JP2004271041A - Melting furnace - Google Patents

Melting furnace Download PDF

Info

Publication number
JP2004271041A
JP2004271041A JP2003061887A JP2003061887A JP2004271041A JP 2004271041 A JP2004271041 A JP 2004271041A JP 2003061887 A JP2003061887 A JP 2003061887A JP 2003061887 A JP2003061887 A JP 2003061887A JP 2004271041 A JP2004271041 A JP 2004271041A
Authority
JP
Japan
Prior art keywords
chamber
melting
temperature
swirling
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061887A
Other languages
Japanese (ja)
Other versions
JP4068483B2 (en
Inventor
Kenichi Horai
賢一 蓬莱
Hiroomi Kamano
博臣 釜野
Koji Mizuta
浩二 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2003061887A priority Critical patent/JP4068483B2/en
Publication of JP2004271041A publication Critical patent/JP2004271041A/en
Application granted granted Critical
Publication of JP4068483B2 publication Critical patent/JP4068483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To operate a melting furnace in a state in which temperatures of a revolving melting chamber and a weld pool chamber are kept constant as much as possible. <P>SOLUTION: This melting furnace comprises a thermometer 17a for detecting a temperature of the circular melting chamber 3 and a thermometer 17b for detecting a temperature of the weld pool chamber 4, and the detected temperatures by these thermometers 17a, 17b are respectively compared with predetermined set temperatures, so that the horizontal spiral flow H is strengthened, and a retention time of a combustible component in the circular melting chamber 3 is elongated, when a degree of lowering of the detected temperature from the set temperature in the circular melting chamber 3 is higher than that in the weld pool chamber 4, and a downward spiral flow V is strengthened, and a retention time of the combustible component in the circular melting chamber 3 is shortened, when the degree of lowering of the detected temperature from the set temperature in the weld pool chamber 4 is higher than that in the revolving melting chamber 4. Whereby the melting furnace can be operated in a state that the temperatures of the circular melting chamber 3 and the weld pool chamber 4 can be kept constant as much as possible by increasing a combustion degree of the combustible component in the chamber of higher temperature lowering degree. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、熱分解炉から排出される不燃分を、熱分解ガスの燃焼熱を利用して溶融する溶融炉に関するものである。
【0002】
【従来の技術】
熱分解炉から排出される不燃分と熱分解ガスを導入して、不燃分を熱分解ガスの燃焼熱を利用して溶融する溶融炉には、不燃分を溶融する旋回溶融室と、溶融された不燃分が流落して溜まる溶融池室とを上下に備え、旋回溶融室の頂部に、下降旋回流を形成する燃焼用空気と熱分解ガスのノズルを設け、この頂部よりも下方の旋回溶融室の上部に、水平旋回流を形成する燃焼用空気のノズルを設けたものがある(例えば、特許文献1、2参照。)。
【0003】
熱分解炉から排出される不燃分は、熱分解ガスに混入する飛灰としてや、粉砕された粉体として旋回溶融室の頂部または上部から導入される。また、熱分解ガスにはチャー等の未燃分も混入し、未燃分は粉砕される不燃分にも混入する。
【0004】
