JP2004270061A - Polyester conjugate monofilament - Google Patents

Polyester conjugate monofilament Download PDF

Info

Publication number
JP2004270061A
JP2004270061A JP2003060539A JP2003060539A JP2004270061A JP 2004270061 A JP2004270061 A JP 2004270061A JP 2003060539 A JP2003060539 A JP 2003060539A JP 2003060539 A JP2003060539 A JP 2003060539A JP 2004270061 A JP2004270061 A JP 2004270061A
Authority
JP
Japan
Prior art keywords
polyester
monofilament
curve
dtex
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060539A
Other languages
Japanese (ja)
Other versions
JP4236484B2 (en
Inventor
Takao Kawase
隆夫 河瀬
Kazuo Ogawa
和夫 小川
Keita Katsuma
啓太 勝間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2003060539A priority Critical patent/JP4236484B2/en
Publication of JP2004270061A publication Critical patent/JP2004270061A/en
Application granted granted Critical
Publication of JP4236484B2 publication Critical patent/JP4236484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably obtain a polyester monofilament having physical properties and weavability most suitable for a plasma display use. <P>SOLUTION: The polyester conjugate monofilament comprises a core-sheath conjugate polyester, has 80-100 cN/dtex initial modulus of elasticity and 5-8% elongation at 2.5 cN/dtex strength. The effect is further improved by using a polyester copolymerized with a polyethylene glycol in the sheath component. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電磁波シールドスクリーンに好適な、更に詳しくはプラズマディスプレイ(PDP)の電磁波シールドスクリーンに用いられる、優れた寸法安定性と、製織性、製織時の磨耗性、スカム抑制効果を有するポリエステル複合モノフィラメントに関するものである。
【0002】
【従来の技術】
従来より、ポリエステルモノフィラメントを用いたメッシュ織物は特許文献1、特許文献2、特許文献3等記載の如く、スクリーン印刷用として天然繊維やステンレスなど無機繊維の代替として使用されてきた。これらは、電子回路印刷の様な印刷精度が要求されるために、ハイメッシュで高強度であることが重要であった。また、高強度であっても製織性を考慮して特許文献1の如く鞘成分に柔軟な構造を持つ共重合ポリエステルを使用したものが主流となっている。
【0003】
【特許文献1】
特許2580816号公報
【特許文献2】
特開昭62−215013号公報
【特許文献3】
特開平2−127513号公報
【0004】
これらは、いずれも高強度、高弾性率のモノフィラメントに言及されており、高強度であるが故に製織時には、繊維表面が筬により削れ易い、或いは白粉スカムの発生が多く、実用に耐え得るものではなかった。(C反率が高い)。
更に、高強度を出すために可能な限り延伸倍率を高めて延伸するので、巻き取りパッケージ中にて応力緩和起因によるパーン曳けが発生し、メッシュ織物中に筋が多く発生する等の問題が多かった。
【0005】
パーン曳けを解消する策として、例えば特許文献4や特許文献5の様に、延伸方法が改善されている。しかしながら、いずれも完全には改善されておらず、依然としてC反率が高い物が多いのが現状である。
【0006】
【特許文献4】
特開平11−100720号公報
【0007】
【特許文献5】
特開2001−355123号公報
【0008】
