JP2004270051A - Cord having high elastic modulus and method for producing the same - Google Patents

Cord having high elastic modulus and method for producing the same Download PDF

Info

Publication number
JP2004270051A
JP2004270051A JP2003059423A JP2003059423A JP2004270051A JP 2004270051 A JP2004270051 A JP 2004270051A JP 2003059423 A JP2003059423 A JP 2003059423A JP 2003059423 A JP2003059423 A JP 2003059423A JP 2004270051 A JP2004270051 A JP 2004270051A
Authority
JP
Japan
Prior art keywords
core
sheath
polymer
cord
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059423A
Other languages
Japanese (ja)
Other versions
JP4024697B2 (en
Inventor
Junyo Nakagawa
潤洋 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2003059423A priority Critical patent/JP4024697B2/en
Publication of JP2004270051A publication Critical patent/JP2004270051A/en
Application granted granted Critical
Publication of JP4024697B2 publication Critical patent/JP4024697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/201Wires or filaments characterised by a coating
    • D07B2201/2012Wires or filaments characterised by a coating comprising polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2014Compound wires or compound filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2039Polyesters
    • D07B2205/2042High performance polyesters, e.g. Vectran

Abstract

<P>PROBLEM TO BE SOLVED: To provide cords each having a high elastic modulus, having good stiffness, hardly bent, and having good abrasion resistance. <P>SOLUTION: This cord is characterized by comprising sheath-core conjugate fibers whose each core component comprises a meltable liquid crystal polymer and has a fiber diameter of 20 to 200μm and whose each sheath component comprises a thermoplastic polymer, and which each has a core component: sheath component area ratio of 60:40 to 90:10, and having an elastic modulus of ≥300 cN/dtex and a diameter of 0.2 to 3.0 mm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は高弾性率を有するコードに関するものであり、産業資材用途のコード、特にテンションメンバーとして用いられる用途において、高弾性率であり、かつ剛直性、軽量、非導電性、耐切創性、耐熱性、耐薬品性等に優れ、また折れにくく作業性が良好である等の特徴を有するものであり、光ファイバーコード、イヤホーンコード、電線支持体、搬送用ベルト、リードロープ(コード)、シャフト補強等の分野に利用されるものである。
【0002】
【従来の技術】
従来、産業資材用コードとしては、鋼線、単一ポリマーからなるモノフィラメント、マルチフィラメントを撚糸したもの、あるいは撚糸したマルチフィラメントを樹脂被覆したものが用いられていた。鋼線に関しては重い、導電性がある、他素材と被覆して用いたときの廃材処理問題等があるため、本発明の技術分野での使用は限られていた。単一ポリマーからなるモノフィラメント、マルチフィラメントを撚糸したもの、あるいは撚糸したマルチフィラメントを樹脂被覆したものに関しては弾性率が300cN/dtexを満足するコードが要求されている。単一ポリマーからなるモノフィラメントに関しては、ナイロン、ポリエステル等のものがあるが、弾性率が200cN/dtex以下と低く、要求性能を満足するものではなかった。唯一溶融液晶性ポリマーから得られるモノフィラメントに高弾性率のものがあるが、直径が0.2mm以上となると弾性率が低下し、300cN/dtex以上を達成することは困難であった。また溶融液晶性ポリマーから得られるモノフィラメントを使用した場合毛羽立ちが激しく、かつ折れやすいという問題もあり後加工に支障をきたしていた。このような問題を解決するための手段として、高弾性率を持つ全芳香族ポリエステル繊維やアラミド繊維等のマルチフィラメントを撚糸したものに熱硬化性の樹脂を含浸し、固める方法が提案されている。(例えば、特許文献1あるいは特許文献2参照。)。
しかし、これらの方法では、樹脂含浸という工程が必要であり、作業が煩雑なものとなっていた。また樹脂を繊維間に均一に含浸させ、かつ折れ難くするには、含浸樹脂量を多くする必要があるが、樹脂量が多くなると相対的に弾性率が低下するという問題があった。また、600cN/dtex以上の高弾性率繊維を使用することはコスト高となり、さらには十分な剛性を得るための安定製造が困難であるという問題点があった。
【0003】
【特許文献1】
特開平2−133347号公報
【特許文献2】
特開2000−199840号公報
【0004】
【発明が解決しようとする課題】
本発明は上記問題を解決するものであり、樹脂含浸工程を全く必要とせずに個々の単繊維の鞘部分を熱処理で融着させる方法により、低樹脂量で良好な接着性を有し、高強度、高弾性率でかつ剛性があり折れにくく、さらに耐摩耗性に優れる各種コードを提供することにある。
【0005】
【課題を解決するための手段】
すなわち本発明は、芯成分が溶融液晶ポリマー、鞘成分が熱可塑性ポリマーからなり,芯成分の直径が20〜200μmであり、芯成分と鞘成分の面積比が芯:鞘=60:40〜90:10である芯鞘型複合繊維で構成され、弾性率が300cN/dtex以上、直径0.2〜3.0mmのコードであり、好ましくは芯成分は融点がS1℃の溶融液晶ポリマー、鞘成分は融点がS2℃の屈曲性の熱可塑性ポリマーであり、(S1−S2)≧0を満足する芯鞘型複合繊維で構成される上記のコードであり、より好ましくは上記の芯鞘型複合繊維を複数本、張力下で熱融着させることを特徴とするコードの製造方法に関する。