前記熱分解炉で発生する熱分解ガスの量は、処理される廃棄物等の種類によって絶えず変動し、熱分解ガスに含まれる可燃ガス、未燃分、不燃分等の成分割合も変動する。また、粉砕した不燃分も導入する場合は、これに含まれる未燃分の割合も変動する。特許文献2に記載されたものでは、溶融炉への熱分解ガスの導入路に、熱分解ガスの一部を抽出して空気と燃焼させ、その火炎温度から熱分解ガスの理論空気量を検出する熱分解ガスセンサを設け、その検出出力に基づいて燃焼用空気の供給量を制御し、成分割合が変動する熱分解ガスを溶融炉内で完全燃焼させるようにしている。
【0005】
【特許文献1】
特開平9−243027号公報(第2−4頁、第1図)
【特許文献2】
特開平11−304129号公報(第4−6頁、第1−3図)
【0006】
【発明が解決しようとする課題】
上述した燃焼用空気の供給量を制御して熱分解ガスを完全燃焼させる方法は、その燃焼熱を不燃分の溶融に有効に活用できるが、上述したように、熱分解ガス中の可燃ガスや未燃分等の可燃成分の割合は、熱分解炉で処理される廃棄物等の種類によって絶えず変動するので、これらの可燃成分を完全燃焼したときの発熱量も大きく変動する。このため、溶融炉の旋回溶融室や溶融池室を一定温度に保って運転することが難しい問題がある。すなわち、炉内温度が高過ぎる場合は溶融炉の寿命が短くなり、低過ぎる場合は不燃分の溶融が不十分となる。
【0007】
なお、特許文献2に記載されたものでは、前記熱分解ガスセンサと炉内温度センサの出力に基づいて、燃焼ガス温度が不燃分の溶融温度以下のときに、この燃焼ガスよりも発熱量が高い助燃燃料を補給し、炉内温度が許容温度以上のときにその補給を遮断するようにしているが、この方法は、炉内温度が高過ぎる場合の基本的な解決策とはなっていない。
【0008】
そこで、この発明の課題は、旋回溶融室や溶融池室の温度をできるだけ一定に保って溶融炉を運転できるようにすることである。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、熱分解炉から排出される不燃分と熱分解ガスを導入して、不燃分を熱分解ガスの燃焼熱で溶融する旋回溶融室と、この溶融された不燃分が流落して溜まる溶融池室とを上下に備え、前記旋回溶融室の頂部に、下向きの下降旋回流を形成する燃焼用空気ノズルと熱分解ガス導入ノズルを設け、この頂部よりも下方の旋回溶融室の上部に、水平向きの水平旋回流を形成する燃焼用空気ノズルを設けた溶融炉において、前記旋回溶融室の温度を検出する温度計と、前記溶融池室の温度を検出する温度計とを設け、これらの各温度計による各室の検出温度を、それぞれについて予め設定された設定温度と比較し、前記検出温度の設定温度からの低下量が、前記旋回溶融室の方が前記溶融池室よりも大きいときは前記水平旋回流を強くし、前記溶融池室の方が前記旋回溶融室よりも大きいときは前記下降旋回流を強くする構成を採用した。
【0010】
本発明者らは、溶融炉の炉内温度の変動を観察した結果、旋回溶融室と溶融池室の各温度変動の傾向は必ずしも一致せず、旋回溶融室の温度が上昇しているにもかかわらず溶融池室の温度が下降したり、逆に、旋回溶融室の温度があまり変化しないのに溶融池室の温度が大きく上昇したりすることが多々あることを見出した。この現象は、熱分解ガスは下降旋回流として旋回溶融室の頂部から導入されるので、その可燃成分が少ない場合は、これらが旋回溶融室のみで燃焼し尽くされ、可燃成分が多い場合は、旋回溶融室での燃焼量は殆ど変わらずに、溶融池室での燃焼量が増加するためと考えられる。また、これらの各室での可燃成分の燃焼度合いは、熱分解ガス中の固形の未燃分の割合やサイズによっても変化するものと思われる。
【0011】
そこで、このように旋回溶融室と溶融池室の温度変動の傾向が異なることを利用して、これらの各室の検出温度を予め設定された設定温度と比較し、検出温度の設定温度からの低下量が、旋回溶融室の方が溶融池室よりも大きいときは水平旋回流を強くして、可燃成分の旋回溶融室での滞留時間を長くし、溶融池室の方が旋回溶融室よりも大きいときは下降旋回流を強くして、可燃成分の旋回溶融室での滞留時間を短くすることにより、温度低下量が大きいほうの室内での可燃成分の燃焼度合いを高め、旋回溶融室や溶融池室の温度をできるだけ一定に保てるようにした。
【0012】
前記熱分解ガス導入ノズルを、前記水平旋回流を形成する前記旋回溶融室の上部にも設けることにより、可燃成分の旋回溶融室での滞留時間の調節の自由度を大きくすることができる。
【0013】
【発明の実施の形態】
以下、図面に基づき、この発明の実施形態を説明する。図1は、第1の実施形態を示す。この溶融炉は、熱分解炉1から排出される熱分解ガス2を導入して、熱分解ガス2に含まれる飛灰等の不燃分を溶融する旋回溶融室3と、溶融された不燃分が流落して溜まる溶融池室4とを上下に備え、旋回溶融室3の頂部に下向きに取り付けられたバーナ5の回りに、下向きの下降旋回流Vを形成する燃焼用空気ノズル6と熱分解ガス導入ノズル7とが設けられ、この頂部よりも下方の旋回溶融室3の上部に、水平向きの水平旋回流Hを形成する複数の燃焼用空気ノズル8が設けられている。燃焼用空気は各ブロワ9a、9bからそれぞれのノズル6、8に供給される。
【0014】
また、前記溶融池室4には、不燃分の溶融したスラグ10を溜める堰11が設けられ、その天井には補助バーナ12が設けられている。堰11からオーバフローする溶融スラグ10は、樋13から流下路14に沿って下方の冷却ピット(図示省略)に流下し、炉内で発生する高温排ガス15は、流下路14の壁に設けられた排出口16から排出ダクトに排出される。
【0015】
前記旋回溶融室3と溶融池室4には、それぞれの上中下部における炉内温度を検出する3つずつの温度計17a、17bが設けられている。また、排出口16の入口近くには、高温排ガス15中のCOやNO等の不完全燃焼成分の濃度を検出する排ガス濃度計18が設けられている。各温度計17a、17bと排ガス濃度計18の検出出力はコントローラ19に入力され、コントローラ19はこれらの検出結果に基づいて、各ブロワ9a、9bから各ノズル6、8への燃焼用空気の供給量Q、Qを制御するようになっている。
【0016】
図2は、前記コントローラ19による制御のアルゴリズムの一部を示すフローチャートである。コントローラ19には、高温排ガス15中の不完全燃焼成分、例えば、COの濃度Aの上限値Aと、旋回溶融室3と溶融池室4の各炉内温度θ、θの目標設定値θ1S、θ2Sが予め記憶されている。なお、この実施形態では、各目標設定値θ1S、θ2Sは、いずれも1300℃とされている。