一方、近年情報技術の進歩と共に、産業用或いは家庭用ディスプレイとしてプラズマディスプレイ(以下、PDPと呼称する)の需要が伸びてきている。該PDPのプラズマ発生板と表面保護板の間には、非特許文献1記載の如く、プラズマによる電磁波を遮蔽するために、導電性の素材をメッキしたメッシュが用いられている。また、該メッシュとしては、透明フィルムに導電素材を格子状に印刷する方式と、特許文献6に記載されているごとく金属モノフィラメントや有機モノフィラメントのメッシュ織物をニッケル、銅などでスパッタ蒸着し、その後導電性カーボンを蒸着させる方式がある。前者は、メッシュの開口率を上げることができるが、電磁波シールド性能がメッシュ織物よりも悪くなる傾向があるという欠点と、光干渉模様(モアレ)が発生しにくいという利点がある。後者は電磁波シールド性能が良好なるも開口率が低下したり、モアレが発生しやすいが画像コントラストが良好となる特徴がある。メッシュの開口率は可視光透過性を勘案すると50%以上が要求される。そのために、細繊度のモノフィラメントを使用する事が要求される。また、スクリーン印刷の如き高強度性能は要求されないが、製織時、加工時に安定する強度と伸度、柔軟性が必要である。また、ディスプレイ用途であるために、スカムや繊維表面削れ屑の混入は絶対に避ける必要がある。特許文献1〜5の如くスクリーン印刷用途に使用されるモノフィラメントは高強度低伸度であるので、柔軟性に乏しく製織時に筬にて削れ、メッシュ開口部に削れ屑が混入して開口率を低下させる等の問題があった。また、特許文献6のような、金属モノフィラメントはコスト高となるので実用的でない。
【0009】
【非特許文献1】
勝谷康夫著、日立化成テクニカルレポートNO.33,1999−7,p.9−16
【0010】
【特許文献6】
特許第2892339号
【0011】
【発明が解決しようとする課題】
本発明者等は、かかる従来技術の問題点を鑑み、PDP用途などに適した物性と製織性を持つポリエステルモノフィラメントを安定的に提供することを課題とする。
【0012】
すなわち、▲1▼メッシュ織物としたとき目開きが大きく透かし検反でのA反率が高いこと(繊度斑や、白粉スカムの発生がない。)▲2▼製織時に筬による繊維表面磨耗が発生せず、またスカム発生による筬掃除周期が長いこと▲3▼メッシュ織物としたとき適度の弾性率と強度を持ち形態安定性に優れていることが可能なPDP用途に適したポリエステルモノフィラメントを提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討を行った結果、以下のことを見出し本発明に到ったものである。▲1▼電磁波シールドスクリーンの形態安定性保持とメッシュ織物製造時の破断対策には初期弾性率が大きく寄与する。▲2▼製織時の筬による繊維表面磨耗とスカム発生対策、及びパーン曳け対策には2.5cN/dtexにおける伸度が大きく寄与する。
【0014】
すなわち、本発明は、芯鞘型複合ポリエステルからなり、初期弾性率が80〜100cN/dtexであり、強度2.5cN/dtex時の伸度が5〜8%であることを特徴とするポリエステル複合モノフィラメントを要旨とする。また、鞘成分にポリエチレングリコールを共重合したポリエステルを用いれば、効果はさらに向上する。
【0015】
【発明の実施の形態】
以下に本発明を詳細に説明する。本発明のモノフィラメントは、芯鞘型複合形態を取ることが重要である。芯鞘型とは、芯成分が鞘成分により完全に覆われており表面に露出しない形態のことを示し、必ずしも同心円状に芯鞘成分が配置する必要はない。断面形状に関しては特に限定するものではないが、紡糸、製織安定性、開口率を考慮すると真円であることが好ましい。
【0016】
芯成分としては、ポリエチレンテレフタレートを主体とするポリエステルを用いることが好ましい。ポリエステルの極限粘度は特に限定するものではないが、紡糸性の点から、また、本発明のポリエステルモノフィラメントの如く高弾性率を維持する点からは0.65〜0.75の範囲が、好ましい。なかでも、鞘成分のポリエステルよりも重合度の高いポリエステルを用いることが好ましい。
【0017】
鞘成分もポリエチレンテレフタレートを主体とするポリエステルを用いることが好ましいが、モノフィラメントに柔軟性を付与する目的のためにはポリエチレングリコールを共重合したポリエステルを用いることがより好ましい。ポリエチレングリコールの分子量は、ポリエステルの分子鎖中に完全に共重合し易い範囲を適宜選択すれば良く、400〜1000程度の分子量が好適である。共重合率は特に限定するものではないが、モノフィラメントの柔軟性と弾性率維持、強度維持のためには3〜7%程度が好ましい。また、直接連続重合法により重合したポリエステルがポリマー物性の斑が少なく、繊維中での重合性が均一であるために、耐筬磨耗性の向上には有効である。
【0018】
本発明のモノフィラメントは、製織時にフィラメント表面の筬による摩擦削れを防ぐという点からは、破断伸度は25〜35%の範囲が好ましく、メッシュ織物の成型安定性の点からは破断強度が4.5〜6.0cN/dtexであることが好ましい。なお、IC基板パターンなどの精密印刷用途に適した印刷スクリーンメッシュ用モノフィラメントは、破断強度が6.0cNを超えるものが要求されるために破断伸度が25%未満となり、筬により表面が削れることが多い。
【0019】
また、上記の構成に加えて、芯成分と鞘成分の比率は40:60〜70:30であることが好ましい。40:60以上であれば、PDP電磁波シールドスクリーン用途に適した破断強度が得られ易く、70:30以下であれば柔軟な鞘成分の効果が発揮されて、製織時の筬による摩擦削れの発生を防止しやすくなる点で好ましい。
なかでも、芯成分が鞘成分より重合度が高く、芯成分の極限粘度が上記の範囲で鞘成分には第3成分を共重合したものを用い、かつ、芯成分と鞘成分の比率がこの範囲であると、本発明の初期弾性率や強度2.5cN/dtex時の伸度を満たす複合モノフィラメントを得るのが容易となり好適である。
なお、特許文献1に記載されるような70:30を超える比率であれば、モノフィラメントは剛直となり筬による摩擦削れが発生し易く、削れ屑がメッシュ織物に混入してメッシュ開口率を低下させる傾向がある。
【0020】
本発明に於いて、複合モノフィラメントの初期弾性率は80〜100cN/dtexであることが必要である。ここでいう初期弾性率とは、初期長200mmのモノフィラメントを歪速度100%/分にて引張り試験を行い、図1のSS曲線を得た後に第1降伏点Y1までの直線関係にある点Aと点Bの傾きから以下の方法で計算したものである。
