JP2004269818A - Room temperature-curable polyorganosiloxane composition - Google Patents

Room temperature-curable polyorganosiloxane composition Download PDF

Info

Publication number
JP2004269818A
JP2004269818A JP2003066196A JP2003066196A JP2004269818A JP 2004269818 A JP2004269818 A JP 2004269818A JP 2003066196 A JP2003066196 A JP 2003066196A JP 2003066196 A JP2003066196 A JP 2003066196A JP 2004269818 A JP2004269818 A JP 2004269818A
Authority
JP
Japan
Prior art keywords
group
parts
viscosity
hydrocarbon group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066196A
Other languages
Japanese (ja)
Other versions
JP4283009B2 (en
Inventor
Isao Iida
勲 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
GE Toshiba Silicones Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Toshiba Silicones Co Ltd filed Critical GE Toshiba Silicones Co Ltd
Priority to JP2003066196A priority Critical patent/JP4283009B2/en
Publication of JP2004269818A publication Critical patent/JP2004269818A/en
Application granted granted Critical
Publication of JP4283009B2 publication Critical patent/JP4283009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a room temperature-curable polyorganosiloxane composition exhibiting excellent properties after cured and having improved adhesive properties. <P>SOLUTION: This room temperature-curable polyorganosiloxane composition comprises (A) 100 pts.wt. of a polyorganosiloxane having both ends blocked with a dialkoxymonoorganosilyl group or a trialkoxysilyl group as a base polymer, (B) 1-50 pts.wt. of a siloxane oil having a lower viscosity than the component (A), (C) 1-50 pts.wt. of a silica powder having a specific surface area of at least 50 m<SP>2</SP>/g, (D) 0.5-15 pts.wt. of a specific alkoxysilane compound, and (E) 0.1-10 pts.wt. of a titanium chelate catalyst. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、室温で硬化してシリコーンエラストマーとなる組成物に関し、詳しくは、硬化後の物性に優れると共に接着性が改善された室温硬化性オルガノポリシロキサン組成物を提供するものである。
【0002】
【従来の技術】
室温で硬化し、ゴム状弾性体を生成するポリオルガノシロキサン組成物の中で、空気中の水分と接触することにより硬化反応が生起するタイプのものは、使用直前に本体(ベースポリマー)や架橋剤、或いは触媒を秤量したり、これらを混合したりする煩雑さが無く、配合上のミスを生じることがない上、接着性に優れているので、電気・電子工業などにおける弾性接着剤やコーティング材として、また建築用シーリング材等として広く用いられている。このような組成物は、一般に、分子末端が水酸基で閉塞されたシラノール基末端ポリジオルガノシロキサンに、分子中に2個を越える加水分解性基を有する架橋剤等を配合したものであり、架橋剤の種類に応じて、硬化の際に酢酸等のカルボン酸、有機アミン、アミド、有機ヒドロキシルアミン、オキシム化合物、アルコール、アセトンなどを放出する。
【0003】
このうち、脱アルコール型のものは、架橋剤であるアルコキシシランが安価に入手できるばかりでなく、放出物質がメタノール、エタノールのようなアルコールなので揮散しやすく、臭気の問題がないという利点、金属腐食の問題がないという利点があるため、電気・電子機器のコーティング材等として広く利用されている。
【0004】
しかし、脱アルコール型のものは、硬化が遅いことおよび保存中に系中に存在する微量の水により架橋剤が加水分解して発生するアルコールがベースポリマーを切断するために保存安定性が悪いという難点があり、その克服が要望されていた。この問題を解決するため、特許文献1、特許文献2では、両末端がジアルコキシモノオルガノシリル基で封鎖されたポリオルガノシロキサンあるいは両末端がトリアルコキシシリル基で封鎖されたポリオルガノシロキサンをベースポリマーとして使用し、これに充填剤として表面処理されたシリカ、架橋剤であるアルコキシシラン及びチタンキレート触媒を選択組み合わせることにより、保存安定性、硬化速度(表面皮膜形成速度)向上を図っている。
