JP2004269310A - Hydrogen production method and raw material used for the same - Google Patents

Hydrogen production method and raw material used for the same Download PDF

Info

Publication number
JP2004269310A
JP2004269310A JP2003061945A JP2003061945A JP2004269310A JP 2004269310 A JP2004269310 A JP 2004269310A JP 2003061945 A JP2003061945 A JP 2003061945A JP 2003061945 A JP2003061945 A JP 2003061945A JP 2004269310 A JP2004269310 A JP 2004269310A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
salt solution
ammonium salt
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003061945A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Kasahara
暢順 笠原
Makoto Dobashi
誠 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003061945A priority Critical patent/JP2004269310A/en
Publication of JP2004269310A publication Critical patent/JP2004269310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen production method which can more easily generate hydrogen to be used as a negative-electrode material of a fuel cell, etc. <P>SOLUTION: In the hydrogen production method, a magnesium alloy containing 1-40 wt.% lithium is contacted with an ammonium salt solution to generate hydrogen. The ammonium salt solution has a pH of 4-12 and contains an organic ammonium compound or an inorganic ammonium compound containing at least one radical chosen from among hydrochloric acid radical, sulfuric acid radical, nitric acid radical, and phosphoric acid radical. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素を製造する方法に関し、特に燃料電池などの負極材料としての水素を提供するために好適な水素製造技術に関する。
【0002】
【従来の技術】
近年、クリーンなエネルギー源として水素が注目されている。水素は燃やすと水ができるだけで、従来の化石燃料のように、地球温暖化の原因となる二酸化炭素や有害な窒素酸化物などを生じないのためである。そして、現在では、燃料電池等のエネルギー源として水素を負極材料にして利用する技術が急速に開発されている。
【0003】
この水素を燃料電池などのエネルギー源にする場合、水素自体を高圧ボンベに保存して利用する方法、水素吸蔵合金を利用する方法、メタノールのような炭化水素系原料を改質して水素を発生して利用する方法、或いは電気分解により水素を発生して利用する方法などが一般的に知られている。(例えば、特許文献1参照)
【0004】
【特許文献1】
特開2001−185191号公報
【0005】
このようにエネルギー源として水素を利用する場合の実用化技術は様々提案されているが、高圧ボンベや水素吸蔵合金を利用する場合ではサイズや重量の制約があり、炭化水素系原料の改質や電気分解による場合にあっては装置構造が複雑になる傾向があり、コンパクト化にも限界があると思われる。そのため、より簡易に水素を発生できる新たな水素製造技術が待ち望まれている状況といえる。
【0006】
【発明が解決しようとする課題】
本発明は、上述した事情を背景になされたものであり、燃料電池などの負極材料として水素を利用する際に、より簡易に水素を発生することができる水素製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明者は、様々な合金を種々の溶液で溶解する研究を行った結果、リチウムを含むマグネシウム合金がアンモニウム塩溶液において、非常に高い効率で、かつ迅速に水素を発生する現象を見出し、本発明を相当するに至った。
【0008】
本発明の水素製造方法は、1〜40wt%のリチウムを含むマグネシウム合金を、アンモニウム塩溶液に接触させることにより水素を発生することを特徴とする。
【0009】
これは、次式に示す反応の結果水素を発生するものである。
【0010】
【化1】

Figure 2004269310
【化2】
Figure 2004269310
【0011】
この反応は、アルカリ金属であるマグネシウム、リチウムの特性として一般的に知られていることである。また、リチウム以外の金属、例えば亜鉛を含有するマグネシウム合金や亜鉛を、アンモニウム塩水溶液に接触させることで水素を発生することもできる。しかしながら、本発明者の研究結果によれば、リチウムを1〜40%含有するマグネシウム合金(以下、単に本合金とも称する場合もある)を、アンモニウム塩溶液に接触させた場合では、亜鉛を含有するマグネシウム合金や亜鉛単独で水素を発生させる時に比べ、非常に高い効率で、かつ迅速に水素を発生することが判明したのである。尚、この場合のアンモニウム塩は、上記化1、化2で示す反応を促進させる触媒的な作用を有するものと推定される。
【0012】
本発明の水素製造方法に用いるマグネシウム合金は、リチウムの含有量が1wt%未満であると、水素の発生効率が低下してしまい、40wt%を超えると本合金中のリチウムが大気中の水分と反応して合金の溶解が生じて取り扱い性が困難となり、また、本合金自体の加工性も悪くなる。本発明者の研究により、本発明の水素製造方法に用いるマグネシウム合金は、実用的には5.5〜20wt%のリチウムを含有していることが望ましいことを確認している。5.5〜20wt%のリチウムを含有しているマグネシウム合金は、水素の発生効率が非常に良く、加工性に優れたβ相を生成するので本合金を様々な形状に加工することが可能となるからである。
【0013】
本発明の水素製造方法は、本合金と、アンモニウム塩溶液との接触方法に関して特に制限はないものである。本合金自体を当該溶液に浸漬したり、本合金に当該溶液を吹き付けたり、或いは、当該溶液を含浸した繊維に本合金を接触させる方法などで実現できる。また、この接触させるアンモニウム塩溶液の液温も適宜決定することが可能であり、常温でも、或いは加温してもよい。要は、マグネシウム合金と当該溶液との反応が生じて、効率良く水素を発生させる接触方法を採用すればよく、例えば、水素を利用する対象(例えば、燃料電池や水素エンジンなど)に合わせて、適宜、その接触形態、条件を選択すればよいのである。
【0014】
そして、本発明の水素製造方法におけるアンモニウム塩溶液は、塩酸根、硫酸根、硝酸根、リン酸根を含む無機アンモニウム化合物、或いは酢酸アンモニウムなどの有機アンモニウム化合物のいずれか1種または2種以上含み、pH4〜12であることが好ましい。pH4よりも酸性になると、溶液を保持する材質を腐食させたり、また、取り扱い上注意を要することになり、pH12を超えると水素の発生反応が遅くなくなるからである。具体的なアンモニウム塩溶液としては、例えば、塩化アンモニウム、硝酸アンモニウム、リン酸アンモニウムや、酢酸アンモニウムなどの有機アンモニウム化合物を水に溶解して、pH4〜12に調整したものを用いることができる。より望ましくはpH4〜8前後の中性領域(本明細書においては、「中性」とは弱酸性領域も含むpH4〜8の領域を示す用語として用いる)のアンモニウム塩溶液が実用的には好適である。この場合のアンモニウム塩の濃度は一概に規定できないが、実験の結果、いずれの塩類でも0.5g/L以上で水素発生の促進が見られ、それ以上では濃度に比例して水素発生量が増加した。そのため、濃度上限を一概に規定することはできないが、取り扱いの点などを考慮して実用的な濃度範囲としては、1g/L〜200g/Lが望ましい。
【0015】
また、本発明において、水素の発生反応、即ち水素の発生速度を更に促進させる場合には、アンモニウム塩溶液に、Ni、Fe、Co、Mn、Cu、Pt、Au、Pdなどの貴な電位を有する金属の塩類溶液を微量添加するか、本発明におけるマグネシウム合金をこれらの金属塩類溶液に浸漬して、本合金の表面にこれらの金属を化学的に置換析出させておく。これらの操作により、本合金表面に析出した微量の金属がカソードとなり、アノード反応による水素発生を促進するからである。この場合の貴な金属の析出量は微量でよく、当該溶液に添加する場合では、溶液全体の濃度が1ppm程度の微量でその効果を発揮する。
【0016】
上記したように、本発明の水素製造方法によれば、マグネシウム合金を、アンモニウム塩溶液と接触させるだけという非常に簡易な方法で、水素を効率的に得ることができ、さらに安全性が非常に高いものといえる。そのため、コンパクトな水素発生機構を容易に構成することでき、様々な対象に適応可能となる。例えば、燃料電池用の負極材料、電子・電気機器に用いられる燃料電池の負極材料、メカニカルチャージ式の燃料電池、空気電池材料、水素エンジン(水素をエンジン内で燃焼させる水素自動車の用途)、或いは、炭化水素系原料の改質装置の代替え機構として、有効に利用できる。特に、小型、軽量、可搬型の高分子固体電解質型燃料電池(PEFC)の水素供給源(緊急発生用途も含む)として、本発明は非常に有効なものといえる。
【0017】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を、実施例及び比較例に基づいて説明する。
【0018】
実施例1:この実施例1では、10wt%のリチウムを含有するマグネシウム合金(Mg−10wt%Li合金)を用い、アンモニウム塩溶液として5wt%の塩化アンモニウム水溶液を準備した。このMg−10wt%Li合金は、構造用の軽量合金として開発されているものであり、軽量(比重1.4)で加工性に優れ、かつ大気中に放置しても安定であり、Li金属、Na金属のように大気中の水分との反応を生じないという特性を有している。
【0019】
この塩化アンモニウム水溶液5mL(pH7.0、液温40℃)に、Mg−10wt%Li合金を0.05g溶解したところ、発泡を伴って48mLの水素を発生した。
【0020】
一方、Mg−10wt%Li合金1gの溶解による理論的水素発生量は、上記した反応式から計算すると、0.088g(常温で0.985Lに相当)であり、Mg−10wt%Li合金0.05gでは理論的水素発生量は49mLとなる。従って、本実施例1では、水素発生効率が約98%であることが判明した。
【0021】
1Ahの電気量に必要な理論活物質量(電気化学当量)は、水素(H)=0.038である。したがって、Mg−10wt%Li合金1gで0.088gの水素を発生することから、2.34Ahの電気量に相当する。亜鉛(Zn)の電気化学当量は、1.22g/Ahであることから亜鉛1gは0.89Ahに相当する。従って、この実施例1のMg−10wt%Li合金1gで発生する水素を亜鉛で得るためには、理論的には亜鉛約2.6g、即ち2.6倍の重量を必要とすることが判った。
【0022】
実施例2:この実施例2では、実施例1に用いた塩化アンモニウム水溶液に硫酸ニッケル水溶液を添加したものを準備して、Mg−10wt%Li合金を用いて水素の発生を行った。硫酸ニッケル水溶液は、添加後の溶液中のニッケル濃度が10ppmとなるように塩化アンモニウム水溶液に添加した。この硫酸ニッケル水溶液を添加した塩化アンモニウム水溶液に、Mg−10wt%Li合金0.05gを溶解させたところ、非常に激しく発泡して、その水素発生速度を実施例1と比較したところ、実施例1の約15倍の水素発生速度であることが判明した。
【0023】
比較例:比較として、マグネシウムダイカスト合金AZ91(アルミニウム約9wt%、亜鉛約1wt%、残部マグネシウム)を用いて、実施例1と同じ塩化アンモニウム水溶液により水素の発生を行った。溶液中では、浸漬した合金表面にわずかに気泡が発生していることが確認されたが、その発生量は非常に微量で、そして、その水素発生速度は、あまりにも発生速度が遅いため、測定不能であった。
【0024】
【発明の効果】
以上のように本発明によれば、非常に簡易に、且つ安全に水素を得ることができるので、燃料電池用の負極材料、メカニカルチャージ式の燃料電池、空気電池材料、水素エンジン(水素をエンジン内で燃焼させる水素自動車の用途)、或いは、炭化水素系原料の改質装置の代替え機構などとして、様々な技術へ有効に適用することができる。そして、本発明は、特に、小型、軽量、可搬型の高分子固体電解質型燃料電池の供給源に非常に好適な技術である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing hydrogen, and more particularly to a hydrogen production technique suitable for providing hydrogen as a negative electrode material for a fuel cell or the like.
[0002]
[Prior art]
In recent years, hydrogen has attracted attention as a clean energy source. Hydrogen can only produce water when burned, and does not produce carbon dioxide or harmful nitrogen oxides that cause global warming, unlike conventional fossil fuels. At present, technology for utilizing hydrogen as a negative electrode material as an energy source for fuel cells and the like is being rapidly developed.
[0003]
When this hydrogen is used as an energy source for fuel cells, hydrogen is stored in a high-pressure cylinder and used, a hydrogen storage alloy is used, and hydrogen is generated by reforming a hydrocarbon-based material such as methanol. Generally, a method of utilizing hydrogen or a method of generating and utilizing hydrogen by electrolysis is known. (For example, see Patent Document 1)
[0004]
[Patent Document 1]
JP 2001-185191 A
As described above, various technologies for practical use when using hydrogen as an energy source have been proposed.However, when a high-pressure cylinder or a hydrogen storage alloy is used, there are restrictions on size and weight, and reforming of hydrocarbon-based raw materials and In the case of electrolysis, the structure of the device tends to be complicated, and it is considered that there is a limit to downsizing. Therefore, it can be said that a new hydrogen production technology that can generate hydrogen more easily has been awaited.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a hydrogen production method that can more easily generate hydrogen when using hydrogen as a negative electrode material of a fuel cell or the like.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor conducted research on dissolving various alloys in various solutions.As a result, magnesium alloys containing lithium were able to rapidly and efficiently convert hydrogen in an ammonium salt solution. The inventors have found a phenomenon that occurs and have come to correspond to the present invention.
[0008]
The hydrogen production method of the present invention is characterized in that hydrogen is generated by bringing a magnesium alloy containing 1 to 40 wt% of lithium into contact with an ammonium salt solution.
[0009]
This generates hydrogen as a result of the reaction shown in the following equation.
[0010]
Embedded image
Figure 2004269310
Embedded image
Figure 2004269310
[0011]
This reaction is generally known as a property of magnesium and lithium which are alkali metals. Also, hydrogen can be generated by bringing a metal other than lithium, for example, a magnesium alloy or zinc containing zinc, into contact with an aqueous ammonium salt solution. However, according to the research results of the present inventors, when a magnesium alloy containing 1 to 40% of lithium (hereinafter, sometimes simply referred to as the present alloy) is brought into contact with an ammonium salt solution, zinc is contained. It has been found that hydrogen is generated with much higher efficiency and more quickly than when hydrogen is generated by a magnesium alloy or zinc alone. In this case, the ammonium salt is presumed to have a catalytic action for accelerating the reaction shown in Chemical formulas 1 and 2.
[0012]
When the content of lithium in the magnesium alloy used in the hydrogen production method of the present invention is less than 1 wt%, the efficiency of hydrogen generation is reduced. When the content of lithium exceeds 40 wt%, lithium in the present alloy is reduced to moisture in the atmosphere. The alloy reacts and dissolves to make handling difficult, and the alloy itself also becomes poor in workability. Research by the present inventors has confirmed that it is desirable that the magnesium alloy used in the hydrogen production method of the present invention practically contains 5.5 to 20 wt% of lithium. A magnesium alloy containing 5.5 to 20 wt% lithium has a very good hydrogen generation efficiency and generates a β phase with excellent workability, so that the alloy can be processed into various shapes. Because it becomes.
[0013]
The method for producing hydrogen of the present invention is not particularly limited with respect to the method of contacting the present alloy with an ammonium salt solution. The present alloy can be realized by immersing the alloy itself in the solution, spraying the solution on the alloy, or bringing the alloy into contact with fibers impregnated with the solution. In addition, the temperature of the ammonium salt solution to be brought into contact can be appropriately determined, and may be room temperature or heated. In short, the reaction between the magnesium alloy and the solution occurs, and a contact method that efficiently generates hydrogen may be employed. For example, according to an object using hydrogen (for example, a fuel cell or a hydrogen engine), The contact form and conditions may be appropriately selected.
[0014]
The ammonium salt solution in the hydrogen production method of the present invention contains one or more of an inorganic ammonium compound containing a hydrochloric acid group, a sulfate group, a nitrate group, and a phosphate group, or an organic ammonium compound such as ammonium acetate. The pH is preferably 4 to 12. If the pH is higher than 4, the material holding the solution is corroded, and care must be taken in handling. If the pH exceeds 12, the hydrogen generation reaction is slowed down. As a specific ammonium salt solution, for example, a solution obtained by dissolving an organic ammonium compound such as ammonium chloride, ammonium nitrate, ammonium phosphate, or ammonium acetate in water and adjusting the pH to 4 to 12 can be used. More preferably, an ammonium salt solution in a neutral region around pH 4 to 8 (herein, “neutral” is used as a term indicating a region of pH 4 to 8 including a weakly acidic region) is practically suitable. It is. In this case, the concentration of ammonium salt cannot be specified unconditionally, but as a result of the experiment, hydrogen generation was promoted at 0.5 g / L or more for all salts, and at higher values, the amount of hydrogen generated increased in proportion to the concentration. did. For this reason, the upper limit of the concentration cannot be specified unconditionally, but a practical concentration range of 1 g / L to 200 g / L is desirable in consideration of handling and the like.
[0015]
In the present invention, in order to further accelerate the hydrogen generation reaction, that is, the rate of hydrogen generation, a noble potential such as Ni, Fe, Co, Mn, Cu, Pt, Au, or Pd is added to the ammonium salt solution. A small amount of a salt solution of the metal is added, or the magnesium alloy of the present invention is immersed in the metal salt solution to chemically displace and deposit these metals on the surface of the present alloy. By these operations, a trace amount of metal deposited on the surface of the present alloy becomes a cathode and promotes the generation of hydrogen by an anodic reaction. In this case, the amount of the noble metal deposited may be very small, and when it is added to the solution, the effect is exhibited when the concentration of the entire solution is as small as about 1 ppm.
[0016]
As described above, according to the hydrogen production method of the present invention, hydrogen can be efficiently obtained by a very simple method of merely contacting a magnesium alloy with an ammonium salt solution, and the safety is extremely high. It can be said that it is expensive. Therefore, a compact hydrogen generating mechanism can be easily configured, and can be applied to various objects. For example, a negative electrode material for a fuel cell, a negative electrode material for a fuel cell used for an electronic / electric device, a mechanical charge type fuel cell, an air cell material, a hydrogen engine (use of a hydrogen vehicle that burns hydrogen in the engine), or It can be effectively used as an alternative mechanism for a hydrocarbon-based raw material reformer. In particular, the present invention can be said to be very effective as a hydrogen supply source (including an emergency generation use) for a small, lightweight, portable polymer solid oxide fuel cell (PEFC).
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described based on examples and comparative examples.
[0018]
Example 1 : In Example 1, a magnesium alloy containing 10 wt% lithium (Mg-10 wt% Li alloy) was used, and a 5 wt% ammonium chloride aqueous solution was prepared as an ammonium salt solution. This Mg-10 wt% Li alloy has been developed as a lightweight alloy for structures, is lightweight (specific gravity 1.4), has excellent workability, is stable even when left in the air, and And has the property of not reacting with moisture in the air unlike Na metal.
[0019]
When 5 g of an Mg-10 wt% Li alloy was dissolved in 5 mL of this ammonium chloride aqueous solution (pH 7.0, liquid temperature 40 ° C.), 48 mL of hydrogen was generated with foaming.
[0020]
On the other hand, the theoretical amount of hydrogen generated by dissolution of 1 g of the Mg-10 wt% Li alloy is 0.088 g (corresponding to 0.985 L at ordinary temperature) calculated from the above reaction formula, and the theoretical amount of hydrogen generated is 0.1 kg. At 05 g, the theoretical amount of hydrogen generated is 49 mL. Therefore, in Example 1, the hydrogen generation efficiency was found to be about 98%.
[0021]
The theoretical active material amount (electrochemical equivalent) required for 1 Ah of electricity is hydrogen (H 2 ) = 0.038. Therefore, since 0.088 g of hydrogen is generated by 1 g of the Mg-10 wt% Li alloy, this corresponds to an electric quantity of 2.34 Ah. Since the electrochemical equivalent of zinc (Zn) is 1.22 g / Ah, 1 g of zinc corresponds to 0.89 Ah. Therefore, in order to obtain hydrogen generated by 1 g of the Mg-10 wt% Li alloy of Example 1 with zinc, it is theoretically understood that about 2.6 g of zinc, that is, 2.6 times the weight is required. Was.
[0022]
Example 2 In Example 2, a solution prepared by adding an aqueous solution of nickel sulfate to the aqueous solution of ammonium chloride used in Example 1 was prepared, and hydrogen was generated using an Mg-10 wt% Li alloy. The nickel sulfate aqueous solution was added to the ammonium chloride aqueous solution such that the nickel concentration in the solution after the addition became 10 ppm. When 0.05 g of a Mg-10 wt% Li alloy was dissolved in an aqueous solution of ammonium chloride to which the aqueous solution of nickel sulfate was added, foaming was extremely violent, and the hydrogen generation rate was compared with that of Example 1. It was found that the hydrogen generation rate was about 15 times that of the above.
[0023]
Comparative Example : As a comparison, hydrogen was generated using the same ammonium chloride aqueous solution as in Example 1 using magnesium die-casting alloy AZ91 (about 9 wt% of aluminum, about 1 wt% of zinc, and the balance of magnesium). In the solution, it was confirmed that bubbles were slightly generated on the surface of the immersed alloy, but the generation amount was very small and the hydrogen generation rate was too slow, so it was measured. It was impossible.
[0024]
【The invention's effect】
As described above, according to the present invention, hydrogen can be obtained very easily and safely. Therefore, a negative electrode material for a fuel cell, a mechanical charge type fuel cell, an air cell material, a hydrogen engine (hydrogen engine) The present invention can be effectively applied to various technologies as an application of a hydrogen vehicle that burns in a fuel cell) or as an alternative mechanism of a hydrocarbon-based raw material reforming apparatus. In addition, the present invention is a technique that is particularly suitable for a small, lightweight, portable polymer solid oxide fuel cell.

Claims (3)

1〜40wt%のリチウムを含むマグネシウム合金を、アンモニウム塩溶液に接触させることにより水素を発生することを特徴とする水素製造方法。A method for producing hydrogen, comprising generating hydrogen by bringing a magnesium alloy containing 1 to 40 wt% of lithium into contact with an ammonium salt solution. アンモニウム塩溶液は、塩酸根、硫酸根、硝酸根、リン酸根のいずれか1種または2種以上を含む無機アンモニウム化合物、又は有機アンモニウム化合物のいずれかを含み、pH4〜12である請求項1に記載の水素製造方法。The ammonium salt solution according to claim 1, wherein the ammonium salt solution contains any one of an inorganic ammonium compound or an organic ammonium compound containing at least one of a hydrochloric acid group, a sulfate group, a nitrate group, and a phosphate group, and has a pH of 4 to 12. The method for producing hydrogen as described above. 請求項1または請求項2に記載する水素製造方法に用いる原料であって、
1〜40wt%のリチウムと、残部がマグネシウムである合金からなる水素製造用原料。
A raw material used in the method for producing hydrogen according to claim 1 or 2,
A raw material for hydrogen production comprising an alloy containing 1 to 40 wt% of lithium and the balance being magnesium.
JP2003061945A 2003-03-07 2003-03-07 Hydrogen production method and raw material used for the same Pending JP2004269310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061945A JP2004269310A (en) 2003-03-07 2003-03-07 Hydrogen production method and raw material used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061945A JP2004269310A (en) 2003-03-07 2003-03-07 Hydrogen production method and raw material used for the same

Publications (1)

Publication Number Publication Date
JP2004269310A true JP2004269310A (en) 2004-09-30

Family

ID=33124016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061945A Pending JP2004269310A (en) 2003-03-07 2003-03-07 Hydrogen production method and raw material used for the same

Country Status (1)

Country Link
JP (1) JP2004269310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502769A (en) * 2003-08-19 2007-02-15 グリフィン,リナド Apparatus and method for producing hydrogen
JP2008056551A (en) * 2006-08-29 2008-03-13 Liangfeng Plastic Machinery Co Method of producing hydrogen using waste material of magnesium and equipment thereof
JP2010150057A (en) * 2008-12-24 2010-07-08 Liangfeng Plastic Machinery Co Method for generating hydrogen and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502769A (en) * 2003-08-19 2007-02-15 グリフィン,リナド Apparatus and method for producing hydrogen
JP2008056551A (en) * 2006-08-29 2008-03-13 Liangfeng Plastic Machinery Co Method of producing hydrogen using waste material of magnesium and equipment thereof
JP4553209B2 (en) * 2006-08-29 2010-09-29 良峰塑膠機械股▲ふん▼有限公司 Method and facility for producing hydrogen from waste magnesium material
JP2010150057A (en) * 2008-12-24 2010-07-08 Liangfeng Plastic Machinery Co Method for generating hydrogen and application thereof

Similar Documents

Publication Publication Date Title
Wang et al. Sustainable aqueous metal-air batteries: An insight into electrolyte system
JP5671641B2 (en) Negative electrode material for magnesium fuel cell and magnesium fuel cell
RU2288524C2 (en) Method and products for improving performance characteristics of batteries/fuel cells
US20170288287A1 (en) Rechargeable aluminum-air electrochemical cell
Hu et al. Efficient nickel catalyst with preferred orientation and microsphere for direct borohydride fuel cell
Zhang et al. Approaches to construct high-performance Mg–air batteries: from mechanism to materials design
US20090029206A1 (en) Electrolyte solution for hydrogen generating apparatus and hydrogen generating apparatus comprising the same
Xu et al. Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance
Shi et al. Nanoporous bismuth electrocatalyst with high performance for glucose oxidation application
Zhang et al. A review of the Al-gas batteries and perspectives for a “Real” Al-air battery
JP2004269310A (en) Hydrogen production method and raw material used for the same
JP2004244251A (en) Hydrogen generator, hydrogen generation method, and fuel cell system using it
JP2006503688A (en) High storage hydrogen storage material
US20080268310A1 (en) Hydrogen generating apparatus and fuel cell system using the same
JP5140496B2 (en) Electrolyte solution for hydrogen generator and hydrogen generator
Kuang et al. Zinc–air batteries in neutral/near-neutral electrolytes
WO2005011042A1 (en) Additive for electrolyte solution of lead acid battery and lead acid battery
TWI532242B (en) Electrochemical cell
Poonam et al. A review of magnesium air battery systems: from design aspects to performance characteristics
CN110380045A (en) A kind of magnesium-alloy anode material and its preparation method and application, magnesium air battery
Feng et al. Influence of Ga content on electrochemical behavior of Mg-5 at% Hg anode materials
Liu et al. Development of Aqueous Magnesium–Air Batteries: from structure to materials
Jayasayee et al. Alternative chemistries in primary metal-air batteries
JP2015046312A (en) Magnesium battery
JPH02500313A (en) Batteries with aqueous alkaline electrolyte