初期弾性率(cN/dtex)=(点Aの強度―点Bの強度)/〔(点Aの伸度―点Bの伸度)/100〕
初期弾性率が80cN/dtex未満の場合、メッシュ織物強度が弱く形状保持性が悪くなる。100cN/dtexを超える場合、モノフィラメントは堅く脆いものとなり製織時に繊維表面が筬により削られ易くなるという問題がある。
【0021】
次に、本発明における複合モノフィラメントのSS曲線は、降伏点Y1と降伏点Y2の間が図2の曲線Yの如き形状を取るのがよい。
すなわち、本発明における複合モノフィラメントのSS曲線は2つの明確な変曲点を持ち、伸度の低い第1降伏点をY1、伸度の高い第2降伏点をY2とすると、降伏点Y1と降伏点Y2の間が図2の曲線Yの如き降伏点Y1と降伏点Y2を結ぶ線よりも下方に凸の形状を取るのが好ましい。この第1降伏点Y1と第2降伏点Y2間の曲線は、Y1−Y2間を結ぶ直線よりも伸度軸方向(図2において下方)に凸の形状とせしめた曲線であるのが好ましい。そして、図2に示すように、本発明においては強度2.5cN/dtex時の伸度が5〜8%であることが重要である。
【0022】
ここで、図2を参照して、従来のモノフィラメントと本発明のものとの違いを説明する。まず、従来のモノフィラメントは、図2の曲線Xの如き形状をなしていた。そして、本発明は曲線Yの如き形状を取るのがよい。
この降伏点Y1と降伏点Y2の間は、繊維中の非晶鎖の伸長力を現しており、曲線Xの場合、曲線Yよりも非晶部分の配向度が高いものと考えられる。この部分の分子配向が高いと、モノフィラメント製造時にパーン曳けが発生し易くなり、また製織時には筬により繊維表面磨耗が激しくなることを本発明者等は見出した。すなわち、非晶部分の分子の配向度が低いものがよいことになるが、このことにより外部から張力をかけられたときにもフィラメント内の非晶部分の分子がある程度自由に動くことができる。この結果、フィラメント自身がしなやかさと柔軟性をもつことができるので、パーン曳けや筬削れの防止ができるものと考えられる。なかでも、本発明では、強度2.5cN/dtex時の伸度にパーン曳けや筬削れ対策などに大きく寄与することに着目した。強度2.5cN/dtexにおける、伸度が5%未満の場合、例え曲線Yの如く降伏点Y1と降伏点Y2を結ぶ線よりも下に凸の形状をなしても製織時の筬による繊維表面削れが大きくなるという問題が生じる。該伸度が8%を超える場合、筬による削れ発生率は低減するものの、強度が低く伸度が高くなるために、メッシュ織物としての形状保持性は悪いものとなる。
【0023】
さらに、複合モノフィラメントのSS曲線は、降伏点Y1と降伏点Y2の間が図2の曲線Yの如き降伏点Y1と降伏点Y2を結ぶ線よりも下に凸の形状であり、かつ、強度2.5cN/dtex時の伸度が5〜8%である図2に示すようなS−S曲線をもつ複合フィラメントであればより好ましい。
【0024】
本発明の複合モノフィラメントを得るための具体的な方法は、従来公知の複合紡糸方法を採用することができる。すなわち、芯成分及び鞘成分をそれぞれ形成するポリマーを独立に溶融し、計量し、口金部にて分流板にて芯鞘構造を取るように合流させ、同一の吐出孔から吐出させ、冷却後油剤を付与していわゆる未延伸糸を巻き取るものである。該未延伸糸は、延撚工程にて伸度が30±3%となる延伸倍率で延伸する。この時、延伸ローラーで延伸熱を与えた後に延伸し、常温の第2ローラーに導き、その後第3ローラーとの間で3〜6%のオーバーフィードを掛けながら熱セットを施し、パーンに巻き取り本発明の複合モノフィラメントを得ることができる。該方法により、延伸による分子鎖内の応力歪が緩和されながら熱セットされるために、パーン曳けが発生しないので好ましい。ここで、重要なのは特許文献4に記載されるように、延伸熱セット後にオーバーフィードを掛けながら弛緩熱処理を施す一般的手法と異なる点である。延伸熱セット後に、弛緩熱処理を施しても、分子鎖内の応力歪が解消されず、その結果メッシュ織物にパーン曳けによる経筋、緯筋が発生する問題が多発する。
【0025】
よって、本発明のフィラメントを製造する際には、芯成分が鞘成分より重合度が高い芯鞘型複合ポリエステルを溶融紡糸し、ついで得られた未延伸糸を、延伸熱を与えた後に延伸し、常温とした後で熱セットするとともにオーバーフィードをかけて芯鞘型ポリエステル複合モノフィラメントを製造する方法を用いると好ましい。また、この際、芯成分は極限粘度が0.65〜0.75のポリエステルを用い、鞘成分はポリエチレングリコールなどの第3成分を共重合せしめたポリエステルを用いることが好ましい。さらには、芯成分と鞘成分の比率が、40:60〜70:30として溶融紡糸することがより好ましい。
【0026】
本発明の複合モノフィラメントの繊度は特に限定するものではないが、PDP用途に用いるためには、メッシュ開口率を50%以上、好ましくは60%以上にするのがよい。このためには、繊度は22dtex以下が好ましく、さらに好ましくは10dtex以下である。この範囲であれば、画像は遮蔽されず、またメッシュ織物製織後に導電材にてメッキ後に良好な電磁波シールド性を持つことが可能である。なお、生産が可能で取り扱い性の点から2dtex以上が好適である。
【0027】
本発明の複合モノフィラメントは、経緯110〜150メッシュの密度で製織されてメッシュ織物を形成する。その後、ニッケル、銅にて表面を蒸着し、その後導電性カーボンにて蒸着を施す。得られた導電性メッシュは、PDPの前面透明ガラス基板と裏基板の間に導入し、樹脂接着材等で表裏透明基板間に設置される。この時、モアレを防ぐためにある程度のバイアス角度をつけてメッシュ織物は導入される。該手法にてPDP用電磁波シールド光透過性窓材が形成される。
【0028】
【発明の効果】
本発明の複合モノフィラメントは、本発明範囲の物性を持つことにより、モノフィラメントの巻き取り後パーン曳けが無く、メッシュ織物製織時には繊維表面が筬により削られること無くまたスカムの発生が無い。また、このために、本発明の複合モノフィラメントを用いてメッシュ織物を作るとPDP用スクリーン紗に必要な光透過性を得ることができ、形態安定性能が良好であるという観点での製品合格率が従来の30%から90%以上に向上させることができた。また、本発明のフィラメントを用いて製造したメッシュ織物は、適度な弾性率と強度を持ち、形状保持性に優れ、PDP用途に好適である。
【0029】
【実施例】
以下、実施例によって本発明を更に詳しく説明する。尚、以下の実施例のおける特性値は、次に示す方法によって測定したものである。
【0030】
(1)極限粘度
極限粘度[η]は、フェノール/テトラクロロエタン=6/4の混合溶剤中20℃にて常法により測定した。
【0031】
(2)初期弾性率
オートグラフ引張り試験機(島津製作所製)を用い、初期長200mm、歪速度100%/分、初荷重1/30cN/dtexとして破断するまで引張り試験を実施した。初期弾性率は、上述した方法で算出した。
【0032】
(3)強度2.5cN/dtex時の伸度(以下、E2.5という)
上述した引張り試験にて、強度が2.5cN/dtexにおける伸度を求めた。
【0033】
(4)破断強度・破断伸度
上述した引張り試験にて破断強度及び破断伸度を求めた。
【0034】
(5)筬による磨耗性・スカム発生状況
該複合モノフィラメントを用いて130メッシュのメッシュ織物を製織するにあたり、筬によって繊維表面が磨耗されているかどうか、或いは白粉スカムが発生しているかどうかを織りあがったメッシュ織物を検反すること、及び筬やヘルドに白粉が付着しているかどうかを以下の基準で評価した。
◎: 筬による磨耗・スカム発生が全く無い
○: 経糸方向5000m製織後磨耗・スカム発生が無い
△: 一部磨耗・スカムが見られる
×: 磨耗・スカムが多い
【0035】
(6)A反率
メッシュ製織工程における、メッシュ織物のA反率とは、白粉スカムや筬による磨耗片がメッシュ織物組織中に詰まることによる経糸切れ、経筋斑、ゆるみ等を透かし検反により確認し検反専門家が点数付けを行い判定する。該メッシュ織物ではA反率が90%以上のものを合格とした。A反率が90%未満のものは、次の蒸着工程に投入することはできない。
【0036】
(7)メッシュ織物性能
A反として上がったメッシュ織物を、ニッケル、銅及びカーボン等の導電体にてスパッタ蒸着し、PDP用電磁波スクリーンを製作した。該メッシュ織物の形状保持性、目開きが良好でPDPに使用可能な物を◎、使用可能であるが目開き性にやや問題あるものを○、形状保持性・目開きが不十分なものを△、使用不可のものを×として評価した。
【0037】
(実施例1〜3、5)
極限粘度が0.688のポリエチレンテレフタレートポリマーを芯成分とし、極限粘度が0.668で平均分子量が600のポリエチレングリコールをポリエステル中に4.8重量%共重合させた共重合ポリエステルを鞘成分として用いた。該ポリエステルを各々表1記載の芯鞘比率となる様に溶融計量し、ノズル孔径0.45mmの口金から同心円芯鞘構造の複合モノフィラメントを吐出して、冷却後油剤を付与し1500m/分にて一旦巻き取った。次いで、該未延伸糸を83℃に加熱したローラーと加熱しないローラー間で表1記載の延伸倍率にて延伸し、次いで非加熱ローラーとの間に設置した130℃の加熱板との間で表1記載のオーバーフィード(OF)を掛けてパーンに巻き取った。いずれも、パーン曳けは無く、引張り試験におけるSS曲線は図2の曲線Yの形状をなしていた。また、初期弾性率、強度2.5cN/dtex時の伸度は表1記載の通り本発明範囲内であった。次に、該モノフィラメントを用いて130メッシュのメッシュ織物を製織したところ表1記載の判定となり、いずれもPDP用電磁波シールドスクリーンには有用であった。
【0038】
(実施例4)
鞘成分のポリエステルとして、極限粘度が0.637のポリエステルを用いる以外は実施例1と同様に複合モノフィラメントを製造した。該モノフィラメントは鞘成分が柔軟な共重合ポリエステルでないために、筬による削れが若干発生したが、メッシュ織物に使用することは可能であった。
【0039】
(比較例1〜4、6〜7)
実施例1と同様の方法で、表1記載の条件にて延伸したところ比較例1,5は、初期弾性率または強度2.5cN/dtex時の伸度が本発明範囲を外れており、製織時には筬による磨耗が大きくA反率も低いものとなった。比較例2は筬による削れが無く、A反率も高いものの弾性率が低いためにメッシュ織物の形状保持性が無く魅力あるものではなかった。比較例3は、初期弾性率が高すぎて、製織時に筬により表面が削られ、そのスカム混入により光透過性が低いものとなった。比較例4は初期弾性率が低く、スカム発生はないものの、メッシュを形成した時の形態安定性が不良であった。比較例6は、初期弾性率、強度が高く伸度が低いため、製織時の筬による削れが多発し、製織性は極めて悪かった。比較例7は、芯成分比率が低く製織性はよいものの、弾性率及び強度が低く、メッシュ織物の形態安定性が不良であった。
【0040】
(比較例5)
極限粘度0.688のポリエステルのみを用いた単独モノフィラメントを1500m/分にて巻き取った。延伸加熱ローラー温度を85℃として、130℃加熱ローラーとの間で表1記載の倍率で延伸し、次に140℃加熱ローラーとの間で3%のオーバーフィードを掛けた後に巻き取った。該モノフィラメントのSS曲線は図2の曲線Xの形状をなしており、該モノフィラメントを使用してメッシュ織物を作成すると筬による表面削れが頻発し、A反率も35%と極めて悪いものであった。
【0041】
【表1】

Figure 2004270061

【図面の簡単な説明】
【図1】本発明の複合モノフィラメントの引張り試験におけるSS曲線と初期弾性率を算出する方法を示した模式図である。
【図2】本発明の複合モノフィラメントの引張り試験におけるSS曲線の模式図である。
【符号の説明】
Y1 第1降伏点
Y2 第2降伏点
曲線X 従来のモノフィラメントのSS曲線
曲線Y 本発明の複合モノフィラメントのSS曲線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyester composite having excellent dimensional stability, weavability, abrasion at the time of weaving, and scum suppressing effect, which is suitable for an electromagnetic wave shielding screen, more particularly, used for an electromagnetic wave shielding screen of a plasma display (PDP). It relates to a monofilament.
[0002]
[Prior art]
Conventionally, mesh fabrics using polyester monofilaments have been used for screen printing as a substitute for inorganic fibers such as natural fibers and stainless steel, as described in Patent Documents 1, 2 and 3. Since printing accuracy such as electronic circuit printing is required, it is important that these have high mesh and high strength. In addition, in view of the weaving property, even in the case of high strength, the use of a copolyester having a flexible structure for the sheath component as in Patent Document 1 is predominant.
[0003]
[Patent Document 1]
Japanese Patent No. 2580816 [Patent Document 2]
JP-A-62-215013 [Patent Document 3]
JP-A-2-127513
These are all referred to as high-strength, high-modulus monofilaments, and because of their high strength, during weaving, the fiber surface is easily shaved by reeds or generates a lot of white powder scum, and those that can withstand practical use Did not. (High C rejection).
Furthermore, since stretching is performed with the stretch ratio as high as possible to achieve high strength, there are many problems such as the occurrence of stress pulling in the winding package, the occurrence of squeezing, and the occurrence of many streaks in the mesh fabric. Was.
[0005]
As a measure for eliminating the panning, a stretching method has been improved as in Patent Documents 4 and 5, for example. However, none of them have been completely improved, and there are still many products with high C repulsion.
[0006]
[Patent Document 4]
JP-A-11-100720
[Patent Document 5]
JP 2001-355123 A
On the other hand, in recent years, with the progress of information technology, demand for a plasma display (hereinafter, referred to as PDP) as an industrial or home display has been increasing. As described in Non-Patent Document 1, a mesh plated with a conductive material is used between the plasma generation plate and the surface protection plate of the PDP, as described in Non-Patent Document 1. Further, as the mesh, a method of printing a conductive material on a transparent film in a lattice shape, or a method of printing a mesh fabric of a metal monofilament or an organic monofilament by nickel, copper, or the like as described in Patent Document 6, and then conducting There is a method of depositing conductive carbon. The former can increase the aperture ratio of the mesh, but has the disadvantage that the electromagnetic wave shielding performance tends to be worse than that of the mesh fabric, and has the advantage that light interference patterns (moire) are less likely to occur. The latter is characterized in that the electromagnetic wave shielding performance is good, but the aperture ratio is reduced, and moire tends to occur, but the image contrast is good. The aperture ratio of the mesh is required to be 50% or more in consideration of the visible light transmittance. For that purpose, it is required to use a monofilament of fineness. In addition, high strength performance such as screen printing is not required, but strength, elongation and flexibility that are stable during weaving and processing are required. In addition, since it is used for display, it is absolutely necessary to avoid mixing of scum and fiber shavings. As described in Patent Documents 1 to 5, monofilaments used for screen printing applications have high strength and low elongation, so they are poor in flexibility and are cut by a reed during weaving, and shavings are mixed into mesh openings to lower the opening ratio. There was a problem such as making it. Further, a metal monofilament as disclosed in Patent Document 6 is not practical because it increases the cost.
[0009]
[Non-patent document 1]
Katsuya Yasuo, Hitachi Chemical Technical Report NO. 33, 1999-7, p. 9-16
[0010]
[Patent Document 6]
Patent No. 2892339
[Problems to be solved by the invention]
In view of the problems of the related art, the present inventors have an object to stably provide a polyester monofilament having physical properties and weaving properties suitable for PDP applications and the like.
[0012]
That is, (1) a mesh fabric has a large aperture and a high A rejection rate in a watermark inspection (no fineness unevenness or white powder scum is generated); (2) fiber surface wear by a reed occurs during weaving. (3) Provide a polyester monofilament suitable for PDP applications that has a moderate elastic modulus and strength when formed into a mesh fabric and has excellent form stability when formed into a mesh fabric. The purpose is to:
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-described problems, and as a result, have found the following and have reached the present invention. {Circle around (1)} The initial elastic modulus greatly contributes to maintaining the form stability of the electromagnetic wave shielding screen and taking measures against breakage during the production of the mesh fabric. {Circle around (2)} The elongation at 2.5 cN / dtex greatly contributes to measures against fiber surface wear and scum generation due to reeds during weaving, and measures against pulling.
[0014]
That is, the present invention provides a polyester composite comprising a core-sheath composite polyester, having an initial elastic modulus of 80 to 100 cN / dtex and an elongation at a strength of 2.5 cN / dtex of 5 to 8%. A monofilament is the gist. Further, if a polyester obtained by copolymerizing polyethylene glycol for the sheath component is used, the effect is further improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. It is important that the monofilament of the present invention takes a core-sheath type composite form. The core-sheath type refers to a form in which the core component is completely covered by the sheath component and is not exposed on the surface, and the core-sheath component does not necessarily need to be arranged concentrically. The cross-sectional shape is not particularly limited, but is preferably a perfect circle in consideration of spinning, weaving stability, and aperture ratio.
[0016]
As the core component, it is preferable to use a polyester mainly composed of polyethylene terephthalate. The intrinsic viscosity of the polyester is not particularly limited, but is preferably in the range of 0.65 to 0.75 from the viewpoint of spinnability and maintaining a high elastic modulus as in the polyester monofilament of the present invention. Among them, it is preferable to use a polyester having a higher polymerization degree than the polyester of the sheath component.
[0017]
As the sheath component, it is preferable to use a polyester mainly composed of polyethylene terephthalate, but for the purpose of imparting flexibility to the monofilament, it is more preferable to use a polyester obtained by copolymerizing polyethylene glycol. The molecular weight of the polyethylene glycol may be appropriately selected from a range in which the copolymer is easily copolymerized completely in the molecular chain of the polyester, and a molecular weight of about 400 to 1,000 is preferable. The copolymerization rate is not particularly limited, but is preferably about 3 to 7% for maintaining the flexibility, elastic modulus and strength of the monofilament. Further, the polyester polymerized by the direct continuous polymerization method is effective in improving the reed abrasion resistance because the polyester has little unevenness in the polymer properties and the polymerizability in the fiber is uniform.
[0018]
The monofilament of the present invention preferably has a breaking elongation in the range of 25 to 35% from the viewpoint of preventing frictional abrasion by a reed on the filament surface during weaving, and has a breaking strength of 4 from the viewpoint of molding stability of the mesh fabric. It is preferably from 5 to 6.0 cN / dtex. In addition, monofilaments for printing screen mesh suitable for precision printing applications such as IC substrate patterns are required to have a breaking strength of more than 6.0 cN, so that the breaking elongation is less than 25% and the surface can be scraped by a reed. There are many.
[0019]
Further, in addition to the above configuration, the ratio between the core component and the sheath component is preferably 40:60 to 70:30. If it is 40:60 or more, it is easy to obtain a breaking strength suitable for the PDP electromagnetic wave shielding screen, and if it is 70:30 or less, the effect of the soft sheath component is exerted, and frictional scraping by a reed during weaving occurs. Is preferred because it is easier to prevent
Above all, the core component has a higher degree of polymerization than the sheath component, the intrinsic viscosity of the core component is within the above range, and the sheath component is obtained by copolymerizing the third component. Within this range, it is easy to obtain a composite monofilament satisfying the initial elastic modulus and elongation at a strength of 2.5 cN / dtex of the present invention, which is preferable.
If the ratio exceeds 70:30 as described in Patent Literature 1, the monofilament becomes rigid and frictional shaving due to the reed tends to occur, and the shavings are mixed into the mesh fabric and tend to lower the mesh opening ratio. There is.
[0020]
In the present invention, the initial elastic modulus of the composite monofilament needs to be 80 to 100 cN / dtex. Here, the initial elastic modulus refers to a point A in a linear relationship up to the first yield point Y1 after performing a tensile test on a monofilament having an initial length of 200 mm at a strain rate of 100% / min and obtaining the SS curve in FIG. And the slope of the point B is calculated by the following method.
Initial elastic modulus (cN / dtex) = (strength at point A−strength at point B) / [(elongation at point A−elongation at point B) / 100]
When the initial elastic modulus is less than 80 cN / dtex, the strength of the mesh fabric is weak and the shape retention is poor. When it exceeds 100 cN / dtex, there is a problem that the monofilament is hard and brittle, and the fiber surface is easily cut by a reed during weaving.
[0021]
Next, the SS curve of the composite monofilament in the present invention preferably has a shape between the yield point Y1 and the yield point Y2 as shown by the curve Y in FIG.
That is, the SS curve of the composite monofilament in the present invention has two distinct inflection points, and if the first yield point with low elongation is Y1 and the second yield point with high elongation is Y2, the yield point Y1 and the yield point It is preferable that a portion between the points Y2 has a convex shape below a line connecting the yield point Y1 and the yield point Y2 as shown by the curve Y in FIG. The curve between the first yield point Y1 and the second yield point Y2 is preferably a curve that has a shape that is more convex in the direction of the elongation axis (downward in FIG. 2) than the straight line connecting Y1 and Y2. As shown in FIG. 2, in the present invention, it is important that the elongation at a strength of 2.5 cN / dtex is 5 to 8%.
[0022]
Here, the difference between the conventional monofilament and the present invention will be described with reference to FIG. First, a conventional monofilament has a shape as shown by a curve X in FIG. In the present invention, it is preferable to take a shape like a curve Y.
Between the yield point Y1 and the yield point Y2, the elongation force of the amorphous chains in the fiber is expressed. In the case of the curve X, it is considered that the degree of orientation of the amorphous portion is higher than that of the curve Y. The present inventors have found that, when the molecular orientation of this portion is high, punishing tends to occur during the production of the monofilament, and at the time of weaving, the surface of the fiber is greatly worn by a reed. In other words, it is preferable that the degree of orientation of the molecules in the amorphous portion is low, but this allows the molecules in the amorphous portion in the filament to move to some extent even when tension is applied from the outside. As a result, it is considered that the filament itself can have flexibility and flexibility, and thus it is possible to prevent the drawing of the filament and the reed shaving. In particular, in the present invention, attention has been paid to the fact that it greatly contributes to elongation at a strength of 2.5 cN / dtex, such as for countermeasures against chipping and reed shaving. When the elongation is less than 5% at a strength of 2.5 cN / dtex, even if the fiber surface is convex below the line connecting the yield point Y1 and the yield point Y2 as shown by the curve Y, the fiber surface by the reed during weaving The problem that shaving becomes large arises. When the elongation exceeds 8%, the rate of occurrence of scraping by the reed is reduced, but the strength is low and the elongation is high, so that the shape retention of the mesh fabric is poor.
[0023]
Further, the SS curve of the composite monofilament has a shape in which the portion between the yield point Y1 and the yield point Y2 is lower than the line connecting the yield point Y1 and the yield point Y2 as shown by the curve Y in FIG. A composite filament having an SS curve as shown in FIG. 2 and having an elongation at 0.5 cN / dtex of 5 to 8% is more preferable.
[0024]
As a specific method for obtaining the composite monofilament of the present invention, a conventionally known composite spinning method can be employed. That is, the polymers forming the core component and the sheath component are melted independently, weighed, merged so as to take a core-sheath structure with a flow dividing plate at the mouth portion, discharged from the same discharge hole, and cooled. And a so-called undrawn yarn is wound up. The undrawn yarn is drawn at a draw ratio at which the elongation becomes 30 ± 3% in the drawing and twisting step. At this time, the film is stretched after applying stretching heat with a stretching roller, guided to a second roller at room temperature, and then heat-set while applying 3 to 6% overfeed with a third roller, and wound into a pan. The composite monofilament of the present invention can be obtained. This method is preferable because heat setting is performed while stress strain in a molecular chain due to stretching is alleviated, and therefore, pulling does not occur. Here, what is important is that, as described in Patent Document 4, it is different from a general method of performing relaxation heat treatment while applying overfeed after stretching heat setting. Even if the relaxation heat treatment is performed after the stretching heat setting, the stress strain in the molecular chain is not eliminated, and as a result, a problem that a warp or a weft streaks are generated in the mesh woven fabric due to the pulling of the mesh fabric occurs frequently.
[0025]
Therefore, when producing the filament of the present invention, the core component is melt-spun the core-sheath type composite polyester having a higher degree of polymerization than the sheath component, and then the obtained undrawn yarn is drawn after applying drawing heat. It is preferable to use a method of producing a core-sheath type polyester composite monofilament by setting the temperature and then setting the temperature and then overfeeding the mixture. In this case, it is preferable that the core component use a polyester having an intrinsic viscosity of 0.65 to 0.75, and the sheath component use a polyester obtained by copolymerizing a third component such as polyethylene glycol. Furthermore, it is more preferable that the ratio of the core component to the sheath component is from 40:60 to 70:30 and the melt spinning is performed.
[0026]
The fineness of the composite monofilament of the present invention is not particularly limited, but for use in PDP applications, the mesh opening ratio is preferably 50% or more, and more preferably 60% or more. For this purpose, the fineness is preferably 22 dtex or less, more preferably 10 dtex or less. Within this range, the image is not shielded, and it is possible to have good electromagnetic wave shielding properties after plating with a conductive material after weaving the mesh fabric. In addition, 2 dtex or more is preferable from the viewpoint of production and handling.
[0027]
The composite monofilament of the present invention is woven at a density of from 110 to 150 mesh to form a mesh fabric. Then, the surface is vapor-deposited with nickel and copper, and then vapor-deposited with conductive carbon. The obtained conductive mesh is introduced between the front transparent glass substrate and the back substrate of the PDP, and installed between the front and back transparent substrates with a resin adhesive or the like. At this time, the mesh fabric is introduced with a certain bias angle to prevent moire. The electromagnetic wave shielding light transmitting window material for PDP is formed by this method.
[0028]
【The invention's effect】
Since the composite monofilament of the present invention has the physical properties within the range of the present invention, there is no squeezing after winding of the monofilament, and the fiber surface is not scraped by a reed when weaving the mesh fabric, and no scum is generated. For this reason, when a mesh fabric is made using the composite monofilament of the present invention, the light transmittance required for a screen gauze for PDP can be obtained, and the product acceptance rate from the viewpoint of good form stability performance is reduced. It was able to improve from 30% of the conventional to 90% or more. Further, the mesh fabric produced using the filament of the present invention has an appropriate elastic modulus and strength, is excellent in shape retention, and is suitable for PDP applications.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Incidentally, the characteristic values in the following examples were measured by the following method.
[0030]
(1) Intrinsic viscosity Intrinsic viscosity [η] was measured in a mixed solvent of phenol / tetrachloroethane = 6/4 at 20 ° C. by a conventional method.
[0031]
(2) Using an initial modulus of elasticity autograph tensile tester (manufactured by Shimadzu Corporation), a tensile test was performed at an initial length of 200 mm, a strain rate of 100% / min, and an initial load of 1/30 cN / dtex until a break occurred. The initial elastic modulus was calculated by the method described above.
[0032]
(3) Elongation at a strength of 2.5 cN / dtex (hereinafter referred to as E2.5)
In the tensile test described above, the elongation at a strength of 2.5 cN / dtex was determined.
[0033]
(4) Breaking strength and breaking elongation The breaking strength and breaking elongation were determined by the tensile test described above.
[0034]
(5) Abrasion and scum generation by reeds When weaving a 130-mesh mesh fabric using the composite monofilament, it is determined whether the reed has worn the fiber surface or whether white powder scum is generated. The following criteria were used to determine whether the mesh fabric was inspected and whether or not white powder had adhered to the reed or heald.
◎: No wear or scum generated by reeds at all ○: No wear or scum generated after weaving 5000 m in weaving direction 一部: Partially worn or scum observed ×: Many wear or scum [0035]
(6) A reversion rate In the mesh weaving process, the A reversion rate of the mesh fabric is defined as a warp break, a warp spot, a looseness, and the like caused by a piece of abrasion caused by white powder scum or a reed clogging in the mesh fabric structure. After checking, the inspection specialist gives a score and makes a decision. The mesh fabric having an A reversion of 90% or more was judged as acceptable. Those having an A reciprocity of less than 90% cannot be put into the next vapor deposition step.
[0036]
(7) Mesh fabric performance The mesh fabric raised as A was sputter-deposited with a conductor such as nickel, copper and carbon to produce an electromagnetic wave screen for PDP. If the mesh fabric has good shape retention and aperture, it can be used for PDPs. ◎, if it can be used, but it has some problem in aperture, ○, if it has insufficient shape retention and aperture, Δ, unusable ones were evaluated as x.
[0037]
(Examples 1-3, 5)
The core component is a polyethylene terephthalate polymer having an intrinsic viscosity of 0.688, and the sheath component is a copolymerized polyester obtained by copolymerizing 4.8% by weight of polyethylene glycol having an intrinsic viscosity of 0.668 and an average molecular weight of 600 into the polyester. Was. Each of the polyesters was melted and weighed so as to have a core-sheath ratio shown in Table 1, and a concentric core-sheath composite monofilament was discharged from a nozzle having a nozzle hole diameter of 0.45 mm. After cooling, an oil agent was applied and at 1500 m / min. Once wound up. Next, the undrawn yarn is drawn at a draw ratio shown in Table 1 between a roller heated to 83 ° C and a roller not heated, and then drawn between a roller heated at 130 ° C and a non-heated roller. The overfeed (OF) described in No. 1 was applied to wind up a pan. In each case, there was no panning, and the SS curve in the tensile test had the shape of the curve Y in FIG. Further, the initial elastic modulus and the elongation at a strength of 2.5 cN / dtex were within the range of the present invention as shown in Table 1. Next, when a 130-mesh mesh fabric was woven using the monofilaments, the results were determined as shown in Table 1, and all were useful for an electromagnetic wave shielding screen for PDP.
[0038]
(Example 4)
A composite monofilament was produced in the same manner as in Example 1 except that a polyester having an intrinsic viscosity of 0.637 was used as the polyester of the sheath component. Since the sheath component was not a flexible copolyester, the monofilament was slightly scraped by a reed, but could be used for a mesh fabric.
[0039]
(Comparative Examples 1-4, 6-7)
When stretched under the conditions shown in Table 1 in the same manner as in Example 1, Comparative Examples 1 and 5 showed that the initial elastic modulus or the elongation at a strength of 2.5 cN / dtex was out of the range of the present invention, and that weaving was performed. Occasionally, the reeds were heavily worn and the A rejection was low. Comparative Example 2 was not attractive because it did not suffer from reeding and had a high A repulsion but a low elastic modulus, and thus lacked the shape retention of the mesh fabric. In Comparative Example 3, the initial elastic modulus was too high, the surface was shaved by a reed during weaving, and the light transmittance was low due to the mixing of the scum. In Comparative Example 4, although the initial elastic modulus was low and no scum was generated, the morphological stability when the mesh was formed was poor. In Comparative Example 6, since the initial elastic modulus and the strength were high and the elongation was low, abrasion by a reed at the time of weaving occurred frequently, and the weavability was extremely poor. In Comparative Example 7, although the core component ratio was low and the weaving property was good, the elastic modulus and strength were low, and the morphological stability of the mesh fabric was poor.
[0040]
(Comparative Example 5)
A single monofilament using only a polyester having an intrinsic viscosity of 0.688 was wound at 1500 m / min. With the temperature of the stretching heating roller set at 85 ° C., the film was stretched at a magnification shown in Table 1 with a heating roller at 130 ° C., and then overwhelmed with a 3% overfeed with the heating roller at 140 ° C., followed by winding. The SS curve of the monofilament has the shape of the curve X in FIG. 2. When a mesh fabric was produced using the monofilament, the surface was frequently scraped by a reed, and the A rejection was extremely poor at 35%. .
[0041]
[Table 1]
Figure 2004270061

[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for calculating an SS curve and an initial elastic modulus in a tensile test of a composite monofilament of the present invention.
FIG. 2 is a schematic diagram of an SS curve in a tensile test of the composite monofilament of the present invention.
[Explanation of symbols]
Y1 First yield point Y2 Second yield point curve X SS curve curve of conventional monofilament Y SS curve of composite monofilament of the present invention

Claims (5)

芯鞘型複合ポリエステルからなり、初期弾性率が80〜100cN/dtexであり、強度2.5cN/dtex時の伸度が5〜8%であることを特徴とするポリエステル複合モノフィラメント。A polyester composite monofilament comprising a core-sheath composite polyester, having an initial elastic modulus of 80 to 100 cN / dtex and an elongation at a strength of 2.5 cN / dtex of 5 to 8%. 複合モノフィラメントのSS曲線は、2箇所の降伏点を有し、第1の降伏点Y1と第2の降伏点Y2間の曲線は、Y1とY2を結ぶ直線よりも下方に凸の形状とせしめた曲線である請求項1記載のポリエステル複合モノフィラメント。The SS curve of the composite monofilament has two yield points, and the curve between the first yield point Y1 and the second yield point Y2 has a convex shape below the straight line connecting Y1 and Y2. The polyester composite monofilament according to claim 1, which is a curve. 鞘成分がポリエチレングリコールを共重合したポリエステルであることを特徴とする請求項1〜2いずれか一項に記載のポリエステル複合モノフィラメント。The polyester composite monofilament according to any one of claims 1 to 2, wherein the sheath component is a polyester obtained by copolymerizing polyethylene glycol. 芯成分が極限粘度が0.65〜0.75のポリエステルであることを特徴とする請求項1〜3いずれか一項に記載のポリエステル複合モノフィラメント。The polyester composite monofilament according to any one of claims 1 to 3, wherein the core component is a polyester having an intrinsic viscosity of 0.65 to 0.75. 芯成分と鞘成分の比率が、40:60〜70:30であることを特徴とする請求項1〜4いずれか一項に記載のポリエステル複合モノフィラメント。The polyester composite monofilament according to any one of claims 1 to 4, wherein the ratio of the core component and the sheath component is 40:60 to 70:30.
JP2003060539A 2003-03-06 2003-03-06 Polyester composite monofilament Expired - Fee Related JP4236484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060539A JP4236484B2 (en) 2003-03-06 2003-03-06 Polyester composite monofilament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060539A JP4236484B2 (en) 2003-03-06 2003-03-06 Polyester composite monofilament

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008270186A Division JP4804518B2 (en) 2008-10-20 2008-10-20 Polyester composite monofilament

Publications (2)

Publication Number Publication Date
JP2004270061A true JP2004270061A (en) 2004-09-30
JP4236484B2 JP4236484B2 (en) 2009-03-11

Family

ID=33123049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060539A Expired - Fee Related JP4236484B2 (en) 2003-03-06 2003-03-06 Polyester composite monofilament

Country Status (1)

Country Link
JP (1) JP4236484B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092233A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Monofilament for screen gauze
JPWO2007013270A1 (en) * 2005-07-28 2009-02-05 帝人ファイバー株式会社 (Original) Polyester monofilament
EP2159307A1 (en) * 2007-05-24 2010-03-03 Teijin Fibers Limited Monofilament for screen fabric and process for production of screen fabric
JP2010168685A (en) * 2009-01-22 2010-08-05 Asahi Kasei Fibers Corp Abrasion-resistant polyester fiber and method for producing the same
JP2015063788A (en) * 2014-10-29 2015-04-09 旭化成せんい株式会社 Abrasion resistant polyester fiber and manufacturing method thereof
JP2020056121A (en) * 2018-09-29 2020-04-09 Kbセーレン株式会社 Monofilament for screen gauze and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007013270A1 (en) * 2005-07-28 2009-02-05 帝人ファイバー株式会社 (Original) Polyester monofilament
JP2007092233A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Monofilament for screen gauze
JP4661501B2 (en) * 2005-09-29 2011-03-30 東レ株式会社 Screen filament monofilament
EP2159307A1 (en) * 2007-05-24 2010-03-03 Teijin Fibers Limited Monofilament for screen fabric and process for production of screen fabric
EP2159307A4 (en) * 2007-05-24 2011-06-22 Teijin Fibers Ltd Monofilament for screen fabric and process for production of screen fabric
KR101431864B1 (en) 2007-05-24 2014-08-25 데이진 화이바 가부시키가이샤 Monofilament for screen fabric and process for production of screen fabric
JP2010168685A (en) * 2009-01-22 2010-08-05 Asahi Kasei Fibers Corp Abrasion-resistant polyester fiber and method for producing the same
JP2015063788A (en) * 2014-10-29 2015-04-09 旭化成せんい株式会社 Abrasion resistant polyester fiber and manufacturing method thereof
JP2020056121A (en) * 2018-09-29 2020-04-09 Kbセーレン株式会社 Monofilament for screen gauze and method for producing the same
JP7045297B2 (en) 2018-09-29 2022-03-31 Kbセーレン株式会社 Monofilament for screen gauze and its manufacturing method

Also Published As

Publication number Publication date
JP4236484B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4236484B2 (en) Polyester composite monofilament
JP2007113151A (en) Melt spinning method of polyester monofilament for screen gauze and polyester monofilament for screen gauze
JP4804518B2 (en) Polyester composite monofilament
CN100334272C (en) Composite fiber and its mfg. method
JP2004232182A (en) Polyester monofilament for screen gauze and method for producing the same
JP2913794B2 (en) Polyethylene-2,6-naphthalate monofilament for screen gauze
JP2009007683A (en) Water-repellent polyester blended yarn
JP2005240266A (en) Polyester monofilament for screen mesh
JP2005248357A (en) Polyester monofilament for screen gauze
JP2007224448A (en) Electrically conductive conjugate fiber
EP0399053B1 (en) Polyester composite mono-filament for screen gauze
JP2005047020A (en) Polyester monofilament for screen gauze
JP3429702B2 (en) Polyester monofilament for screen gauze
JPH02289120A (en) Polyester monofilament for screen gauze
JP2008255535A (en) High-tenacity conjugated fiber and method for producing the same
JP3299500B2 (en) Polyester monofilament for screen gauze
JP7045297B2 (en) Monofilament for screen gauze and its manufacturing method
JP4881124B2 (en) Polyester monofilament for screen wrinkles and method for producing the same
JP2000345433A (en) Polyester conjugate fiber for stretchable woven or knitted fabric
JP2004211221A (en) Sheath-core type conjugated polyester monofilament for screen gauze and method for producing the same and mesh woven fabric for screen printing
JP3462106B2 (en) Polyester monofilament for screen gauze
JP2008163492A (en) Polyester monofilament for screen gauze
JP3486132B2 (en) Modified polyethylene naphthalate monofilament and method for producing the same
JP2008255536A (en) Mesh cloth for screen gauze
KR101142478B1 (en) Micro fiber using weak-alkaline soluble polyester resins and knitting or textile using the same and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Ref document number: 4236484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees