chamber 31. Is communicated with the inside through a steam outlet pipe 41.
[0022]
As shown in FIG. 1, the heat storage device 11 includes a control device 51 including a CPU and the like. The control device 51 determines whether or not steam is leaking from the heat transfer tube 25 based on the ambient temperature in the detection chamber 31 detected by the temperature sensor 32, that is, determines whether or not the heat transfer tube 25 is damaged. Further, the control device 51 performs various controls such as on / off control of the electric heater 26, drive / stop control of the water supply pump 28, and display control of breakage of the heat transfer tube 25 based on a control program incorporated in advance.
[0023]
In the present embodiment, the detection chamber 31, the temperature sensor 32, and the steam outlet pipe 41 constitute a heat transfer tube damage detection device D. The detection chamber 31, the temperature sensor 32, and the control device 51 constitute a steam detection unit that detects the heat medium steam generated in the inner case 21. The steam outlet pipe 41 forms a communication path that connects the inside of the inner case 21 and the inside of the detection chamber 31. The temperature sensor 32 constitutes temperature detecting means for detecting the temperature inside the detection chamber 31. The inner case 21 constitutes a case filled with the heat storage material 24.
[0024]
[Operation of Embodiment]
Next, the operation of the heat transfer tube breakage detection device and the heat storage device configured as described above will be described sequentially for normal times and abnormal times. The normal state refers to a heat output operation in a state where the heat transfer tube 25 is not damaged and no steam leaks. The abnormal time refers to a time when the heat transfer operation is performed in a state where the heat transfer tube 25 is damaged and steam leaks.
[0025]
[Normal]
First, the operation of the heat transfer tube damage detection device D and the heat storage device 11 during normal operation (during normal operation) will be described. The heat output operation of the heat storage device 11 is started in a state where the heat storage material 24 is heated to a predetermined heat storage temperature (about 450 ° C. in the present embodiment) by, for example, heating the electric heater 26 by nighttime electric power. That is, the heat medium (water) is supplied from one end of the heat transfer tube 25 by driving the water supply pump 28. Then, the water is heated by the heat stored in the heat storage material 24 via the heat transfer tubes 25, and is spouted from the other of the heat transfer tubes 25 as steam. In this way, the heat stored in the heat transfer tube 25 is taken out.
[0026]
The high-temperature atmosphere gas in the inner case 21, that is, the hot air (hot air) rising from the heat storage material 24 flows into the detection chamber 31 through the steam outlet pipe 41. A part of this hot air is discharged to the outside from the opening 31a at the lower part of the detection chamber 31, and the rest is trapped at the upper part in the detection chamber 31. In a normal state, the hot air from the inside of the inner case 21 radiates heat through the steam outlet pipe 41 and the lid 23b of the outer case 23, and to some extent before reaching the inside of the detection chamber 31 (a predetermined heat transfer tube damage judgment). (Less than the temperature Ts). Therefore, in this normal state, the temperature detected by the temperature sensor 32 does not reach the preset heat transfer tube damage determination temperature Ts. When the temperature detected by the temperature sensor 32 is lower than the heat transfer tube damage determination temperature Ts, the control device 51 determines that steam has leaked from the heat transfer tube 25, that is, the heat transfer tube 25 has not been damaged.
[0027]
[In case of abnormality]
Next, the operation of the heat transfer tube damage detection device D and the heat storage device 11 at the time of abnormality will be described. The heat transfer tube 25 may be damaged (for example, pinholes or stress corrosion cracking) due to aging deterioration and manufacturing defects. In this case, although depending on the degree of damage, water or steam flowing through the heat transfer tube 25 leaks into the heat storage material 24 from the damaged portion of the heat transfer tube 25. The water leaked into the heat storage material 24 becomes steam by the heat of the heat storage material 24. These vapors rise inside the heat storage material 24 (strictly between magnesia) and flow into the extra space S2 in the inner case 21.
[0028]
Steam leaking from the inner case 21 flows into the detection chamber 31 through the steam outlet pipe 41 and reaches the detection end of the temperature sensor 32. The leaked steam cannot completely dissipate heat until it reaches the inside of the detection chamber 31, and reaches the detection end 32a of the temperature sensor 32 in a state where the leaked steam has a temperature equal to or higher than the heat transfer tube damage determination temperature Ts. As a result, the temperature detected by the temperature sensor 32 reaches the heat transfer tube damage determination temperature Ts.
[0029]
At this time, since the upper part of the detection chamber 31 is closed, a part of the steam leaking from the inside of the inner case 21 stays in the upper part of the detection chamber 31. The detection end of the temperature sensor 32 is provided on the opposite side of the opening 31 a of the detection chamber 31, that is, on the upper side, so that the temperature sensor 32 detects the temperature of the leaked steam trapped in the detection chamber 31. It will be.
[0030]
Therefore, the temperature detected by the temperature sensor 32 is maintained at the peak state for a predetermined time. That is, the peak value duration of the temperature detected by the temperature sensor 32 is secured. Therefore, even if the temperature detected by the temperature sensor 32 instantaneously reaches the peak value, the control device 51 does not perform the abnormality determination, and confusion with the noise of the temperature sensor 32 can be avoided. Since the lower part of the detection chamber 31 is open, there is no possibility that steam leaking from the inner case 21 is condensed and accumulated in the detection chamber 31.
[0031]
Further, the temperature sensor 32 does not detect a sudden rise of the detection value, and does not detect the peak value every time steam is generated. Incidentally, when the steam leaking from the inner case 21 is directly received by the temperature sensor 32, the temperature sensor 32 detects a rapid rise of the detected value and detects a peak value every time steam is generated.
[0032]
That is, the heat transfer tube 25 is damaged, and the heat medium leaked from the damaged portion becomes vapor and explosively released to the detection chamber 31. However, after this, the heat storage material 24 around the broken portion of the heat transfer tube 25 is cooled by the heat medium on the contrary, blocking the leak path, and the discharge of the heat medium vapor stops. Therefore, the peak value is not maintained. Thereafter, the heat storage material 24 around the broken portion of the heat transfer tube 25 is heated and liquefied again by the heat of the heat storage material 24 around the heat storage material 24 being transferred. Then, the steam ejection path is formed again, and the heat medium steam is ejected again. Then, the detection value of the temperature sensor 32 reaches the peak value again. Therefore, the peak value maintenance time is short, and a stable detection operation cannot be obtained. According to the present embodiment, since such a situation is avoided, the detection operation of the temperature sensor 32 is stabilized.
[0033]
Further, even when the degree of breakage of the heat transfer tube 25 is small and the amount of leaked steam from the inside of the inner case 21 is small, the leaked steam having a temperature higher than the normal temperature of the high-temperature atmosphere gas is continuously generated. The temperature in the detection chamber 31 gradually increases due to the leakage and the confinement in the detection chamber 31. The temperature of the leaked steam reaches the detection chamber without radiating heat. Then, although a certain time is required, the detected temperature in the detection chamber 31 reaches a peak value and is maintained for a predetermined time. As described above, the predetermined detection condition (in the present embodiment, the temperature in the detection chamber 31 reaches the heat transfer tube damage determination temperature Ts) due to the accumulation of the steam leaking from the inner case 21 in the detection chamber 31. Is satisfied. Therefore, regardless of the amount of steam leaking from the inner case 21, an abnormal state (that is, breakage of the heat transfer tube) can be reliably detected.
[0034]
As described above, when the temperature in the detection chamber 31 detected by the temperature sensor 32 reaches the preset heat transfer tube damage determination temperature Ts, the control device 51 detects a steam leak from the inner case 21. That is, the control device 51 determines that the heat transfer tube 25 is damaged. Then, the control device 51 outputs a heat transfer tube breakage signal to abnormality notification means (not shown) such as an LED (light emitting diode), a display, and a speaker.
[0035]
(Effects of the embodiment)
Therefore, according to the present embodiment, the following effects can be obtained.
(1) A steam detector provided outside the inner case 21 and capable of detecting the heat medium vapor generated in the inner case 21, and guiding the heat medium vapor generated in the inner case 21 to the steam detector. And a steam outlet pipe 41. Then, it is determined that the heat transfer tube 25 is damaged when the heat medium steam is detected by the steam detection unit.
[0036]
Specifically, the steam detection unit includes a detection chamber 31 provided outside the inner case 21 (strictly, the outer case 23), a temperature sensor 32 for detecting the temperature in the detection chamber 31, and a temperature sensor 32. And a controller 51 for determining whether or not the heat transfer tube 25 is damaged based on the temperature in the detection chamber 31 detected by the control unit 51. The heat medium vapor generated in the inner case 21 is guided to the detection chamber 31 via the vapor discharge pipe 41, and when the temperature in the detection chamber 31 reaches the heat transfer pipe breakage determination temperature Ts, the control device 51 transmits the heat transfer pipe. 25 is determined to be damaged.