【0017】
コントローラ19は、まず、排ガス濃度計18で検出される不完全燃焼成分の濃度Aを上限値Aと比較し、濃度Aが上限値Aを超えたときは、各ノズル6、8への燃焼用空気の供給量Q、Qを一律に増加させる。
【0018】
つぎに、コントローラ19は、各温度計17a、17bの出力をそれぞれ平均して、これらの各平均値を旋回溶融室3と溶融池室4の炉内温度θ、θとし、それぞれについて目標設定値θ1S、θ2Sからの低下量Δθ(=θ1S−θ)、Δθ(=θ2S−θ)を算出する。さらに、これらの各低下量Δθ、Δθを大小比較し、Δθ>Δθのときは、燃焼用空気の供給量Q、Qの比Q/Qを減少させ、Δθ<Δθのときは、比Q/Qを増加させる。すなわち、旋回溶融室3の温度低下量Δθが大きいときは、ノズル8に供給する燃焼用空気の供給量Qの比率を増やして、水平旋回流Hを強くし、溶融池室4の温度低下量Δθが大きいときは、ノズル6に供給する燃焼用空気の供給量Qの比率を増やして、下降旋回流Vを強くする。
【0019】
上述した実施形態では、旋回溶融室3と溶融池室4の炉内温度θ、θが等しくなるように、絶えず供給量Q、Qの比率を制御したが、各炉内温度θ、θが所定範囲外となったときのみに、供給量Q、Qの比率を制御することもできる。例えば、旋回溶融室3と溶融池室4の上下限温度θ、θを、それぞれ等しい温度の1450℃と1250℃とに設定する。そして、炉内温度θ、θのいずれか一方が上下限温度θ、θを外れたときに、供給量Q、Qの比率を制御して、外れた方の炉内温度を上下限温度θ、θの範囲内でもう一方の炉内温度と等しくなるようにする。
【0020】
図3は、第2の実施形態を示す。この溶融炉は、基本的な構成は第1の実施形態のものと同じであり、熱分解炉1から熱分解ガス導入ノズル7への熱分解ガス2の導入路に分岐が設けられ、分岐された導入路が、旋回溶融室3の上部に設けられた水平旋回流Hを形成する熱分解ガス導入ノズル20に接続され、分岐された各導入路にダンパ21a、21bが設けられている点が異なる。
【0021】
前記各ダンパ21a、21bの開度はコントローラ19で制御されるようになっており、この実施形態の場合は、第1の実施形態における燃焼用空気の供給量の比Q/Qの制御の他に、旋回溶融室3の温度低下量Δθが大きいときに、ダンパ21bの開度を大きくして水平旋回流Hを強くし、溶融池室4の温度低下量Δθが大きいときに、ダンパ21aの開度を大きくして下降旋回流Vを強くするようになっている。
【0022】
上述した各実施形態では、熱分解ガスに含まれる不燃分のみを溶融させるものとしたが、本発明に係る溶融炉は、粉砕した不燃分も導入するタイプのものにも採用することができる。
【0023】
【発明の効果】
以上のように、この発明の溶融炉は、旋回溶融室の温度を検出する温度計と、溶融池室の温度を検出する温度計とを設け、これらの各温度計による各室の検出温度を、それぞれについて予め設定された設定温度と比較し、検出温度の設定温度からの低下量が、旋回溶融室の方が溶融池室よりも大きいときは水平旋回流を強くして、可燃成分の旋回溶融室での滞留時間を長くし、溶融池室の方が旋回溶融室よりも大きいときは下降旋回流を強くして、可燃成分の旋回溶融室での滞留時間を短くするようにしたので、温度低下量が大きいほうの室内での可燃成分の燃焼度合いを高めて、旋回溶融室や溶融池室の温度をできるだけ一定に保ち、炉の耐久寿命を延長できるとともに、不燃分を効率よく溶融することができる。
【0024】
前記熱分解ガス導入ノズルを、前記水平旋回流を形成する旋回溶融室の上部にも設けることにより、可燃成分の旋回溶融室での滞留時間の調節の自由度を大きくすることができる。
【図面の簡単な説明】
【図1】第1の実施形態の溶融炉を示す縦断面図
【図2】図1のコントローラのアルゴリズムを示すフローチャート
【図3】第2の実施形態の溶融炉を示す縦断面図
【符号の説明】
1 熱分解炉
2 熱分解ガス
3 旋回溶融室
4 溶融池室
5 バーナ
6 空気ノズル
7 熱分解ガス導入ノズル
8 空気ノズル
9a、9b ブロワ
10 溶融スラグ
11 堰
12 補助バーナ
13 樋
14 流下路
15 高温排ガス
16 排出口
17a、17b 温度計
18 排ガス濃度計
19 コントローラ
20 熱分解ガス導入ノズル
21a、21b ダンパ
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melting furnace for melting incombustible components discharged from a pyrolysis furnace by using combustion heat of a pyrolysis gas.
[0002]
[Prior art]
The melting furnace, which introduces the incombustible components and pyrolysis gas discharged from the pyrolysis furnace and melts the noncombustible components using the combustion heat of the pyrolysis gas, has a swirl melting chamber for melting the noncombustible component, The upper part of the swirling melting chamber is provided with nozzles for combustion air and pyrolysis gas forming a downward swirling flow, and the swirling melt below this top There is one in which a nozzle for combustion air that forms a horizontal swirling flow is provided in an upper part of a chamber (for example, see Patent Documents 1 and 2).
[0003]
The non-combustible components discharged from the pyrolysis furnace are introduced as fly ash mixed into the pyrolysis gas or as pulverized powder from the top or upper part of the swirling melting chamber. Further, unburned components such as char are also mixed into the pyrolysis gas, and the unburned components are also mixed into unburned components to be pulverized.
[0004]
The amount of pyrolysis gas generated in the pyrolysis furnace constantly varies depending on the type of waste or the like to be treated, and the proportion of components such as combustible gas, unburned components, and non-burned components contained in the pyrolysis gas also varies. In addition, when a pulverized non-combustible component is also introduced, the ratio of the unburned component contained therein also varies. In the method described in Patent Document 2, a part of the pyrolysis gas is extracted and introduced into the introduction path of the pyrolysis gas to the melting furnace and burned with air, and the theoretical air amount of the pyrolysis gas is detected from the flame temperature. A pyrolysis gas sensor is provided, and the supply amount of combustion air is controlled based on the detection output so that the pyrolysis gas having a variable component ratio is completely burned in the melting furnace.
[0005]
[Patent Document 1]
JP-A-9-243027 (pages 2-4, FIG. 1)
[Patent Document 2]
JP-A-11-304129 (page 4-6, FIG. 1-3)
[0006]
[Problems to be solved by the invention]
The method of completely burning the pyrolysis gas by controlling the supply amount of the combustion air as described above can effectively utilize the combustion heat for melting the non-combustible component. Since the proportion of combustible components such as unburned components constantly varies depending on the type of waste or the like to be treated in the pyrolysis furnace, the amount of heat generated when these combustible components are completely burned also varies greatly. For this reason, there is a problem that it is difficult to operate the swirling melting chamber and the molten pool chamber of the melting furnace at a constant temperature. That is, if the temperature in the furnace is too high, the life of the melting furnace is shortened, and if the temperature in the furnace is too low, the melting of incombustible components becomes insufficient.
[0007]
According to the technology described in Patent Literature 2, when the combustion gas temperature is equal to or lower than the melting temperature of the non-combustible component, the calorific value is higher than the combustion gas based on the outputs of the pyrolysis gas sensor and the furnace temperature sensor. Although supplementary fuel is supplied and the refueling is shut off when the furnace temperature is higher than the allowable temperature, this method is not a basic solution when the furnace temperature is too high.
[0008]
Therefore, an object of the present invention is to make it possible to operate a melting furnace while keeping the temperature of a swirling melting chamber or a melting pool chamber as constant as possible.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a swirl melting chamber that introduces a non-combustible component and a pyrolysis gas discharged from a pyrolysis furnace and melts the non-combustible component with the combustion heat of the pyrolysis gas. The upper part of the swirling melting chamber is provided with a combustion air nozzle and a pyrolysis gas introduction nozzle that form a downward swirling flow. In a melting furnace provided with a combustion air nozzle that forms a horizontal swirling flow in the horizontal direction, a thermometer that detects the temperature of the swirling melting chamber, and a temperature of the melting pool chamber, A thermometer to be detected is provided, and the temperature detected by each of these thermometers in each of the chambers is compared with a preset set temperature for each of the thermometers. Is larger than the molten pool chamber The strong horizontal swirling flow, when towards the molten pool chamber is greater than the swirling-type slagging chamber adopts the configuration to strengthen the downward swirling flow.
[0010]
The present inventors have observed fluctuations in the furnace temperature of the melting furnace, and as a result, the tendency of each temperature fluctuation of the swirl melting chamber and the molten pool chamber does not necessarily match, and even when the temperature of the swirl melting chamber is rising. Regardless, it has been found that the temperature of the molten pool chamber often drops, or conversely, the temperature of the molten pool chamber rises significantly even though the temperature of the swirling melt chamber does not change much. This phenomenon is because the pyrolysis gas is introduced from the top of the swirling melting chamber as a downward swirling flow, so when its flammable components are small, these are burned out only in the swirling melting chamber, and when there are many flammable components, It is considered that the amount of combustion in the swirl melting chamber hardly changed, and the amount of combustion in the molten pool chamber increased. Further, it is considered that the degree of combustion of the combustible components in each of these chambers also changes depending on the ratio and size of the solid unburned portion in the pyrolysis gas.
[0011]
Therefore, utilizing the fact that the tendency of the temperature fluctuation between the swirling melting chamber and the molten pool chamber is different, the detected temperature of each of these chambers is compared with a preset set temperature, and the detected temperature is calculated from the set temperature. When the amount of reduction is larger in the swirl melting chamber than in the molten pool chamber, the horizontal swirling flow is strengthened to increase the residence time of the combustible components in the swirling melting chamber, and the molten pool chamber is more than the swirling melting chamber. When the temperature is also large, the descending swirl flow is strengthened and the residence time of the combustible component in the swirl melting chamber is shortened, so that the degree of combustion of the combustible component in the chamber with the larger temperature decrease is increased. The temperature of the molten pool chamber was kept as constant as possible.
[0012]
By providing the pyrolysis gas introduction nozzle also in the upper part of the swirling melting chamber that forms the horizontal swirling flow, the degree of freedom of adjusting the residence time of the combustible component in the swirling melting chamber can be increased.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment. This melting furnace introduces the pyrolysis gas 2 discharged from the pyrolysis furnace 1 and melts the non-combustible components such as fly ash contained in the pyrolysis gas 2, and the molten non-combustible component is A combustion-air nozzle 6 and a pyrolysis gas that form a downward swirling flow V around a burner 5 that is provided with a molten pool chamber 4 that flows down and accumulates upward and downward, and that is attached downward at the top of the swirling melting chamber 3. An introduction nozzle 7 is provided, and a plurality of combustion air nozzles 8 for forming a horizontal swirl flow H are provided above the swirl melting chamber 3 below the top. The combustion air is supplied from the respective blowers 9a, 9b to the respective nozzles 6, 8.
[0014]
The molten pool chamber 4 is provided with a weir 11 for storing a slag 10 in which incombustible components are melted, and an auxiliary burner 12 is provided on a ceiling thereof. The molten slag 10 overflowing from the weir 11 flows down from the gutter 13 to the lower cooling pit (not shown) along the downflow path 14, and the high-temperature exhaust gas 15 generated in the furnace is provided on the wall of the downflow path 14. It is discharged from the discharge port 16 to a discharge duct.
[0015]
Each of the swirling melting chamber 3 and the melting pool chamber 4 is provided with three thermometers 17a and 17b for detecting the furnace temperature in the upper, middle, and lower portions, respectively. Also, near the inlet of the discharge port 16, the exhaust gas concentration meter 18 for detecting the concentration of incomplete combustion components such as CO and NO X in the high-temperature exhaust gas 15 is provided. The detection outputs of the thermometers 17a and 17b and the exhaust gas concentration meter 18 are input to a controller 19, and the controller 19 supplies the combustion air from the blowers 9a and 9b to the nozzles 6 and 8 based on the detection results. The quantities Q 1 and Q 2 are controlled.