【0005】
しかしながら、本発明者の追試によると、上記特許文献1、2の技術によれば、ある程度、保存安定性、硬化速度に優れた組成物は得られるものの、その接着性は未だ満足できるものではなかった。
【0006】
【特許文献1】
特公平5−72424号公報
【特許文献2】
特公平5−88866号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の欠点を解決し、硬化後の物性に優れると共に接着性が改善された室温硬化性オルガノポリシロキサン組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、硬化後の物性に優れると共に接着性が改善された室温硬化性オルガノポリシロキサン組成物を得るべく、上記特許文献1、2の技術につき詳細に検討した結果、特定の低粘度シロキサンオイルを少量配合することにより、組成物の接着性が顕著に向上することを見出し、本発明を完成するに到った。
【0009】
即ち本発明は、
(A) 一般式
【0010】
【化4】

Figure 2004269818
【0011】
(式中、Rは1価炭化水素基、ハロゲン化炭化水素基およびシアノアルキル基から選ばれる基、Rはアルキル基、Xは酸素原子または2価炭化水素基、nは25℃における粘度が20〜1,000,000cPとなるような正数を表す。)及び/又は
【0012】
【化5】
Figure 2004269818
【0013】
(式中、Rは1価炭化水素基、ハロゲン化炭化水素基およびシアノアルキル基から選ばれる基、Rはアルキル基、Xは酸素原子または2価炭化水素基、nは25℃における粘度が20〜1,000,000cPとなるような正数を表す。)で示されるジオルガノポリシロキサン 100重量部、
(B) 一般式
【0014】
【化6】
Figure 2004269818
【0015】
(式中、Rは1価炭化水素基、mは25℃における粘度が20〜1,000,000cPとなり、且つ成分(A) の粘度未満となるような正数を表す。)
で示されるジオルガノポリシロキサン 1〜50重量部、
(C) 比表面積が50m/g以上のシリカ粉 1〜50重量部、
(D) 一般式
Si(OR4−a
(式中、Rは1価炭化水素基、Rはアルキル基又はアルコキシ置換アルキル基、aは0、1または2である。)
で示されるアルコキシシランまたはその部分加水分解縮合物 0.5〜15重量部、
(E) チタンキレート触媒 0.1〜10重量部
からなる室温硬化性ポリオルガノシロキサン組成物である。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0017】
本発明で用いる(A) 成分のジオルガノポリシロキサンは、本組成物のベースポリマーとなるもので、両末端がジアルコキシモノオルガノシリル基で封鎖されたポリオルガノシロキサンあるいは両末端がトリアルコキシシリル基で封鎖されたポリオルガノシロキサンであり、両者を併用してもよい。
【0018】
(A) 成分において、Rの1価炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基等が挙げられ、ハロゲン化炭化水素基としてはクロロメチル基、トリフロロメチル基等が挙げられ、シアノアルキル基としてはβ−シアノエチル基、γ−シアノプロピル基等が挙げられる。
【0019】
また、(A) 成分の粘度は、25℃における粘度が20〜1,000,000cPであることが好ましい。より好ましくは100〜100,000cPである。
【0020】
(A) 成分は、シラノール基末端ポリオルガノシロキサンと、該ポリオルガノシロキサンのシラノール基に対して過剰モルのトリアルコキシシランあるいはテトラアルコキシシランとを触媒の存在下または不存在下で縮合させることにより得られるものである。
【0021】
触媒としては、公知のアミン、カルボン酸、亜鉛、錫、鉄等の金属カルボン酸塩等が用いられる。触媒の不存在下で縮合反応を行う時は、反応混合物をテトラアルコキシシランの還流温度に加熱することが好ましい。
【0022】
縮合反応におけるトリアルコキシシラン・テトラアルコキシシラン/SiOHのモル比は、5〜15程度が好ましい。
【0023】
また、(A) 成分は、ビニル基末端ポリオルガノシロキサンに、メチルジアルコキシシランあるいはトリアルコキシシランを付加させたり、水素基末端ポリオルガノシロキサンに、ビニルメチルジアルコキシシランあるいはビニルトリアルコキシシランを付加させたりすることでも得られる。
【0024】
本発明に用いられる(B) 成分のジオルガノポリシロキサンは、組成物の接着性を顕著に向上させる成分である。(B) 成分のRとしては、Rで例示したものと同様の1価炭化水素基が挙げられるが、メチル基であることが特に好ましい。このようなジメシルシリコーンオイルは、その粘度が25℃における粘度が20〜1,000,000cP、好ましくは50〜100,000cPであることが必要であり、且つ成分(A) の粘度より低いものであることが必須である。より好ましくは、(A) 成分の粘度を1としたとき、(B) 成分の粘度が0.9以下となる場合である。
【0025】
より具体的な組合せとしては、(A) 成分として粘度100〜100,000cP程度のものを使用し、(B) 成分として粘度50〜50,000cP程度のものを使用する場合である。
【0026】
この(B) 成分は、系中では反応せず、また基材とも反応しないため、通常は接着向上剤とはならないものであるが、本発明の(A) 、(C) 、(D) 成分と組み合わせることにより、基材とのぬれ性が増し、接着性を向上させる。
【0027】
(B) 成分の配合量は、(A) 成分100重量部に対して1〜50重量部、より好ましくは5〜30重量部である。1重量部未満では効果が得られず、50重量部を超えるとブリードすることがあり、逆効果となる。
【0028】
本発明に用いられる(C) 成分のフィラーは比表面積が50m/g以上のシリカ粉であり、煙霧質シリカ、焼成シリカ、あるいはこれらの表面をオルガノクロロシラン類、ポリオルガノシロキサン類、オルガノシラザン類等の従来公知の処理剤で表面処理したものが挙げられる。ここで言う比表面積は、BET法によるものである。