[0037]
Therefore, when the heat transfer tube 25 is damaged for some reason, the damage of the heat transfer tube 25 can be found at an early stage, and the heat transfer tube 25 is not left in a damaged state until the next periodic inspection. Further, the breakage of the heat transfer tube 25 can be detected without stopping the operation of the heat storage device 11 or once emptying the heat transfer tube 25. For this reason, the breakage of the heat transfer tube 25 can be always detected during the operation without stopping the operation of the heat storage device 11. Therefore, if the heat transfer tube 25 is damaged during the operation of the heat storage device 11, it can be detected immediately.
[0038]
(2) The steam detection section is arranged on the opposite side of the both ends of the heat transfer tube 25 from the outlet side. Specifically, the detection chamber 31 is arranged on the opposite side of the direction in which both ends of the heat transfer tube 25 are led out. Therefore, the temperature sensor 32 provided in the detection chamber 31 is not affected by an increase in the ambient temperature due to heat radiation from the outlet of the heat transfer tube 25. Therefore, erroneous detection of leaked steam is suppressed, and the presence or absence of breakage of the heat transfer tube 25 can be more accurately detected.
[0039]
(3) The upper part of the detection chamber 31 was closed, and the lower part was provided with an opening 31a. Then, the temperature sensor 32 is arranged on the opposite side of the opening 31 a of the detection chamber 31, that is, on the upper part of the detection chamber 31. Since the leaked steam from the inner case 21 is trapped in the upper part of the detection chamber 31, the temperature detected by the temperature sensor 32 is maintained at a peak state for a predetermined time. Therefore, the detection operation of the temperature sensor 32 is stabilized.
[0040]
(4) The heat storage device 11 is provided with a heat transfer tube damage detection device D. Therefore, the breakage of the heat transfer tube 25 can be detected without stopping the operation of the heat storage device 11.
[0041]
(Another example)
The above-described embodiment may be modified and implemented as follows.
In the present embodiment, the detection chamber 31 is arranged on the side opposite to the side from which both ends of the heat transfer tube 25 are led out. However, as shown by the two-dot chain line in FIG. The detection chamber 31 may be provided on one of a pair of side walls orthogonal to the side wall and facing each other. Even in this case, erroneous detection of leaked steam can be suppressed as compared with the case where the detection chamber 31 is provided on the side wall from which both ends of the heat transfer tube 25 are led out in the outer case 23.
[0042]
-In this embodiment, although the detection chamber 31 was formed integrally with the lid 23b, the detection chamber 31 may be a separate member. Even in this case, the same effects as the effects (1) to (4) described in the first embodiment can be obtained.
[0043]
In the present embodiment, the detection chamber 31 has a rectangular tube shape, but is not limited to this shape, and may have a cylindrical shape, an elliptical cylindrical shape, or the like. In this case, the same effects as in the first embodiment can be obtained.
[0044]
In the present embodiment, the vapor outlet pipe 41 is connected (that is, opened) to a substantially central portion of the detection chamber 31, but may be as shown in FIG. 3A or 3B. . That is, as shown in FIG. 3A, a vapor outlet pipe 41 is opened at the upper part of the detection chamber 31, and the detection end 32a of the temperature sensor 32 is disposed below the vapor outlet pipe 41. Further, as shown in FIG. 3 (b), a vapor outlet pipe 41 is opened in the upper part of the detection chamber 31, and the detection end 32a of the temperature sensor 32 is arranged at a substantially horizontal position. In other words, the detection end 32a is arranged so as to face the opening of the steam outlet pipe 41 (the connection part of the steam outlet pipe 41 to the detection chamber 31). In any case, effects similar to the effects (1) to (4) in the first embodiment can be obtained.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, breakage of a heat exchanger tube can be discovered at an early stage, without stopping operation.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a heat storage device according to an embodiment.
FIG. 2 is a plan view of the heat storage device according to the embodiment.
FIGS. 3A and 3B are enlarged cross-sectional views of a main part of a heat transfer tube breakage detecting device according to another embodiment.
[Explanation of symbols]
11: heat storage device, 21: inner case constituting a case,
24: heat storage material constituting a heat source; 25: heat transfer tube; 26: electric heater;
31 ... a detection chamber constituting a steam detection unit,
31a ... opening of the detection chamber
32 temperature sensors constituting temperature detecting means and a steam detecting section;
41 ... a steam outlet pipe constituting a communication passage,
51: a control device that constitutes the judgment means and the steam detection unit; D: a heat transfer tube damage detection device.

Claims (5)

ケース内に配設されると共に内部に熱媒体が流され、当該熱媒体と熱源との間で熱交換を行う伝熱管の破損を検出する伝熱管破損検出装置において、
前記ケースの外部に設けられると共に前記ケース内において発生した熱媒体蒸気を検出可能とした蒸気検出部と、
前記ケース内において発生した熱媒体蒸気を前記蒸気検出部に導く連通路とを備え、
前記連通路からの熱媒体蒸気を検出したときに前記蒸気検出部は伝熱管には破損が発生していると判断するようにした伝熱管破損検出装置。
A heat transfer tube breakage detecting device that detects breakage of a heat transfer tube that performs heat exchange between the heat medium and the heat source, wherein the heat transfer medium is disposed inside the case and the heat medium flows therein.
A steam detection unit provided outside the case and capable of detecting heat medium steam generated in the case,
A communication path that guides the heat medium vapor generated in the case to the vapor detection unit,
A heat transfer tube breakage detection device, wherein when detecting heat medium steam from the communication passage, the steam detection unit determines that the heat transfer tube is broken.
前記ケースにおいて、伝熱管の両端部の導出側とは反対側に、前記蒸気検出部を配置するようにした請求項1に記載の伝熱管破損検出装置。2. The heat transfer tube damage detection device according to claim 1, wherein, in the case, the steam detection unit is arranged on a side opposite to a lead-out side of both ends of the heat transfer tube. 3. 前記蒸気検出部は、
前記ケースの外部に設けられた検出室と、
前記検出室内の温度を検出する温度検出手段と、
前記温度検出手段により検出された前記検出室内の温度に基づいて前記伝熱管の破損の有無を判断する判断手段とを備え、
前記連通路により前記ケースの内部と前記検出室の内部とを連通するようにした請求項1又は請求項2に記載の伝熱管破損検出装置。
The steam detector,
A detection chamber provided outside the case,
Temperature detection means for detecting the temperature in the detection chamber,
Judgment means for judging the presence or absence of breakage of the heat transfer tube based on the temperature in the detection chamber detected by the temperature detection means,
3. The heat transfer tube damage detection device according to claim 1, wherein the inside of the case and the inside of the detection chamber are communicated with each other through the communication passage. 4.
前記検出室の上部を閉鎖し、同じく下部には開口部を設けるようにした請求項3に記載の伝熱管破損検出装置。4. The heat transfer tube breakage detecting device according to claim 3, wherein an upper portion of the detection chamber is closed, and an opening is provided at the lower portion. ケースに充填された蓄熱材を加熱する電気ヒータと、前記ケース内に配設されると共に内部に熱媒体が流され同熱媒体と前記蓄熱材との間で熱交換を行う伝熱管とを備えた蓄熱装置において、
請求項1〜請求項4のうちいずれか一項に記載の伝熱管破損検出装置を備えた蓄熱装置。
An electric heater that heats the heat storage material filled in the case, and a heat transfer tube that is disposed in the case and through which a heat medium flows therein and performs heat exchange between the heat medium and the heat storage material. Heat storage device,
A heat storage device comprising the heat transfer tube damage detection device according to any one of claims 1 to 4.
JP2003063924A 2003-03-10 2003-03-10 Heat transfer pipe failure detecting device and heat storage device equipped therewith Pending JP2004271086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063924A JP2004271086A (en) 2003-03-10 2003-03-10 Heat transfer pipe failure detecting device and heat storage device equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063924A JP2004271086A (en) 2003-03-10 2003-03-10 Heat transfer pipe failure detecting device and heat storage device equipped therewith

Publications (1)

Publication Number Publication Date
JP2004271086A true JP2004271086A (en) 2004-09-30

Family

ID=33125380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063924A Pending JP2004271086A (en) 2003-03-10 2003-03-10 Heat transfer pipe failure detecting device and heat storage device equipped therewith

Country Status (1)

Country Link
JP (1) JP2004271086A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125217A (en) * 2005-11-04 2007-05-24 Rinnai Corp Mist sauna apparatus
JP7367610B2 (en) 2020-05-20 2023-10-24 株式会社Ihi Heat exchanger cover plate structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125217A (en) * 2005-11-04 2007-05-24 Rinnai Corp Mist sauna apparatus
JP4567574B2 (en) * 2005-11-04 2010-10-20 リンナイ株式会社 Mist sauna equipment
JP7367610B2 (en) 2020-05-20 2023-10-24 株式会社Ihi Heat exchanger cover plate structure

Similar Documents

Publication Publication Date Title
JP3697668B2 (en) Exhaust gas purification device, operating method thereof, and monitoring method thereof
JP5019861B2 (en) Plant leak detection system
US10476090B2 (en) Fuel cell system
US10794792B2 (en) Leak detection system
KR101506871B1 (en) Control system for inside water leak of water-heating equipment having heat exchanger and the method thereof
JP2004271086A (en) Heat transfer pipe failure detecting device and heat storage device equipped therewith
JP2020169760A (en) Temperature control device
KR101812264B1 (en) indirect heating type electric water heater
JP6223046B2 (en) Leak detection device and nuclear facility
JP2004177079A (en) Heat transfer pipe damage detecting structure and heat accumulator having this structure
CN104913495B (en) The control method of electric heater and electric heater
US10332645B2 (en) Method and device for storing containers having an encapsulated fuel rod or a fuel rod section
JP4859955B2 (en) Method and apparatus for searching for leak location of condenser cooling pipe
KR20160122181A (en) Device and method for protecting a vacuum environment against leakage, and euv radiation-generating apparatus
KR102446841B1 (en) Leak inspection apparatus of coolant heater for electric vehicle
KR100707965B1 (en) A structure of warm water pipe have a safety device
JP2011141085A (en) Tube leakage detection method
JP6137981B2 (en) Leak detection device and nuclear facility
JPH10127740A (en) Disinfection device
JPS5927236A (en) Steam leakage detector
JP5117910B2 (en) Bath facilities
US11137316B2 (en) Leak detection system
JP7204308B2 (en) judgment device
JP2008208877A (en) Method and device for detecting liquid leakage from double pipe
JP2009275685A (en) Failure diagnosis device for vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A131 Notification of reasons for refusal

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414