【0006】
【発明の実施の形態】
本発明のコードを構成する芯鞘型複合繊維の芯成分に用いられる溶融液晶ポリマーとは、溶融相において光学異方性(液晶性)を示すポリマーであり、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。本発明の溶融液晶ポリマーは、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等から誘導される反復構成単位を有するものであるが、例えば下記化1及び化2の(1)〜(11)に示す繰り返し構成単位の組み合わせからなるポリマーが挙げられる。
【0007】
【化1】

Figure 2004270051
【化2】
Figure 2004270051
【0008】
上記の溶融液晶ポリマーにおいて、より好ましくは化1および化2に示される反復構成単位の組合せ(5)、(8)、(9)からなるポリマーであり、さらに好ましくは、(5)に相当するポリマーであって、下記化3の(B)の成分が4〜45モル%である芳香族ポリエステルである。
【0009】
【化3】
Figure 2004270051
【0010】
本発明で用いられる溶融液晶ポリマーは好ましくは250〜350℃、より好ましくは260〜320℃の融点を有するポリマーである。ここでいう融点とは、JIS K7121に準拠した試験方法により測定されるものであり、示差走査熱量計(DSC:例えばMettler社製TA3000)で観察される主吸熱ピークのピーク温度である。
【0011】
本発明の溶融液晶ポリマーに、本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエステルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを添加してもよい。また酸化チタンやカオリン、シリカ、酸化バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤、各種添加剤を添加してもよい。
【0012】
本発明のコードを構成する芯鞘型複合繊維の鞘成分に用いられる熱可塑性ポリマーとは、例えばポリオレフィン、ポリアセタール、ポリエステル、ポリアミド、ポリアリレート、ポリカーボネート、ポリフェニレンサルファイド、ポリエーテルエステルケトン、フッ素樹脂等の熱溶融可能な屈曲性ポリマーであり、さらにはこれらのポリマーの混合物であってもよく、芯成分を構成する溶融液晶ポリマーの融点をS1℃、鞘成分を構成する屈曲性熱溶融ポリマーの融点をS2℃とするとき、(S1−S2)≧0となる条件を満たすものが好ましい。より好ましくは、ポリエチレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等であり、10≦(S1−S2)≦200を満たすものである。さらに好ましくはこれらに10〜30質量%の溶融液晶ポリマーをブレンドしたものである。
【0013】
本発明で用いる複合繊維は、公知の方法、例えば図1に示される構造のノズルを用いて芯鞘複合繊維が製造される。
芯鞘複合繊維において、芯の直径は20〜200μmであることが必要である。芯の直径が20μmに満たない場合は剛直性に劣り、折れやすいものとなる。一方、芯の直径が200μmを越えると溶融液晶分子が冷却中に緩和してしまうため、本発明の目的とする300cN/dtex以上の弾性率をもったコードを得ることができなくなる。好ましくは40〜150μmであり、より好ましくは60〜100μmである。また本発明の芯鞘型複合繊維の断面形状は円形であることがより好適であるが、例えば扁平形状等の異形断面であっても何等差し支えなく、異形断面の場合は一番短い部分の径を繊維径とする。
【0014】
本発明の芯鞘複合繊維における芯成分と鞘成分の割合は面積比で、芯:鞘=60:40〜90:10の範囲であることが必要である。芯成分の面積比が60未満では弾性率が低下し、本発明の目的とする300cN/dtex以上の弾性率を達成しない。一方、芯成分の面積比が90を越えると接着が不十分となり、また剛性不足となり折れやすいという問題が生じる。好ましくは芯:鞘=70:30〜85:15の範囲である。
【0015】
本発明の芯鞘複合繊維は公知の複合紡糸法で製造されるが、高弾性率を得るためにはノズル通過時の剪断速度SVが10sec−1以上10sec−1以下、ドラフトDRが10以上40以下の条件を満足することが好ましい。
剪断速度SVが10sec−1未満の場合は剪断シェア−が小さく、溶融液晶高分子を十分配向させることができない。一方剪断速度SVが10sec−1を越えると圧損が大きくなりすぎて、実質的に紡糸ができなくなる。より好ましい範囲は10sec−1以上5×10sec−1以下である。
またドラフトDRが10未満では配向緩和が促進され、本発明で目的とする弾性率300cN/dtex以上を満足するコードが得られない。一方、ドラフトDRが40を越えると、紡糸時に断糸が生じ、繊維が安定に製造できなくなる。より好ましい範囲は15以上30以下である。なお本発明でいう剪断速度SVとは、ノズル半径をr(cm)、単孔あたりのポリマー流量をQ(cm/sec)とするとき、SV=4Q/πrの関係式により求められる。また本発明でいうドラフトDRとは、ノズルからの射出速度V(m/min)と引取速度V(m/min)とするとき、DR=V/Vの関係式により求められる。
【0016】
紡糸した繊維はモノフィラメントまたはマルチフィラメントとして巻き取ってもよい。この繊維束を目的のコード径となるように引き揃え、張力下で熱処理して0.2〜3.0mmφの1本のコードとする。引き揃えの手段としては単純集束でもよいが、合糸撚糸することが有効である。合糸撚糸する際、好ましい撚数20〜80回/mである。
【0017】
本発明において、上記モノフィラメントあるいはマルチフィラメントの鞘成分を熱融着して剛性のあるコードにする方法、いわゆる熱セットを行うことが好ましい。ここでいう熱セットとは、具体的には集束または合撚した糸条を張力下で鞘成分の融点以上の温度でセットし熱融着させる方法である。張力下で熱セットを行うことにより、弾性率を向上させることができる。また熱セット時にコード径のオリフィスを通過させて行うことが好ましい。このような熱セットにより気泡が含まず剛性があり、折れにくいコードを製造することができる。
【0018】
本発明においては、紡糸、集束、撚糸した糸条をそのまま熱セットしてもよいが、強度と弾性率を向上させるために、予め固相重合することが好ましい。固相重合において、熱処理雰囲気は露点温度が−80℃以下の低湿気体が好ましく、具体的には窒素等のガスや除湿空気等の活性ガス中、減圧下にて行うことが好ましい。また好ましい熱処理条件としては、芯成分の融点−50℃以下から融点近傍まで順次昇温する温度パターンが挙げられる。熱の供給は、気体の媒体を用いる方法、加熱板、赤外線ヒーター等により輻射を利用する方法、高周波等を利用した内部加熱方法等がある。処理形状はカセ状、トウ状(例えば金属網等にのせて行う)、ボビンに巻いた状態あるいはローラー間で連続的に処理することも可能である。処理時間は目的により異なるが、5〜30時間行うことが好ましい。一般的に、このような処理により強度は2倍以上、弾性率は20%以上向上させることができる。
【0019】
本発明のコードは、各種のテンションメンバー、リードケーブル、鋼鉄ワイヤー代替分野、ジオグリット分野で使用される。特に、光ファイバーのテンションメンバーとして有効に使用される。
【0020】
【実施例】
以下、実施例により本発明を更に詳細に説明するが本発明は下記の実施例に限定されるものではない。なお以下の実施例において、ポリマーの融点、ポリマー溶融粘度、対数粘度、繊維強度、弾性率、剛直性、最小曲げ径は下記の方法により測定したものを示す。
【0021】
[ポリマーの融点 ℃]
サンプル10〜20mg採取し、アルミ製パンへ封入した後、示差走査熱量計(DSC:Mettler社製TA3000)にてキャリアーガスとして窒素を100ml/分の流量にて注入しながら、昇温速度20℃/分で昇温したときの吸熱ピーク温度を測定する(1st Run)。ポリマーの種類により上記1st Runで明確な吸熱ピークが出現しない場合、50℃/分の昇温速度で、予想される流れ温度より50℃高い温度まで昇温し、その温度で3分間以上保持し完全に溶融した後、80℃/分の降温速度で50℃まで冷却し、しかる後20℃/分の昇温速度で吸熱ピークを測定する。
【0022】
[溶融粘度 Pa・s]
溶融温度300℃、剪断速度1000sec−1の条件で東洋精機製キャピログラフ1B型を用いて測定した。
【0023】
[対数粘度 ηinh
ポリマー試料をペンタフルオロフェノールに0.1質量%溶解し(60〜80℃)、60℃の恒温槽中で、ウベローデ型粘度計で相対粘度(ηrel)を測定し、次式によって計算した。
ηinh=ln(ηrel)/c
ここでcはポリマー濃度(g/dl)である。
【0024】
[繊維強度、弾性率 cN/dtex]
JIS L1013に準拠し、試長20cm、初荷重0.1g/d、引張速度10cm/minの条件にて測定し、5点以上の平均値を採用した。
【0025】
[剛直性 g]
図2に示す装置にコードをセットし、30mm間で4mm降下させたときの荷重を測定する。
【0026】
[最小曲げ径 mm]
コードでループを作り、ループをゆっくりと小さくしていき、折れた時の径を測定した。
【0027】
[実施例1]
(1)芯成分のポリマーには前記化3で示した構成単位(A)と(B)がモル比にて(A)/(B)=73/27である溶融異方性芳香族ポリエステル(融点281℃、溶融粘度42.5Pa・s、ηinh=4.38dl/g)を用い、鞘成分のポリマーとしては、PEN(融点266℃、極限粘度[η]=0.61、溶融粘度300Pa・s)を用いて、芯と鞘の面積比80:20になるように、図1の構造を有する口金より紡糸温度305℃、巻き取り速度1000m/分にて、表1に示すような1760dtex/32フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに36回/mの撚りを加え、ボビンに巻き取り、250℃で2時間、さらに260℃で10時間窒素ガス雰囲気中で熱処理した。得られた熱処理糸を、ローラー間にある290℃の熱風炉中で10秒間熱セットした。このときの張力は4.2kgとした。得られたコードの性能を表1に示す。
【0028】
[実施例2]
実施例1で得られたマルチフィラメントに対し熱処理を行わず、266℃の熱風炉で10秒間熱セットした。得られたコードの性能を表1に示す。
【0029】
[実施例3]
(1)芯成分のポリマーには実施例1と同じ溶融異方性芳香族ポリエステルを用い、鞘成分のポリマーとしては、実施例1と同じPENポリマーと実施例1の芯成分に用いた溶融異方性芳香族ポリエステルポリマーを80:20にブレンドしたものを用いて、芯と鞘の面積比が90:10となるように、紡糸温度305℃、巻き取り速度1000m/分にて、表1に示すような1700dtex/68フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに60回/mの撚りを加え、ボビンに巻き取り、200℃で2時間、250℃で4時間、さらに260℃で10時間窒素ガス雰囲気中で熱処理した。得られた熱処理糸を、ローラー間にある290℃の熱風炉中で10秒間熱セットした。このときの張力は4.5kgとした。得られたコードの性能を表1に示す。
【0030】
[実施例4]
(1)芯成分のポリマーには実施例1と同じ溶融異方性芳香族ポリエステルを用い、鞘成分のポリマーとしては、実施例1と同じPENを用いて、芯と鞘の面積比75:25になるように、紡糸温度310℃、巻き取り温度800m/分にて、表1に示すような1710dtex/20フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに30回/mの撚りを加え、ボビンに巻き取り、200℃で2時間、250℃で4時間、さらに260℃で10時間窒素ガス雰囲気中で熱処理した。得られた熱処理糸を、ローラー間にある290℃の熱風炉中で10秒間熱セットした。このときの張力は3.7kgとした。得られたコードの性能を表1に示す。
【0031】
[実施例5]
(1)芯成分のポリマーには実施例1と同じ溶融異方性芳香族ポリエステルを用い、鞘成分のポリマーとしては、ポリエチレン(分子量約20万、融点127℃)と実施例1の芯成分に用いた溶融異方性芳香族ポリエステルポリマーを80:20にブレンドしたものを用いて、芯と鞘の面積比75:25となるように、紡糸温度310℃、巻き取り速度800m/分にて、表1に示すような1710dtex/20フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに30回/mの撚りを加え、ボビンに巻き取り、200℃で2時間、250℃で4時間、さらに260℃で10時間窒素ガス雰囲気中で熱処理した。熱処理条件はポリエチレンの融点よりかなりの高温であったが、溶融異方性芳香族ポリエステルポリマーをブレンドしていたため、膠着も少なく、製造に支障はなかった。得られた熱処理糸を、ローラー間にある220℃の熱風炉中で10秒間熱セットした。このときの張力は3.7kgとした。得られたコードの性能を表1に示す。
【0032】
[比較例1]
(1)実施例1と同じ溶融異方性芳香族ポリエステルを用い、紡糸温度310℃、巻き取り速度100m/分にて、表1に示すような1700dtexのモノフィラメントを紡糸した。
(2)このモノフィラメントをボビンに巻き取り、200℃で2時間、250℃で4時間、さらに280℃で10時間窒素ガス雰囲気中で熱処理した。得られたモノフィラメントの性能を表1に示す。
(3)このモノフィラメントの紡糸においては、配向緩和が生じるため、本発明の目的である弾性率300cN/dtex以上は得られなかった。
【0033】
[比較例2]
(1)芯成分のポリマーには実施例1と同じ溶融異方性芳香族ポリエステルを用い、鞘成分のポリマーとしては、実施例1と同じPENを用い、芯と鞘の面積比95:5となるように紡糸温度305℃、巻き取り速度1000m/分にて、表1に示すような1670dtex/30フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに30回/mの撚りを加え、実施例3と同様の方法で熱処理した。得られた熱処理糸を、ローラー間にある290℃の熱風炉中で10秒間熱セットした。このときの張力は4.2kgとした。得られたコードの性能を表1に示す。
(3)このマルチフィラメントの弾性率は良好であるが、芯成分の面積比が90%よりも大きいため、剛性が低く、また融着が十分ではなく、ループ状の肌分かれがあった。また最小径も大きく、折れやすいものであった。
【0034】
[比較例3]
(1)芯成分のポリマーには実施例1と同じ溶融異方性芳香族ポリエステルを用い、鞘成分のポリマーとしては、実施例1と同じPENを用い、芯と鞘の面積比45:55となるように紡糸温度305℃、巻き取り速度1000m/分にて、表1に示すような1670dtex/14フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに30回/mの撚りを加え、比較例2と同様の条件で熱処理、熱セットした。得られたコードの性能を表1に示す。
(3)このマルチフィラメントは芯成分の割合が少ないため、弾性率が低いものであった。
【0035】
[比較例4]
(1)芯成分のポリマーには実施例1と同じ溶融異方性芳香族ポリエステルを用い、鞘成分のポリマーとしては、実施例1と同じPENを用い、芯と鞘の面積比65:35、芯成分の繊維径が15μmとなるようにし、紡糸温度305℃、巻き取り速度1000m/分にて、表1に示すような1670dtex/44フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに30回/mの撚りを加え、比較例2と同様の条件で熱処理、熱セットした。得られたコードの性能を表1に示す。
(3)このマルチフィラメントは芯成分の繊維径が20μmよりも小さいため、剛性が低く、最小半径からもわかるように折れやすいコードであった。
【0036】
[比較例5]
(1)芯成分のポリマーには実施例1と同じ溶融異方性芳香族ポリエステルを用い、鞘成分のポリマーとしては、実施例1と同じPENを用い、芯と鞘の面積比70:30、芯成分の繊維径が230μmとなるようにし、紡糸温度305℃、巻き取り速度1000m/分にて、表1に示すような1663dtex/2フィラメントのマルチフィラメントを紡糸した。
(2)このマルチフィラメントに30回/mの撚りを加え、比較例2と同様の条件で熱処理、熱セットした。得られたコードの性能を表1に示す。
(3)このマルチフィラメントは芯成分の繊維径が200μmよりも大きいため、弾性率が低いものであった。
【0037】
【表1】
Figure 2004270051
【0038】
【発明の効果】
本発明の芯成分が溶融液晶ポリマー、鞘成分が熱可塑性ポリマーからなる芯鞘型複合繊維で構成されたコードは樹脂含浸工程を必要とせずに単繊維の鞘成分を熱処理で融着させる方法であるため、低樹脂量で良好な接着性を示し、高弾性率でかつ剛性があり折れにくく、耐摩耗性に優れるという特徴を有する。本発明のコードはロープ、ケーブル、テンションメンバー、FRC、FRP、防弾チョッキ等の幅広い用途に特に好適である。
【図面の簡単な説明】
【図1】本発明で用いられる口金の具体例。なお図中Aポリマーは芯成分のポリマー、Bポリマーは鞘成分のポリマーを示す。
【図2】本発明のコードの剛直性評価装置の模式図。
【符号の説明】
1;フリーローラー
2;4mm降下させるフリーローラー
3;おもり(荷重10g)
4;試験コード
5;コードの固定部分[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cord having a high modulus of elasticity, and has a high modulus of elasticity and rigidity, light weight, non-conductivity, cut resistance, heat resistance in cords for industrial materials, particularly for use as tension members. It has characteristics such as excellent resistance, chemical resistance, etc., and it is hard to break and has good workability. Optical fiber cord, earphone cord, electric wire support, transport belt, lead rope (cord), shaft reinforcement, etc. It is used in the field of.
[0002]
[Prior art]
Conventionally, as a cord for industrial materials, a steel wire, a monofilament made of a single polymer, a multifilament twisted, or a twisted multifilament coated with a resin has been used. The use of steel wires in the technical field of the present invention has been limited due to heavy, conductive, and waste material disposal problems when used with coating with other materials. For a monofilament made of a single polymer, a twisted multifilament, or a twisted multifilament coated with a resin, a cord having an elastic modulus of 300 cN / dtex is required. Among monofilaments made of a single polymer, there are nylon, polyester and the like, but the elastic modulus was as low as 200 cN / dtex or less, and the required performance was not satisfied. The only monofilament obtained from the molten liquid crystalline polymer has a high elastic modulus, but when the diameter is 0.2 mm or more, the elastic modulus decreases, and it is difficult to achieve 300 cN / dtex or more. In addition, when a monofilament obtained from a molten liquid crystalline polymer is used, there is a problem that fluffing is severe and the film is easily broken, which hinders post-processing. As a means for solving such a problem, there has been proposed a method of impregnating a thermoset resin into a twisted multifilament such as a wholly aromatic polyester fiber or an aramid fiber having a high modulus of elasticity and solidifying it. . (For example, see Patent Document 1 or Patent Document 2.)
However, these methods require a step of resin impregnation, which makes the operation complicated. Further, in order to impregnate the resin uniformly between the fibers and make it difficult to break, it is necessary to increase the amount of the impregnated resin. However, there is a problem that the elastic modulus is relatively lowered as the amount of the resin increases. In addition, the use of a fiber having a high modulus of elasticity of 600 cN / dtex or more increases the cost, and furthermore, there is a problem that it is difficult to perform stable production for obtaining sufficient rigidity.
[0003]
[Patent Document 1]
JP-A-2-133347 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-199840
[Problems to be solved by the invention]
The present invention solves the above-mentioned problem, and has a good adhesive property with a low resin amount and a high adhesiveness by a method of fusing sheath portions of individual single fibers by heat treatment without any need for a resin impregnation step. An object of the present invention is to provide various cords having high strength, high elastic modulus, rigidity, low breakage, and excellent wear resistance.
[0005]
[Means for Solving the Problems]
That is, in the present invention, the core component is a molten liquid crystal polymer, the sheath component is a thermoplastic polymer, the core component has a diameter of 20 to 200 μm, and the area ratio of the core component and the sheath component is core: sheath = 60: 40 to 90. : A cord having a core-sheath type conjugate fiber having a modulus of 300 cN / dtex or more and a diameter of 0.2 to 3.0 mm, preferably a molten liquid crystal polymer having a melting point of S1 ° C, and a sheath component Is a flexible thermoplastic polymer having a melting point of S2 ° C. and is the above-mentioned cord composed of a core-sheath composite fiber satisfying (S1−S2) ≧ 0, more preferably the above-mentioned core-sheath composite fiber And a method for producing a cord by heat-sealing a plurality of cords under tension.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The molten liquid crystal polymer used as the core component of the core-sheath type conjugate fiber constituting the cord of the present invention is a polymer which exhibits optical anisotropy (liquid crystallinity) in a molten phase. It can be recognized by heating and heating in an atmosphere and observing the transmitted light of the sample. The molten liquid crystal polymer of the present invention has a repeating structural unit derived from an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, or the like. For example, the following chemical formulas (1) to (2) Examples of the polymer include a combination of the repeating structural units shown in 11).
[0007]
Embedded image
Figure 2004270051
Embedded image
Figure 2004270051
[0008]
The above-mentioned molten liquid crystal polymer is more preferably a polymer composed of combinations (5), (8), and (9) of the repeating structural units represented by Chemical Formulas 1 and 2, and further preferably corresponds to (5). It is a polymer and is an aromatic polyester in which the component of the following formula (B) is 4-45 mol%.
[0009]
Embedded image
Figure 2004270051
[0010]
The molten liquid crystal polymer used in the present invention is preferably a polymer having a melting point of 250 to 350C, more preferably 260 to 320C. The melting point referred to here is a peak temperature of a main endothermic peak observed by a differential scanning calorimeter (DSC: for example, TA3000 manufactured by Mettler) measured by a test method based on JIS K7121.
[0011]
To the molten liquid crystal polymer of the present invention, a thermoplastic polymer such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyester ether ketone, or a fluororesin, within a range not impairing the effects of the present invention. It may be added. In addition, inorganic substances such as titanium oxide, kaolin, silica, and barium oxide, carbon black, coloring agents such as dyes and pigments, antioxidants, ultraviolet absorbers, light stabilizers, and various additives may be added.
[0012]
The thermoplastic polymer used for the sheath component of the core-sheath type composite fiber constituting the cord of the present invention is, for example, polyolefin, polyacetal, polyester, polyamide, polyarylate, polycarbonate, polyphenylene sulfide, polyetheresterketone, fluororesin, etc. It is a heat-fusible flexible polymer, and may be a mixture of these polymers. The melting point of the molten liquid crystal polymer constituting the core component is S1 ° C., and the melting point of the flexible hot-melting polymer constituting the sheath component is When the temperature is set to S2 ° C., those satisfying the condition of (S1−S2) ≧ 0 are preferable. More preferably, it is polyethylene, polyethylene terephthalate, polyethylene naphthalate, polyarylate, or the like, and satisfies 10 ≦ (S1−S2) ≦ 200. More preferably, these are blended with 10 to 30% by mass of a molten liquid crystal polymer.
[0013]
The conjugate fiber used in the present invention is produced by a known method, for example, using a nozzle having a structure shown in FIG.
In the core-sheath composite fiber, the core diameter needs to be 20 to 200 μm. When the diameter of the core is less than 20 μm, the core is inferior in rigidity and easily broken. On the other hand, if the core diameter exceeds 200 μm, the molten liquid crystal molecules are relaxed during cooling, so that it is impossible to obtain a cord having an elastic modulus of 300 cN / dtex or more, which is the object of the present invention. Preferably it is 40-150 micrometers, More preferably, it is 60-100 micrometers. Further, the cross-sectional shape of the core-sheath type conjugate fiber of the present invention is more preferably a circular shape. However, even if the cross-sectional shape is an irregular shape such as a flat shape, there is no problem. Is the fiber diameter.
[0014]
It is necessary that the ratio of the core component and the sheath component in the core-sheath conjugate fiber of the present invention is in the area ratio and the core: sheath = 60: 40 to 90:10. If the area ratio of the core component is less than 60, the elastic modulus is lowered, and the elastic modulus of 300 cN / dtex or more which is the object of the present invention is not achieved. On the other hand, if the area ratio of the core component exceeds 90, the adhesion becomes insufficient, the rigidity becomes insufficient, and the core is easily broken. Preferably, core: sheath = 70: 30 to 85:15.
[0015]
The core-sheath conjugate fiber of the present invention is manufactured by a known conjugate spinning method. In order to obtain a high elastic modulus, the shear rate SV when passing through the nozzle is from 10 3 sec -1 to 10 5 sec -1 and the draft DR Preferably satisfies the condition of 10 or more and 40 or less.
When the shear rate SV is less than 10 3 sec −1 , the shear share is small and the molten liquid crystal polymer cannot be sufficiently oriented. On the other hand, if the shear rate SV exceeds 10 3 sec −1 , the pressure loss becomes too large, and spinning cannot be performed substantially. A more preferred range is from 10 3 sec -1 to 5 × 10 4 sec -1 .
When the draft DR is less than 10, orientation relaxation is promoted, and a cord satisfying the elastic modulus of 300 cN / dtex or more in the present invention cannot be obtained. On the other hand, if the draft DR exceeds 40, yarn breakage occurs during spinning, and the fiber cannot be manufactured stably. A more preferred range is 15 or more and 30 or less. Note that the shear velocity SV in the present invention, the nozzle radius r (cm), when the polymer flow rate per single hole and Q (cm 3 / sec), is determined by the relationship of SV = 4Q / πr 3. Also the draft DR in the present invention, when the injection speed V 0 which the nozzle (m / min) and the take-up speed V (m / min), obtained by a relational expression DR = V / V 0.
[0016]
The spun fibers may be wound as monofilaments or multifilaments. The fiber bundle is drawn to a desired cord diameter, and heat-treated under tension to form a cord having a diameter of 0.2 to 3.0 mmφ. Although simple bundling may be used as a means for aligning, twisting and twisting is effective. When ply-twisting, the number of twists is preferably 20 to 80 turns / m.
[0017]
In the present invention, it is preferred to perform a method of heat-sealing the sheath component of the monofilament or the multifilament to form a rigid cord, so-called heat setting. Specifically, the heat setting is a method in which a bundled or twisted yarn is set under tension at a temperature equal to or higher than the melting point of the sheath component and thermally fused. By performing heat setting under tension, the elastic modulus can be improved. Further, it is preferable to perform the heat setting by passing through an orifice having a cord diameter. Such a heat setting makes it possible to manufacture a cord that does not contain air bubbles, has rigidity, and is hard to break.
[0018]
In the present invention, the spun, bundled and twisted yarn may be heat-set as it is, but it is preferable to carry out solid-phase polymerization in advance in order to improve strength and elastic modulus. In the solid-phase polymerization, the heat treatment atmosphere is preferably a low-humidity gas having a dew point temperature of -80 ° C or less, and specifically, it is preferably performed in a gas such as nitrogen or an active gas such as dehumidified air under reduced pressure. Preferred heat treatment conditions include a temperature pattern in which the temperature is sequentially increased from the melting point of the core component −50 ° C. or lower to the vicinity of the melting point. Heat is supplied by a method using a gaseous medium, a method using radiation by a heating plate, an infrared heater, or the like, an internal heating method using high frequency or the like. The shape of the treatment may be a scallop shape, a tow shape (for example, placed on a metal net or the like), a state wound around a bobbin, or a continuous treatment between rollers. Although the processing time varies depending on the purpose, it is preferably performed for 5 to 30 hours. Generally, such treatment can improve the strength by a factor of two or more and the modulus of elasticity by at least 20%.
[0019]
The cord of the present invention is used in various tension members, lead cables, steel wire replacement fields, and geogrid fields. Particularly, it is effectively used as a tension member of an optical fiber.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following examples, the melting point, polymer melt viscosity, logarithmic viscosity, fiber strength, elastic modulus, rigidity, and minimum bending diameter of the polymer are measured by the following methods.
[0021]
[Polymer melting point ° C]
After collecting 10 to 20 mg of a sample and sealing it in an aluminum pan, the temperature was raised at a rate of 20 ° C. while injecting nitrogen as a carrier gas at a flow rate of 100 ml / min using a differential scanning calorimeter (DSC: TA3000 manufactured by Mettler). The endothermic peak temperature when the temperature is raised at a rate of 1 minute is measured (1st Run). If a clear endothermic peak does not appear in the first run depending on the type of the polymer, the temperature is raised to a temperature 50 ° C. higher than the expected flow temperature at a rate of 50 ° C./min, and held at that temperature for 3 minutes or more. After complete melting, the sample is cooled to 50 ° C. at a rate of 80 ° C./min, and then an endothermic peak is measured at a rate of 20 ° C./min.
[0022]
[Melt viscosity Pa · s]
The measurement was performed using a Capillograph 1B manufactured by Toyo Seiki under the conditions of a melting temperature of 300 ° C. and a shear rate of 1000 sec −1 .
[0023]
[Logarithmic viscosity η inh ]
A polymer sample was dissolved in pentafluorophenol at 0.1% by mass (60 to 80 ° C.), and the relative viscosity (η rel ) was measured with a Ubbelohde viscometer in a thermostat at 60 ° C., and calculated by the following equation.
η inh = ln (η rel ) / c
Here, c is the polymer concentration (g / dl).
[0024]
[Fiber strength, elastic modulus cN / dtex]
In accordance with JIS L1013, measurement was performed under the conditions of a test length of 20 cm, an initial load of 0.1 g / d, and a tensile speed of 10 cm / min, and an average value of five or more points was adopted.
[0025]
[Rigidity g]
The cord is set in the apparatus shown in FIG. 2, and the load when the cord is lowered by 4 mm between 30 mm is measured.
[0026]
[Minimum bending diameter mm]
A loop was made with the cord, and the loop was slowly reduced in size, and the diameter at the time of the break was measured.
[0027]
[Example 1]
(1) In the polymer of the core component, a melt anisotropic aromatic polyester (A) / (B) = 73/27 in a molar ratio of the structural units (A) and (B) represented by Chemical Formula 3 above ( Using a melting point of 281 ° C., a melt viscosity of 42.5 Pa · s, η inh = 4.38 dl / g), and as a sheath component polymer, PEN (melting point: 266 ° C., intrinsic viscosity [η] = 0.61, melt viscosity: 300 Pa) Using s), a spinning temperature of 305 ° C. and a winding speed of 1000 m / min from a die having the structure of FIG. 1 so that the core-sheath area ratio becomes 80:20, and a 1760 dtex as shown in Table 1 / 32 filament multifilament was spun.
(2) The multifilament was twisted at a rate of 36 turns / m, wound around a bobbin, and heat-treated at 250 ° C for 2 hours and further at 260 ° C for 10 hours in a nitrogen gas atmosphere. The obtained heat-treated yarn was heat-set for 10 seconds in a hot air oven at 290 ° C. between rollers. The tension at this time was 4.2 kg. Table 1 shows the performance of the obtained cord.
[0028]
[Example 2]
The multifilament obtained in Example 1 was not heat-treated, but was heat-set in a hot air oven at 266 ° C. for 10 seconds. Table 1 shows the performance of the obtained cord.
[0029]
[Example 3]
(1) As the core component polymer, the same melt anisotropic aromatic polyester as in Example 1 was used, and as the sheath component polymer, the same PEN polymer as in Example 1 and the melt difference used in Example 1 were used. Using an isotropic aromatic polyester polymer blended at 80:20, a spinning temperature of 305 ° C. and a winding speed of 1000 m / min are shown in Table 1 so that the area ratio between the core and the sheath is 90:10. A 1700 dtex / 68 filament multifilament was spun as shown.
(2) The multifilament was twisted at 60 turns / m, wound around a bobbin, and heat-treated at 200 ° C for 2 hours, 250 ° C for 4 hours, and 260 ° C for 10 hours in a nitrogen gas atmosphere. The obtained heat-treated yarn was heat-set for 10 seconds in a hot air oven at 290 ° C. between rollers. The tension at this time was 4.5 kg. Table 1 shows the performance of the obtained cord.
[0030]
[Example 4]
(1) The same melt anisotropic aromatic polyester as in Example 1 was used as the polymer of the core component, and the same PEN as in Example 1 was used as the polymer of the sheath component, and the area ratio between the core and the sheath was 75:25. At a spinning temperature of 310 ° C. and a winding temperature of 800 m / min, a multifilament of 1710 dtex / 20 filament as shown in Table 1 was spun.
(2) The multifilament was twisted at 30 turns / m, wound around a bobbin, and heat-treated at 200 ° C for 2 hours, 250 ° C for 4 hours, and 260 ° C for 10 hours in a nitrogen gas atmosphere. The obtained heat-treated yarn was heat-set for 10 seconds in a hot air oven at 290 ° C. between rollers. The tension at this time was 3.7 kg. Table 1 shows the performance of the obtained cord.
[0031]
[Example 5]
(1) The same melt anisotropic aromatic polyester as in Example 1 was used as the core component polymer, and polyethylene (molecular weight: about 200,000, melting point 127 ° C.) was used as the sheath component polymer. Using a blend of the melt anisotropic aromatic polyester polymer used at a ratio of 80:20, a spinning temperature of 310 ° C. and a winding speed of 800 m / min, so that the core-sheath area ratio becomes 75:25, Multifilaments of 1710 dtex / 20 filaments as shown in Table 1 were spun.
(2) The multifilament was twisted at 30 turns / m, wound around a bobbin, and heat-treated at 200 ° C for 2 hours, 250 ° C for 4 hours, and 260 ° C for 10 hours in a nitrogen gas atmosphere. The heat treatment was performed at a temperature considerably higher than the melting point of polyethylene. However, since the melt-anisotropic aromatic polyester polymer was blended, there was little sticking and there was no problem in the production. The heat-treated yarn thus obtained was heat-set for 10 seconds in a 220 ° C. hot air furnace between rollers. The tension at this time was 3.7 kg. Table 1 shows the performance of the obtained cord.
[0032]
[Comparative Example 1]
(1) Using the same melt anisotropic aromatic polyester as in Example 1, monofilaments having a dtex of 1700 dtex as shown in Table 1 were spun at a spinning temperature of 310 ° C. and a winding speed of 100 m / min.
(2) The monofilament was wound around a bobbin and heat-treated at 200 ° C. for 2 hours, 250 ° C. for 4 hours, and further at 280 ° C. for 10 hours in a nitrogen gas atmosphere. Table 1 shows the performance of the obtained monofilament.
(3) In the spinning of this monofilament, since the orientation was relaxed, the elastic modulus of 300 cN / dtex or more, which is the object of the present invention, could not be obtained.
[0033]
[Comparative Example 2]
(1) The same melt anisotropic aromatic polyester as in Example 1 was used as the core component polymer, and the same PEN as in Example 1 was used as the sheath component polymer. At a spinning temperature of 305 ° C. and a winding speed of 1000 m / min, a multifilament of 1670 dtex / 30 filament as shown in Table 1 was spun.
(2) Twisting was performed at a rate of 30 turns / m to the multifilament, and heat treatment was performed in the same manner as in Example 3. The obtained heat-treated yarn was heat-set for 10 seconds in a hot air oven at 290 ° C. between rollers. The tension at this time was 4.2 kg. Table 1 shows the performance of the obtained cord.
(3) Although the modulus of elasticity of this multifilament was good, the area ratio of the core component was larger than 90%, so that the rigidity was low, the fusion was not sufficient, and loop-like skinning occurred. In addition, the minimum diameter was large and it was easily broken.
[0034]
[Comparative Example 3]
(1) The same melt anisotropic aromatic polyester as in Example 1 was used as the core component polymer, and the same PEN as in Example 1 was used as the sheath component polymer. At a spinning temperature of 305 ° C. and a winding speed of 1000 m / min, a multifilament of 1670 dtex / 14 filament as shown in Table 1 was spun.
(2) The multifilament was twisted at 30 turns / m, and heat-treated and heat-set under the same conditions as in Comparative Example 2. Table 1 shows the performance of the obtained cord.
(3) This multifilament had a low modulus of elasticity due to a small proportion of the core component.
[0035]
[Comparative Example 4]
(1) The same melt anisotropic aromatic polyester as in Example 1 was used as the core component polymer, and the same PEN as in Example 1 was used as the sheath component polymer. At a spinning temperature of 305 ° C. and a winding speed of 1000 m / min, a multifilament of 1670 dtex / 44 filament as shown in Table 1 was spun at a fiber diameter of the core component of 15 μm.
(2) The multifilament was twisted at 30 turns / m, and heat-treated and heat-set under the same conditions as in Comparative Example 2. Table 1 shows the performance of the obtained cord.
(3) Since the core filament had a fiber diameter of less than 20 μm, the multifilament had low rigidity and was easily broken as can be seen from the minimum radius.
[0036]
[Comparative Example 5]
(1) The same melt anisotropic aromatic polyester as in Example 1 was used as the core component polymer, and the same PEN as in Example 1 was used as the sheath component polymer. At a spinning temperature of 305 ° C. and a winding speed of 1000 m / min, a multifilament of 1663 dtex / 2 filament as shown in Table 1 was spun at a fiber diameter of the core component of 230 μm.
(2) The multifilament was twisted at 30 turns / m, and heat-treated and heat-set under the same conditions as in Comparative Example 2. Table 1 shows the performance of the obtained cord.
(3) Since the fiber diameter of the core component of this multifilament was larger than 200 μm, the elastic modulus was low.
[0037]
[Table 1]
Figure 2004270051
[0038]
【The invention's effect】
The cord according to the present invention, in which the core component is a molten liquid crystal polymer and the sheath component is a core-sheath type composite fiber made of a thermoplastic polymer, is a method in which the sheath component of a single fiber is fused by heat treatment without requiring a resin impregnation step. For this reason, it is characterized by exhibiting good adhesiveness with a small amount of resin, having high elasticity, being rigid, not easily breaking, and having excellent wear resistance. The cord of the present invention is particularly suitable for a wide range of applications such as ropes, cables, tension members, FRC, FRP, bulletproof vests and the like.
[Brief description of the drawings]
FIG. 1 is a specific example of a base used in the present invention. In the figure, A polymer represents a core component polymer, and B polymer represents a sheath component polymer.
FIG. 2 is a schematic view of an apparatus for evaluating rigidity of a cord according to the present invention.
[Explanation of symbols]
1; free roller 2; free roller 3 lowered by 4 mm; weight (load 10 g)
4; test code 5; fixed part of code

Claims (3)

芯成分が溶融液晶ポリマー、鞘成分が熱可塑性ポリマーからなり、芯成分の直径が20〜200μmであり、芯成分と鞘成分の面積比が芯:鞘=60:40〜90:10である芯鞘型複合繊維で構成され、弾性率が300cN/dtex以上、直径0.2〜3.0mmであるコード。A core whose core component is a molten liquid crystal polymer and whose sheath component is a thermoplastic polymer, the core component has a diameter of 20 to 200 μm, and the area ratio of the core component and the sheath component is core: sheath = 60: 40 to 90:10. A cord composed of a sheath-type composite fiber having an elastic modulus of 300 cN / dtex or more and a diameter of 0.2 to 3.0 mm. 芯成分は融点がS1℃の溶融液晶ポリマー、鞘成分は融点がS2℃の屈曲性の熱可塑性ポリマーであり、(S1−S2)≧0を満足する芯鞘型複合繊維で構成される請求項1記載のコード。The core component is a molten liquid crystal polymer having a melting point of S1 ° C., and the sheath component is a flexible thermoplastic polymer having a melting point of S2 ° C., and is composed of a core-sheath type conjugate fiber satisfying (S1−S2) ≧ 0. The code according to 1. 請求項1または請求項2記載の芯鞘型複合繊維を複数本、張力下で熱融着させることを特徴とするコードの製造方法。A method for producing a cord, comprising thermally fusing a plurality of core-sheath composite fibers according to claim 1 or 2 under tension.
JP2003059423A 2003-03-06 2003-03-06 High elastic modulus cord and manufacturing method thereof Expired - Lifetime JP4024697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059423A JP4024697B2 (en) 2003-03-06 2003-03-06 High elastic modulus cord and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059423A JP4024697B2 (en) 2003-03-06 2003-03-06 High elastic modulus cord and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004270051A true JP2004270051A (en) 2004-09-30
JP4024697B2 JP4024697B2 (en) 2007-12-19

Family

ID=33122237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059423A Expired - Lifetime JP4024697B2 (en) 2003-03-06 2003-03-06 High elastic modulus cord and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4024697B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119977A (en) * 2005-10-31 2007-05-17 Toray Ind Inc High-strength conjugated fiber
JP2007119976A (en) * 2005-10-31 2007-05-17 Toray Ind Inc Method for production of high strength fiber having improved abrasion resistance
WO2007105494A1 (en) * 2006-03-10 2007-09-20 Kuraray Co., Ltd. Conductive composite fiber and method for producing same
JP2010077540A (en) * 2008-09-24 2010-04-08 Kuraray Co Ltd High strength fiber good in dyeability and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119977A (en) * 2005-10-31 2007-05-17 Toray Ind Inc High-strength conjugated fiber
JP2007119976A (en) * 2005-10-31 2007-05-17 Toray Ind Inc Method for production of high strength fiber having improved abrasion resistance
JP4661528B2 (en) * 2005-10-31 2011-03-30 東レ株式会社 Method for producing high-strength fibers with improved wear resistance
JP4706438B2 (en) * 2005-10-31 2011-06-22 東レ株式会社 High strength composite fiber
WO2007105494A1 (en) * 2006-03-10 2007-09-20 Kuraray Co., Ltd. Conductive composite fiber and method for producing same
JP4859916B2 (en) * 2006-03-10 2012-01-25 株式会社クラレ Conductive conjugate fiber and method for producing the same
JP2010077540A (en) * 2008-09-24 2010-04-08 Kuraray Co Ltd High strength fiber good in dyeability and its production method

Also Published As

Publication number Publication date
JP4024697B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP6855683B2 (en) Liquid crystal polyester multifilament
KR870001131B1 (en) Polyethylene antistrength
JP5428271B2 (en) Method for producing liquid crystal polyester fiber
JP2010242246A (en) Method for producing liquid crystal polyester fiber
JP4024697B2 (en) High elastic modulus cord and manufacturing method thereof
JP2001123324A (en) Polyphenylene sulfide monofilament and sleeve for protecting cable
JPH1077536A (en) Para-aromatic polyamide yarn having low linear density filament and its production
JPS6141320A (en) Polyester fiber
TW202045578A (en) Liquid-crystal polyester multifilament, and high-level processed product comprising same
JP4892999B2 (en) Melt liquid crystal forming polyester composite fiber
JP4459396B2 (en) Composite fiber and its fabric
JP2005034513A (en) High tenacity tube
JP2907418B2 (en) Composite fiber for screen gauze and screen gauze
WO2019156033A1 (en) Filamentary tape and composite material including said tape
US20230399773A1 (en) Core-sheath composite fiber, production method therefor, and fiber structure
JP3266712B2 (en) Composite fiber
JP2744303B2 (en) High strength and high modulus fiber with excellent fatigue resistance
JP2001279533A (en) Fiber for rubber reinforcement
CN117999384A (en) Liquid crystal polyester fiber and method for producing same
JP2858981B2 (en) High strength and high modulus fiber with excellent fatigue resistance
JPH09251123A (en) Tension member for optical fiber
JPWO2010119756A1 (en) Pseudo monofilament yarn and manufacturing method thereof
JP4104260B2 (en) Optical fiber tension member
JP2012207347A (en) Monofilament-like article
KR20240066260A (en) Liquid crystal polyester fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Ref document number: 4024697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term