【0029】
次に、本発明で用いる(D) 成分の架橋剤は、一般式
Si(OR4−a
(式中、Rは1価炭化水素基、Rはアルキル基又はアルコキシ置換アルキル基、aは0、1または2である。)
で示されるアルコキシシランまたはその部分加水分解縮合物であり、具体的にはメチルトリメトキシシラン、ビニルトリメトキシシラン、デシルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、メチルトリ(エトキシメトキシ)シラン、テトラメトキシシラン、テトラエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン等が例示される。
【0030】
(D) 成分は、(A) 100重量部に対し、0.5〜15重量部程度が用いられる。
【0031】
本発明で用いられる(E) 成分のチタンキレート触媒としては、ジイソプロポキシビス(アセト酢酸エチル)チタン、ジイソプロポキシビス(アセト酢酸メチル)チタン、ジイソプロポキシビス(アセルアセトン)チタン、ジブトキシビス(アセト酢酸エチル)チタン、ジメトキシビス(アセト酢酸エチル)チタン等の公知の各種チタンキレート化合物が挙げられる。
【0032】
(E) 成分は、(A) 100重量部に対し、0.1〜10重量部程度が用いられる。
【0033】
本発明の組成物は上記のような(A) 〜(E) 成分からなるものであるが、本発明の(A) 〜(E) 成分に、(F) 成分として1分子中にケイ素原子に直結したアルコキシ基と窒素原子とを有する有機ケイ素化合物や、1分子中にケイ素原子に直結したアルコキシ基とC=O基とを有する有機ケイ素化合物を(A) 成分100重量部に対し0.01〜5重量部添加すると、接着性がより良くなる。更に、上記の成分に加えて、石英微粉末、カーボンブラック、炭酸カルシウムなどの無機充填剤やそれらを疎水化処理したもの、チクソトロピー性付与剤、粘度調整剤、流動性調整剤、顔料、耐熱剤、難燃剤、有機溶媒、防かび剤、抗菌剤、紫外線吸収剤、耐熱向上剤、難燃化剤、接着向上剤など、各種の添加剤を加えることは本発明の目的を損なわない限り差し支えない。
【0034】
【実施例】
以下において実施例をあげ、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中、部とあるのはいずれも重量部を表す。
実施例1〜3
下記するポリマーA(ベースポリマー)、ポリマーB(ジメチルオイル)、BET法による比表面積が110m/gでヘキサメチルジシラザンで表面処理された乾式シリカ(シリカA)を表1に示す割合で配合し、室温で30分間混合し、更に150℃に加熱しながら40mmHgの減圧下で2時間混合した。この混合物にジイソプロポキシビス(アセト酢酸エチル)チタン1.5部及びメチルトリメトキシシラン4部を加え、湿気遮断下で均一になるまで混合した。
【0035】
得られた組成物について、エポキシガラス製のテストピースで剪断試験を行い、その時の凝集破壊率を測定した。結果を表1に示す。
・ポリマーA
【0036】
【化7】
Figure 2004269818
【0037】
(qは正数で25℃の粘度が1200cP)
・ポリマーB
(pは正数で25℃の粘度が300cP)
【0038】
【化8】
Figure 2004269818
【0039】
実施例4
下記するポリマーC(ベースポリマー)、ポリマーD(ジメチルオイル)、BET法による比表面積が130m/gの乾式シリカ(シリカB)を表1に示す割合で配合し、室温で1時間混合し、更に150℃に加熱しながら40mmHgの減圧下で4時間混合した。この混合物にジイソプロポキシビス(アセト酢酸エチル)チタン1.5部、メチルトリメトキシシラン3部及びトリス(3−トリメトキシシリルプロピル)イソシアヌレート0.5部を加え、湿気遮断下で均一になるまで混合した。
【0040】
得られた組成物について、上記と同様にして凝集破壊率を測定した。結果を表1に示す。
・ポリマーC
(qは正数で25℃の粘度が5000cP)
【0041】
【化9】
Figure 2004269818
【0042】
・ポリマーD
(pは正数で25℃の粘度が500cP)
【0043】
【化10】
Figure 2004269818
【0044】
実施例5
下記するポリマーE(ベースポリマー)、ポリマーF(ジメチルオイル)、BET法による比表面積が130m/gの乾式シリカ(シリカB)を表1に示す割合で配合し、室温で1時間混合し、更に150℃に加熱しながら40mmHgの減圧下で4時間混合した。この混合物にジイソプロポキシビス(アセト酢酸エチル)チタン1.5部及びメチルトリメトキシシラン4部を加え、湿気遮断下で均一になるまで混合した。
【0045】
得られた組成物について、上記と同様にして凝集破壊率を測定した。結果を表1に示す。
・ポリマーE
(qは正数で25℃の粘度が15000cP)
【0046】
【化11】
Figure 2004269818
【0047】
・ポリマーF
(pは正数で25℃の粘度が800cP)
【0048】
【化12】
Figure 2004269818
【0049】
比較例1
実施例1において、ポリマーBを配合しない以外は同様にして組成物を調製し、凝集破壊率を測定した。結果を表1に示す。
比較例2
実施例1において、ポリマーBに代えて同一骨格のポリマーG(粘度2000cP)を用いた以外は同様にして組成物を調製し、凝集破壊率を測定した。結果を表1に示す。
【0050】
【表1】
Figure 2004269818
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composition which cures at room temperature into a silicone elastomer, and more particularly to a room temperature-curable organopolysiloxane composition having excellent properties after curing and improved adhesion.
[0002]
[Prior art]
Among the polyorganosiloxane compositions that cure at room temperature to form a rubber-like elastic material, those that cause a curing reaction when they come into contact with moisture in the air, have a body (base polymer) or cross-linking just before use. There is no need to weigh or mix agents or catalysts, and there is no mistake in formulation, and it has excellent adhesiveness, so it has elastic adhesives and coatings in the electric and electronic industries. It is widely used as a material and as a building sealing material. Such a composition is generally obtained by blending a silanol-terminated polydiorganosiloxane having a molecular end blocked with a hydroxyl group with a cross-linking agent having more than two hydrolyzable groups in the molecule. Depending on the type, carboxylic acids such as acetic acid, organic amines, amides, organic hydroxylamines, oxime compounds, alcohols, acetone and the like are released upon curing.
[0003]
Among them, the alcohol-free type is advantageous in that not only the alkoxysilane as a cross-linking agent can be obtained at a low cost, but also since the substance to be released is an alcohol such as methanol or ethanol, which is easily volatilized and has no odor problem. It is widely used as a coating material for electric and electronic equipment because of the advantage that it does not have the problem.
[0004]
However, the dealcoholized type is said to have poor storage stability because the curing is slow and the alcohol generated by hydrolysis of the cross-linking agent due to a small amount of water present in the system during storage cuts the base polymer. There were difficulties, and there was a demand for overcoming them. In order to solve this problem, Patent Documents 1 and 2 disclose a polyorganosiloxane in which both terminals are blocked with a dialkoxymonoorganosilyl group or a polyorganosiloxane in which both terminals are blocked with a trialkoxysilyl group. The storage stability and the curing speed (surface film formation speed) are improved by selectively combining silica with a surface treatment as a filler, alkoxysilane as a crosslinking agent and a titanium chelate catalyst as a filler.
[0005]
However, according to additional tests by the present inventors, according to the techniques of Patent Documents 1 and 2, although a composition excellent in storage stability and curing speed to some extent can be obtained, its adhesiveness is not yet satisfactory. Was.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 5-72424 [Patent Document 2]
Japanese Patent Publication No. 5-88866
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a room-temperature-curable organopolysiloxane composition having excellent physical properties after curing and improved adhesiveness.
[0008]
[Means for Solving the Problems]
The present inventors have studied the techniques of Patent Documents 1 and 2 in detail in order to obtain a room-temperature-curable organopolysiloxane composition having excellent physical properties after curing and improved adhesiveness. It has been found that by adding a small amount of siloxane oil, the adhesiveness of the composition is significantly improved, and the present invention has been completed.
[0009]
That is, the present invention
(A) General formula
Embedded image
Figure 2004269818
[0011]
(Wherein, R 1 is a group selected from a monovalent hydrocarbon group, a halogenated hydrocarbon group and a cyanoalkyl group, R 2 is an alkyl group, X is an oxygen atom or a divalent hydrocarbon group, and n is a viscosity at 25 ° C.) Represents a positive number such that is 20 to 1,000,000 cP.) And / or
Embedded image
Figure 2004269818
[0013]
(Wherein, R 1 is a group selected from a monovalent hydrocarbon group, a halogenated hydrocarbon group and a cyanoalkyl group, R 2 is an alkyl group, X is an oxygen atom or a divalent hydrocarbon group, and n is a viscosity at 25 ° C.) Represents a positive number such that is 20 to 1,000,000 cP.) 100 parts by weight of a diorganopolysiloxane represented by the formula:
(B) General formula
Embedded image
Figure 2004269818
[0015]
(In the formula, R 3 represents a monovalent hydrocarbon group, and m represents a positive number such that the viscosity at 25 ° C. becomes 20 to 1,000,000 cP and is lower than the viscosity of the component (A).)
1 to 50 parts by weight of a diorganopolysiloxane represented by
(C) 1 to 50 parts by weight of silica powder having a specific surface area of 50 m 2 / g or more;
(D) formula R 4 a Si (OR 5) 4-a
(In the formula, R 4 is a monovalent hydrocarbon group, R 5 is an alkyl group or an alkoxy-substituted alkyl group, and a is 0, 1 or 2.)
0.5 to 15 parts by weight of an alkoxysilane or a partially hydrolyzed condensate thereof represented by
(E) Titanium chelate catalyst A room temperature curable polyorganosiloxane composition comprising 0.1 to 10 parts by weight.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0017]
The diorganopolysiloxane of the component (A) used in the present invention is a base polymer of the present composition, and is a polyorganosiloxane in which both ends are blocked with a dialkoxymonoorganosilyl group or a trialkoxysilyl group having both ends. And may be used in combination.
[0018]
In the component (A), examples of the monovalent hydrocarbon group for R 1 include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and an aralkyl group. Examples of the halogenated hydrocarbon group include a chloromethyl group and a trifluoromethyl group. Examples include a methyl group and the like, and examples of the cyanoalkyl group include a β-cyanoethyl group and a γ-cyanopropyl group.
[0019]
The viscosity of the component (A) is preferably 20 to 1,000,000 cP at 25 ° C. More preferably, it is 100 to 100,000 cP.
[0020]
The component (A) is obtained by condensing a silanol-terminated polyorganosiloxane with an excess mole of trialkoxysilane or tetraalkoxysilane with respect to the silanol group of the polyorganosiloxane in the presence or absence of a catalyst. It is something that can be done.
[0021]
As the catalyst, known amines, carboxylic acids, metal carboxylate salts of zinc, tin, iron and the like are used. When performing a condensation reaction in the absence of a catalyst, it is preferable to heat the reaction mixture to the reflux temperature of the tetraalkoxysilane.
[0022]
The molar ratio of trialkoxysilane / tetraalkoxysilane / SiOH in the condensation reaction is preferably about 5 to 15.
[0023]
The component (A) is obtained by adding methyldialkoxysilane or trialkoxysilane to a vinyl-terminated polyorganosiloxane, or adding vinylmethyldialkoxysilane or vinyltrialkoxysilane to a hydrogen-terminated polyorganosiloxane. Or you can also get.
[0024]
The diorganopolysiloxane of the component (B) used in the present invention is a component that significantly improves the adhesiveness of the composition. Examples of R 3 of the component (B) include the same monovalent hydrocarbon groups as those exemplified for R 1 , with a methyl group being particularly preferred. Such a dimesyl silicone oil must have a viscosity at 25 ° C. of 20 to 1,000,000 cP, preferably 50 to 100,000 cP, and have a viscosity lower than that of the component (A). Is essential. More preferably, when the viscosity of the component (A) is 1, the viscosity of the component (B) is 0.9 or less.
[0025]
As a more specific combination, a component having a viscosity of about 100 to 100,000 cP is used as the component (A) and a component having a viscosity of about 50 to 50,000 cP is used as the component (B).
[0026]
Since the component (B) does not react in the system nor reacts with the base material, it does not usually serve as an adhesion enhancer. However, the components (A), (C) and (D) of the present invention By combining with, the wettability with the base material is increased and the adhesiveness is improved.
[0027]
The compounding amount of the component (B) is 1 to 50 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the component (A). If the amount is less than 1 part by weight, no effect can be obtained, and if it exceeds 50 parts by weight, bleeding may occur, which has an adverse effect.
[0028]
The filler of the component (C) used in the present invention is a silica powder having a specific surface area of 50 m 2 / g or more. And the like, which have been surface-treated with a conventionally known treating agent. The specific surface area mentioned here is based on the BET method.
[0029]
Next, the crosslinking agent of the component (D) used in the present invention is represented by the general formula R 4 a Si (OR 5 ) 4-a
(In the formula, R 4 is a monovalent hydrocarbon group, R 5 is an alkyl group or an alkoxy-substituted alkyl group, and a is 0, 1 or 2.)
Or a partially hydrolyzed condensate thereof, specifically, methyltrimethoxysilane, vinyltrimethoxysilane, decyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, methyltri (ethoxymethoxy) silane , Tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane and the like.
[0030]
The component (D) is used in an amount of about 0.5 to 15 parts by weight based on 100 parts by weight of the component (A).
[0031]
The titanium chelate catalyst of component (E) used in the present invention includes diisopropoxybis (ethyl acetoacetate) titanium, diisopropoxybis (methyl acetoacetate) titanium, diisopropoxybis (acelacetone) titanium, dibutoxybis ( Various known titanium chelate compounds such as (ethyl acetoacetate) titanium and dimethoxybis (ethyl acetoacetate) titanium are exemplified.
[0032]
The component (E) is used in an amount of about 0.1 to 10 parts by weight based on 100 parts by weight of the component (A).
[0033]
The composition of the present invention comprises the components (A) to (E) as described above. The component (A) to (E) of the present invention and the component (F) include a silicon atom in one molecule. An organosilicon compound having a directly bonded alkoxy group and a nitrogen atom, or an organosilicon compound having an alkoxy group directly bonded to a silicon atom and a COO group in one molecule is added in an amount of 0.01 to 100 parts by weight of the component (A). Addition of up to 5 parts by weight improves the adhesiveness. Furthermore, in addition to the above-mentioned components, inorganic fillers such as quartz fine powder, carbon black, calcium carbonate and the like, which have been subjected to a hydrophobic treatment, a thixotropic agent, a viscosity modifier, a fluidity modifier, a pigment, a heat-resistant agent Adding various additives such as a flame retardant, an organic solvent, a fungicide, an antibacterial agent, an ultraviolet absorber, a heat resistance improver, a flame retardant, and an adhesion improver, as long as the object of the present invention is not impaired. .
[0034]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples. In the examples, “parts” means “parts by weight”.
Examples 1-3
The following polymer A (base polymer), polymer B (dimethyl oil), and dry silica (silica A) having a specific surface area of 110 m 2 / g by BET method and surface-treated with hexamethyldisilazane are blended in the proportions shown in Table 1. Then, the mixture was mixed at room temperature for 30 minutes, and further mixed at a reduced pressure of 40 mmHg for 2 hours while heating to 150 ° C. 1.5 parts of diisopropoxybis (ethyl acetoacetate) titanium and 4 parts of methyltrimethoxysilane were added to the mixture, and mixed until the mixture became uniform under the exclusion of moisture.
[0035]
The obtained composition was subjected to a shear test with a test piece made of epoxy glass, and the cohesive failure rate at that time was measured. Table 1 shows the results.
・ Polymer A
[0036]
Embedded image
Figure 2004269818
[0037]
(Q is a positive number and the viscosity at 25 ° C is 1200 cP)
・ Polymer B
(P is a positive number and the viscosity at 25 ° C is 300 cP)
[0038]
Embedded image
Figure 2004269818
[0039]
Example 4
The following polymer C (base polymer), polymer D (dimethyl oil), and dry silica (silica B) having a specific surface area of 130 m 2 / g according to the BET method were blended at the ratio shown in Table 1, and mixed at room temperature for 1 hour. The mixture was further mixed for 4 hours under reduced pressure of 40 mmHg while heating to 150 ° C. 1.5 parts of diisopropoxybis (ethyl acetoacetate) titanium, 3 parts of methyltrimethoxysilane and 0.5 part of tris (3-trimethoxysilylpropyl) isocyanurate are added to the mixture, and the mixture is made uniform while keeping out moisture. Until mixed.
[0040]
About the obtained composition, the cohesive failure rate was measured similarly to the above. Table 1 shows the results.
・ Polymer C
(Q is a positive number and the viscosity at 25 ° C is 5000 cP)
[0041]
Embedded image
Figure 2004269818
[0042]
・ Polymer D
(P is a positive number and the viscosity at 25 ° C is 500 cP)
[0043]
Embedded image
Figure 2004269818
[0044]
Example 5
The following polymer E (base polymer), polymer F (dimethyl oil), and dry silica (silica B) having a specific surface area of 130 m 2 / g according to the BET method are blended in the ratio shown in Table 1, and mixed at room temperature for 1 hour. The mixture was further mixed for 4 hours under reduced pressure of 40 mmHg while heating to 150 ° C. 1.5 parts of diisopropoxybis (ethyl acetoacetate) titanium and 4 parts of methyltrimethoxysilane were added to the mixture, and mixed until the mixture became uniform under the exclusion of moisture.
[0045]
About the obtained composition, the cohesive failure rate was measured similarly to the above. Table 1 shows the results.
・ Polymer E
(Q is a positive number and the viscosity at 25 ° C is 15000 cP)
[0046]
Embedded image
Figure 2004269818
[0047]
・ Polymer F
(P is a positive number and the viscosity at 25 ° C. is 800 cP)
[0048]
Embedded image
Figure 2004269818
[0049]
Comparative Example 1
A composition was prepared in the same manner as in Example 1 except that the polymer B was not blended, and the cohesive failure rate was measured. Table 1 shows the results.
Comparative Example 2
A composition was prepared in the same manner as in Example 1 except that Polymer G (viscosity: 2000 cP) having the same skeleton was used instead of Polymer B, and the cohesive failure rate was measured. Table 1 shows the results.
[0050]
[Table 1]
Figure 2004269818

Claims (1)

(A) 一般式
Figure 2004269818
(式中、Rは1価炭化水素基、ハロゲン化炭化水素基およびシアノアルキル基から選ばれる基、Rはアルキル基、Xは酸素原子または2価炭化水素基、nは25℃における粘度が20〜1,000,000cPとなるような正数を表す。)及び/又は
Figure 2004269818
(式中、Rは1価炭化水素基、ハロゲン化炭化水素基およびシアノアルキル基から選ばれる基、Rはアルキル基、Xは酸素原子または2価炭化水素基、nは25℃における粘度が20〜1,000,000cPとなるような正数を表す。)で示されるジオルガノポリシロキサン 100重量部、
(B) 一般式
Figure 2004269818
(式中、Rは1価炭化水素基、mは25℃における粘度が20〜1,000,000cPとなり、且つ成分(A) の粘度未満となるような正数を表す。)
で示されるジオルガノポリシロキサン 1〜50重量部、
(C) 比表面積が50m/g以上のシリカ粉 1〜50重量部、
(D) 一般式
Si(OR4−a
(式中、Rは1価炭化水素基、Rはアルキル基又はアルコキシ置換アルキル基、aは0、1または2である。)
で示されるアルコキシシランまたはその部分加水分解縮合物 0.5〜15重量部、
(E) チタンキレート触媒 0.1〜10重量部
からなる室温硬化性ポリオルガノシロキサン組成物。
(A) General formula
Figure 2004269818
(Wherein, R 1 is a group selected from a monovalent hydrocarbon group, a halogenated hydrocarbon group and a cyanoalkyl group, R 2 is an alkyl group, X is an oxygen atom or a divalent hydrocarbon group, and n is a viscosity at 25 ° C.) Represents 20 to 1,000,000 cP.) And / or
Figure 2004269818
(Wherein, R 1 is a group selected from a monovalent hydrocarbon group, a halogenated hydrocarbon group and a cyanoalkyl group, R 2 is an alkyl group, X is an oxygen atom or a divalent hydrocarbon group, and n is a viscosity at 25 ° C.) Represents a positive number such that is 20 to 1,000,000 cP.) 100 parts by weight of a diorganopolysiloxane represented by the formula:
(B) General formula
Figure 2004269818
(In the formula, R 3 represents a monovalent hydrocarbon group, and m represents a positive number such that the viscosity at 25 ° C. becomes 20 to 1,000,000 cP and is lower than the viscosity of the component (A).)
1 to 50 parts by weight of a diorganopolysiloxane represented by
(C) 1 to 50 parts by weight of silica powder having a specific surface area of 50 m 2 / g or more;
(D) formula R 4 a Si (OR 5) 4-a
(In the formula, R 4 is a monovalent hydrocarbon group, R 5 is an alkyl group or an alkoxy-substituted alkyl group, and a is 0, 1 or 2.)
0.5 to 15 parts by weight of an alkoxysilane or a partially hydrolyzed condensate thereof represented by
(E) Titanium chelate catalyst A room temperature curable polyorganosiloxane composition comprising 0.1 to 10 parts by weight.
JP2003066196A 2003-03-12 2003-03-12 Room temperature curable polyorganosiloxane composition Expired - Lifetime JP4283009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066196A JP4283009B2 (en) 2003-03-12 2003-03-12 Room temperature curable polyorganosiloxane composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066196A JP4283009B2 (en) 2003-03-12 2003-03-12 Room temperature curable polyorganosiloxane composition

Publications (2)

Publication Number Publication Date
JP2004269818A true JP2004269818A (en) 2004-09-30
JP4283009B2 JP4283009B2 (en) 2009-06-24

Family

ID=33126983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066196A Expired - Lifetime JP4283009B2 (en) 2003-03-12 2003-03-12 Room temperature curable polyorganosiloxane composition

Country Status (1)

Country Link
JP (1) JP4283009B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269819A (en) * 2003-03-12 2004-09-30 Ge Toshiba Silicones Co Ltd Room temperature-curable polyorganosiloxane composition
JP2006089619A (en) * 2004-09-24 2006-04-06 Shin Etsu Chem Co Ltd Room temperature curing organopolysiloxane composition
JP2007231182A (en) * 2006-03-02 2007-09-13 Shin Etsu Chem Co Ltd Room temperature-curable polyorganosiloxane composition
JP2007297609A (en) * 2006-04-06 2007-11-15 Geltec Co Ltd Silicone composition for fixing stone material, its production method and its use
JP2009102591A (en) * 2007-10-25 2009-05-14 Dow Corning Toray Co Ltd Room temperature-curable organopolysiloxane composition
US8022159B2 (en) 2008-11-24 2011-09-20 The Goodyear Tire & Rubber Company Terminating compounds, polymers, and their uses in rubber compositions and tires
JP2011236442A (en) * 2011-08-31 2011-11-24 Momentive Performance Materials Inc Method of preparing room temperature-curing polyorganosiloxane composition
KR101159537B1 (en) 2005-02-23 2012-06-25 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Room temperature curable polyorganosiloxane composition
JP2013124343A (en) * 2011-12-16 2013-06-24 Momentive Performance Materials Inc Room temperature-curable polyorganosiloxane composition
CN113795552A (en) * 2019-05-15 2021-12-14 因温特实业公司 Room temperature curable composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269819A (en) * 2003-03-12 2004-09-30 Ge Toshiba Silicones Co Ltd Room temperature-curable polyorganosiloxane composition
JP2006089619A (en) * 2004-09-24 2006-04-06 Shin Etsu Chem Co Ltd Room temperature curing organopolysiloxane composition
KR101159537B1 (en) 2005-02-23 2012-06-25 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Room temperature curable polyorganosiloxane composition
JP2007231182A (en) * 2006-03-02 2007-09-13 Shin Etsu Chem Co Ltd Room temperature-curable polyorganosiloxane composition
JP2007297609A (en) * 2006-04-06 2007-11-15 Geltec Co Ltd Silicone composition for fixing stone material, its production method and its use
JP2009102591A (en) * 2007-10-25 2009-05-14 Dow Corning Toray Co Ltd Room temperature-curable organopolysiloxane composition
US8022159B2 (en) 2008-11-24 2011-09-20 The Goodyear Tire & Rubber Company Terminating compounds, polymers, and their uses in rubber compositions and tires
JP2011236442A (en) * 2011-08-31 2011-11-24 Momentive Performance Materials Inc Method of preparing room temperature-curing polyorganosiloxane composition
JP2013124343A (en) * 2011-12-16 2013-06-24 Momentive Performance Materials Inc Room temperature-curable polyorganosiloxane composition
CN113795552A (en) * 2019-05-15 2021-12-14 因温特实业公司 Room temperature curable composition

Also Published As

Publication number Publication date
JP4283009B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4811562B2 (en) Room temperature curable organopolysiloxane composition
JPH05262989A (en) Room temperature curing organopolysiloxane composition
JP2009007553A (en) Room temperature-curable organopolysiloxane composition
JP4924810B2 (en) Room temperature curable polyorganosiloxane composition and flat panel display
JPWO2019069706A1 (en) Method for Producing Room Temperature Curable Organopolysiloxane Composition, Room Temperature Curable Organopolysiloxane Composition and Articles
JP2003327829A (en) Room temperature-curable organopolysiloxane composition
EP1323782A2 (en) Room temperature curable organopolysiloxane compositions
JP4283009B2 (en) Room temperature curable polyorganosiloxane composition
JPS62252456A (en) Room temperature-curable organopolysiloxane composition
JPH11209621A (en) Production of room-temperature-curing organopolysiloxane composition
JPH0834922A (en) Silicone elastomer composition curing at room temperature
JP4860099B2 (en) Room temperature curable polyorganosiloxane composition
JP2007231182A (en) Room temperature-curable polyorganosiloxane composition
JPH04214764A (en) Cold-curing organopolysiloxane composition
JP6319168B2 (en) Method for producing condensation reaction product, method for producing room temperature curable organopolysiloxane composition containing the condensation reaction product
JPS63137958A (en) One-package type room temperature curing organopolysiloxane composition
JPH0572424B2 (en)
JP4180477B2 (en) Room temperature curable polyorganosiloxane composition
JP7327212B2 (en) Two-component room temperature condensation-curable organopolysiloxane composition
JPH02206654A (en) Room temperature curing organopolysiloxane composition
JP2004269817A (en) Method for manufacturing room temperature-curable polyorganosiloxane composition
JPH0211659A (en) Sealing composition
JP5644800B2 (en) Two-component mixed organopolysiloxane composition
JP7006058B2 (en) Sealing material and sealing method
JP6490367B2 (en) Room temperature curable polyorganosiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4283009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term