[0016]
FIG. 2 is a flowchart showing a part of an algorithm of control by the controller 19. The controller 19, the incomplete combustion component in the high-temperature exhaust gas 15, for example, and the upper limit value A U concentration A of CO, the furnace temperature theta 1 of the swirling melter 3 and molten pool chamber 4, theta 2 target setting The values θ 1S and θ 2S are stored in advance. In this embodiment, each of the target set values θ 1S and θ 2S is set to 1300 ° C.
[0017]
The controller 19, first, the concentration A of the incomplete combustion component detected by the exhaust gas concentration meter 18 is compared with the upper limit value A U, when the concentration A exceeds the upper limit value A U, to the nozzles 6, 8 The supply amounts Q 1 and Q 2 of the combustion air are uniformly increased.
[0018]
Next, the controller 19 averages the outputs of the thermometers 17a and 17b, respectively, and sets these average values as the furnace temperatures θ 1 and θ 2 of the swirl melting chamber 3 and the molten pool chamber 4, respectively. The amount of decrease Δθ 1 (= θ 1S −θ 1 ) and Δθ 2 (= θ 2S −θ 2 ) from the set values θ 1S and θ 2S are calculated. Further, these reduction amounts Δθ 1 , Δθ 2 are compared in magnitude, and when Δθ 1 > Δθ 2 , the ratio Q 1 / Q 2 of the supply amounts Q 1 , Q 2 of the combustion air is reduced, and Δθ 1 When <Δθ 2 , the ratio Q 1 / Q 2 is increased. That is, when the temperature decrease amount Δθ 1 of the swirl melting chamber 3 is large, the ratio of the supply amount Q 2 of the combustion air supplied to the nozzle 8 is increased to strengthen the horizontal swirl flow H, and the temperature of the molten pool chamber 4 is increased. when reduction amount [Delta] [theta] 2 is large, increase the ratio of the supply amount to Q 1 combustion air supplied to the nozzle 6, which strongly downward swirling flow V.
[0019]
In the above-described embodiment, the ratios of the supply amounts Q 1 and Q 2 are constantly controlled so that the in-furnace temperatures θ 1 and θ 2 of the swirl melting chamber 3 and the molten pool chamber 4 become equal. It is also possible to control the ratio between the supply amounts Q 1 and Q 2 only when the values of θ 1 and θ 2 are out of the predetermined range. For example, the upper and lower limit temperatures θ U and θ L of the swirling melting chamber 3 and the molten pool chamber 4 are set to 1450 ° C. and 1250 ° C., which are the same temperature, respectively. Then, when one of the furnace temperatures θ 1 and θ 2 deviates from the upper and lower limit temperatures θ U and θ L , the ratio of the supply amounts Q 1 and Q 2 is controlled so that the deviated furnace temperature Is set equal to the other furnace temperature within the range of the upper and lower limit temperatures θ U and θ L.
[0020]
FIG. 3 shows a second embodiment. The basic configuration of this melting furnace is the same as that of the first embodiment, and a branch is provided in the introduction path of the pyrolysis gas 2 from the pyrolysis furnace 1 to the pyrolysis gas introduction nozzle 7 and is branched. Is connected to a pyrolysis gas introduction nozzle 20 that forms a horizontal swirl flow H provided in the upper part of the swirl melting chamber 3, and dampers 21a and 21b are provided in each branched introduction path. different.
[0021]
The opening degree of each of the dampers 21a and 21b is controlled by a controller 19. In the case of this embodiment, the control of the ratio Q 1 / Q 2 of the supply amount of the combustion air in the first embodiment. in addition to, when the temperature decrease amount [Delta] [theta] 1 of the swirling-type slagging chamber 3 is large, and strong horizontal swirling flow H by increasing the opening degree of the damper 21b, when a large temperature decrease amount [Delta] [theta] 2 of the molten pool chamber 4 The opening degree of the damper 21a is increased to increase the downward swirling flow V.
[0022]
In each of the above-described embodiments, only the incombustible component contained in the pyrolysis gas is melted. However, the melting furnace according to the present invention can also be employed in a type in which pulverized incombustible component is also introduced.
[0023]
【The invention's effect】
As described above, the melting furnace of the present invention is provided with the thermometer for detecting the temperature of the swirling melting chamber and the thermometer for detecting the temperature of the molten pool chamber, and detects the detected temperature of each chamber by each of these thermometers. When the amount of decrease in the detected temperature from the set temperature is larger than that in the molten pool chamber, the horizontal swirl flow is strengthened and the combustible component is swirled. As the residence time in the melting chamber is lengthened, and when the molten pool chamber is larger than the swirling melting chamber, the descending swirling flow is strengthened to shorten the residence time of the combustible component in the swirling melting chamber. By increasing the degree of combustion of combustible components in the room with the largest temperature drop, maintaining the temperature of the swirl melting chamber and the molten pool chamber as constant as possible, extending the durable life of the furnace and efficiently melting non-combustible components be able to.
[0024]
By providing the pyrolysis gas introduction nozzle also in the upper part of the swirling melting chamber that forms the horizontal swirling flow, the degree of freedom of adjusting the residence time of the combustible component in the swirling melting chamber can be increased.
[Brief description of the drawings]
1 is a longitudinal sectional view showing a melting furnace of a first embodiment; FIG. 2 is a flowchart showing an algorithm of a controller of FIG. 1; FIG. 3 is a longitudinal sectional view showing a melting furnace of a second embodiment; Description】
DESCRIPTION OF SYMBOLS 1 Pyrolysis furnace 2 Pyrolysis gas 3 Rotating melting chamber 4 Melting pool chamber 5 Burner 6 Air nozzle 7 Pyrolysis gas introduction nozzle 8 Air nozzles 9a, 9b Blower 10 Melting slag 11 Weir 12 Auxiliary burner 13 Gutter 14 Downflow path 15 Hot exhaust gas 16 Outlet 17a, 17b Thermometer 18 Exhaust gas concentration meter 19 Controller 20 Pyrolysis gas introduction nozzle 21a, 21b Damper

Claims (2)

熱分解炉から排出される不燃分と熱分解ガスを導入して、不燃分を熱分解ガスの燃焼熱で溶融する旋回溶融室と、この溶融された不燃分が流落して溜まる溶融池室とを上下に備え、前記旋回溶融室の頂部に、下向きの下降旋回流を形成する燃焼用空気ノズルと熱分解ガス導入ノズルを設け、この頂部よりも下方の旋回溶融室の上部に、水平向きの水平旋回流を形成する燃焼用空気ノズルを設けた溶融炉において、前記旋回溶融室の温度を検出する温度計と、前記溶融池室の温度を検出する温度計とを設け、これらの各温度計による各室の検出温度を、それぞれについて予め設定された設定温度と比較し、前記検出温度の設定温度からの低下量が、前記旋回溶融室の方が前記溶融池室よりも大きいときは前記水平旋回流を強くし、前記溶融池室の方が前記旋回溶融室よりも大きいときは前記下降旋回流を強くするようにしたことを特徴とする溶融炉。A swirl melting chamber that introduces non-combustible components and pyrolysis gas discharged from the pyrolysis furnace and melts the non-combustible components using the combustion heat of the pyrolysis gas, and a molten pool chamber where the molten non-combustible components flow down and accumulate The combustion air nozzle and the pyrolysis gas introduction nozzle that form a downward swirling flow are provided at the top of the swirling melting chamber, and a horizontal orientation is provided above the swirling melting chamber below the top. In a melting furnace provided with a combustion air nozzle for forming a horizontal swirling flow, a thermometer for detecting a temperature of the swirling melting chamber and a thermometer for detecting a temperature of the melting pool chamber are provided. The detected temperature of each chamber is compared with a preset set temperature for each, and the amount of decrease in the detected temperature from the set temperature is greater when the swirl melting chamber is larger than the molten pool chamber. The swirling flow is strengthened and the molten pool chamber Melting furnace when it is greater than the swirling-type slagging chamber, characterized in that so as to increase the said descending swirl flow. 前記熱分解ガス導入ノズルを、前記水平旋回流を形成する前記旋回溶融室の上部にも設けた請求項1に記載の溶融炉。The melting furnace according to claim 1, wherein the pyrolysis gas introduction nozzle is provided also in an upper part of the swirling melting chamber that forms the horizontal swirling flow.
JP2003061887A 2003-03-07 2003-03-07 Melting furnace Expired - Fee Related JP4068483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061887A JP4068483B2 (en) 2003-03-07 2003-03-07 Melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061887A JP4068483B2 (en) 2003-03-07 2003-03-07 Melting furnace

Publications (2)

Publication Number Publication Date
JP2004271041A true JP2004271041A (en) 2004-09-30
JP4068483B2 JP4068483B2 (en) 2008-03-26

Family

ID=33123975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061887A Expired - Fee Related JP4068483B2 (en) 2003-03-07 2003-03-07 Melting furnace

Country Status (1)

Country Link
JP (1) JP4068483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224141A (en) * 2007-03-13 2008-09-25 Kurimoto Ltd Waste incinerating device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054533A (en) * 1996-08-14 1998-02-24 Mitsui Eng & Shipbuild Co Ltd Combustion air supply method for combustion melting furnace and waste treatment apparatus
JPH10325529A (en) * 1997-05-26 1998-12-08 Mitsui Eng & Shipbuild Co Ltd Particle size adjusting method for slag of melting furnace and melting furnace using the same
JPH11351538A (en) * 1998-06-05 1999-12-24 Kobe Steel Ltd Method and apparatus for controlling combustion of melting furnace
JP2002098324A (en) * 2000-09-25 2002-04-05 Kurimoto Ltd Slag guide structure in melting furnace
JP2002130626A (en) * 2000-10-19 2002-05-09 Mitsubishi Heavy Ind Ltd Apparatus and method for combustion of waste
JP2002181320A (en) * 2000-12-08 2002-06-26 Mitsubishi Heavy Ind Ltd Waste gasification combustion system and method therefor
JP2002221308A (en) * 2000-11-27 2002-08-09 Mitsui Eng & Shipbuild Co Ltd Combustion control method and waste treatment equipment
JP2003065510A (en) * 2001-08-23 2003-03-05 Kurimoto Ltd Swirl type melting furnace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054533A (en) * 1996-08-14 1998-02-24 Mitsui Eng & Shipbuild Co Ltd Combustion air supply method for combustion melting furnace and waste treatment apparatus
JPH10325529A (en) * 1997-05-26 1998-12-08 Mitsui Eng & Shipbuild Co Ltd Particle size adjusting method for slag of melting furnace and melting furnace using the same
JPH11351538A (en) * 1998-06-05 1999-12-24 Kobe Steel Ltd Method and apparatus for controlling combustion of melting furnace
JP2002098324A (en) * 2000-09-25 2002-04-05 Kurimoto Ltd Slag guide structure in melting furnace
JP2002130626A (en) * 2000-10-19 2002-05-09 Mitsubishi Heavy Ind Ltd Apparatus and method for combustion of waste
JP2002221308A (en) * 2000-11-27 2002-08-09 Mitsui Eng & Shipbuild Co Ltd Combustion control method and waste treatment equipment
JP2002181320A (en) * 2000-12-08 2002-06-26 Mitsubishi Heavy Ind Ltd Waste gasification combustion system and method therefor
JP2003065510A (en) * 2001-08-23 2003-03-05 Kurimoto Ltd Swirl type melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224141A (en) * 2007-03-13 2008-09-25 Kurimoto Ltd Waste incinerating device and method

Also Published As

Publication number Publication date
JP4068483B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
KR100705204B1 (en) Method of controlling combustion of waste incinerator and waste incinerator
JPH03156206A (en) Waste treatment method
US7077069B2 (en) U-type slag-tap firing boiler and method of operating the boiler
TW202117254A (en) Multi-burner rotary furnace melting system and method
JPS6323442B2 (en)
JP4474429B2 (en) Waste incinerator and incineration method
JP2015187516A (en) waste incinerator and waste incineration method
KR20070105380A (en) Combustion method and system
JP2007271204A (en) Operation control method of gasification melting system, and system
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP2008224141A (en) Waste incinerating device and method
JP6218117B2 (en) Grate-type waste incinerator and waste incineration method
JP2004271041A (en) Melting furnace
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JP2008032345A (en) Combustion melting furnace and operation method of combustion melting furnace
JP6324482B1 (en) Incinerator
CN107917434A (en) After burner for the flue gas for handling Han bioxin
JPH01200106A (en) Method and device of feeding combustion air
JP2015187514A (en) waste incinerator and waste incineration method
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator
JP2003302022A (en) Melting furnace, operation method for melting furnace and gasification melting system
PL227902B1 (en) Method for low emission burning of low Btu gases and medium calorific gases, containing NH&lt;sub&gt;3, HCN, C&lt;sub&gt;5&lt;/sub&gt;H&lt;sub&gt;5&lt;/sub&gt;N and other compounds containing molecular nitrogen in combustion chambers of factory-scale power equipment, and the system for application of this &lt;/sub&gt; method
RU2230983C1 (en) Furnace unit
JP2015187518A (en) Stoker-type waste incinerator and waste incineration method
JP2006017384A (en) Control method of combustion air in waste incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4068483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees