JP2004269292A - Vermiculite sheet - Google Patents

Vermiculite sheet Download PDF

Info

Publication number
JP2004269292A
JP2004269292A JP2003059866A JP2003059866A JP2004269292A JP 2004269292 A JP2004269292 A JP 2004269292A JP 2003059866 A JP2003059866 A JP 2003059866A JP 2003059866 A JP2003059866 A JP 2003059866A JP 2004269292 A JP2004269292 A JP 2004269292A
Authority
JP
Japan
Prior art keywords
vermiculite
sheet
slurry
lamella
delaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059866A
Other languages
Japanese (ja)
Other versions
JP4349822B2 (en
Inventor
Hideyuki Morita
英之 森田
Hisao Yamamoto
久夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhombic Corp Japan
Original Assignee
Rhombic Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhombic Corp Japan filed Critical Rhombic Corp Japan
Priority to JP2003059866A priority Critical patent/JP4349822B2/en
Publication of JP2004269292A publication Critical patent/JP2004269292A/en
Application granted granted Critical
Publication of JP4349822B2 publication Critical patent/JP4349822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/202Vermiculite

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vermiculite treated material prepared by treating vermiculite with a hydrophilic interlayer infiltrating agent and keeping the original property of the vermiculite, a delaminated vermiculite prepared by treating the vermiculite treated material with a gas producing delaminating and swelling agent and if necessary, heating the vermiculite treated material and keeping the original property of the vermiculite, a water dispersible vermiculite slurry composed of high purity vermiculite lamella obtained by disintegrating the delaminated vermiculite and having the original property of the vermiculite such as high aspect ratio, non-combustibility, and softness, and a vermiculaite sheet obtained by forming the water dispersible vermiculaite slurry into a sheet and keeping the original property of the vernmiculite such as moisture respirating property, gas barrier property, and non-combustibility. <P>SOLUTION: The vermiculite treated material is obtained by treating the vermiculite with the hydrophilic interlayer infiltrating agent. The delaminated vermiculite is obtained by treating the vermiculite treated material with the gas producing delaminating and swelling agent. The vermiculite slurry is obtained by disintegrating the delaminated vermiculite and composed of the vermiculite lamellar. The vermiculite sheet is obtained by forming the vermiculite slurry into the sheet. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蛭石を親水性層間侵入剤で処理した蛭石処理物、該蛭石処理物をガス発生層間剥離膨積剤で処理した層間剥離蛭石、該層間剥離蛭石と水を含有してなる蛭石スラリー(分散液)および該蛭石スラリーを抄造した蛭石シートに関する。
【0002】
【従来の技術】
天然の含水ケイ酸塩鉱物である蛭石は水性塩によって何倍にも膨積することが可能であることが知られている。次いで、膨積した蛭石がせん断力によって層間剥離され、その結果蛭石を構成する個々の粒子またはラメラ(細鱗片)が得られる。こうしたラメラは軽量性、断熱性、吸音性、不燃性を有し、また高いアスペクト比(ラメラの長さまたは幅をラメラの厚さで割った数値)をも有することが知られており、これらの特性を利用して蛭石ラメラを原料として紙/フィルム、積層品、塗料、発泡体、他の物品(例えばガスケット)等種々の形態に加工されて建築用材、保温断熱材、荷造り材料等として数多くの用途に利用されている。日本では、蛭石(バーミキュライト)とは結晶水を持つ雲母性鉱物の総称であり、この層状鉱物片を1000℃近い温度で焼成すると、アコーデオン様に膨積する含水ケイ酸塩鉱物のことをいう。しかし産地によって種々の蛭石が存在しており、フロゴパイト、ハイドロ−バイオタイトなどの雲母の水和風化物、本来のバーミキュライト、ハイドロ−クロライトの風化物等、またマイカも含めたこれら鉱物種の混合層鉱物が知られている。膨積された蛭石を構成する個々の粒子またはラメラの寸法を減少するように層間剥離してコロイド的な寸法とした後に、その蛭石の粒子またはラメラから成る可撓性シートを作ることは既に知られている(特許文献1および2)。蛭石の処理の際における膨積が、その後の適切な寸法に調整された蛭石ラメラから製造される成型物品の物理性質、例えば可撓性、強度等に大きな影響を及ぼすために蛭石の膨積方法に関して種々の提案がなされている。
【0003】
提案されている蛭石の膨積方法として、1)焼成法:一般的には1000℃近い炉で蛭石を焼成する方法(物理的な蛭石の層間風化―この場合蛭石は既に変質して、蛭石以外のセラミックになっている)、2)過酸化物法:過酸化水素水等過酸化物を用いて蛭石を膨積させる完全湿式方式による層間剥離方法(特許文献3)、3)イオン交換法:Li、NH およびアミン類をイオン交換法で蛭石の層間に入れ込んで膨積させる方法(湿式でしか行えない)(特許文献4)等が知られている。1)の焼成法によれば、簡単に蛭石の膨積が可能であるが、そのために炉を設置しなければならない。また焼成後に得られた蛭石はセラミック化したり、特に鉄成分の多い蛭石は溶融してガラス化し本来蛭石が有している良好な特性を消失してしまっており、これを原料とする製品は特異なものになり難い。2)の過酸化物法については、処理剤としての化学薬品が高価なために、膨積のための費用が高くなる。3)のイオン交換法については、イオン交換の為に電解質の溶液を使わねばならない。しかもイオン交換の時間がイオン種によっては長くかかるので、大型の貯蔵槽が必要になる。さらに製品化に際して、乾燥し難い粘土質製品を低温乾燥しなければならないという不利がある。廃液に電解質が残るので、大掛かりなシステムが必要となる。従って、高効率且つ経済的に有利な、蛭石(本発明において、出発原料である蛭石鉱石を意味する)本来の特性を有する膨積した蛭石(本発明において、蛭石を親水性層間侵入剤で処理した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した層間剥離蛭石を意味する)、該層間剥離蛭石を崩壊させて得た本来の特性を有する蛭石のラメラからなる蛭石スラリー(分散液)および該蛭石スラリーを抄造してなる蛭石本来の特性を有する蛭石シートは今だ開発されていない。
【0004】
【特許文献1】
英国特許第1016385号公報(請求項1および2)
【特許文献2】
英国特許第1119305号公報(請求項1)
【特許文献3】
特公昭55−6600(請求項1)
【特許文献4】
特公昭59−11547(請求項1)
【0005】
【発明が解決しようとする課題】
蛭石を親水性層間侵入剤で処理した蛭石本来の特性を保持した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した蛭石本来の特性を保持した層間剥離蛭石、該層間剥離蛭石を崩壊させて得た高アスペクト比、不燃性およびソフト性等に富んだ蛭石本来の特性を保持した高純度の蛭石ラメラからなる良好な水分散性蛭石スラリーおよび該蛭石スラリーを抄造してなる水分呼吸性、ガスバリアー性および不燃性等の蛭石本来の特性を保持した蛭石シートを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、これまでに開発された方法が有する上記した種々の問題点を解決すべく鋭意検討を行った結果、蛭石を親水性層間侵入剤で処理した蛭石本来の特性を保持した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した蛭石本来の特性を保持した層間剥離蛭石、該層間剥離蛭石を崩壊させて得た高アスペクト比、不燃性およびソフト性等に富んだ蛭石本来の特性を保持した高純度の蛭石ラメラからなる良好な水分散性蛭石スラリーおよび該蛭石スラリーを抄造してなる水分呼吸性、ガスバリアー性および不燃性等の蛭石本来の特性を保持した蛭石シートが、上記した種々の問題点を解決することを知見してさらに検討を重ねて本発明を完成させるに至った。
【0007】
すなわち、本発明は、
(1)蛭石を親水性層間侵入剤で処理した蛭石処理物、
(2)親水性層間侵入剤が(イ)燐の酸化物、(ロ)硫黄酸化物、(ハ)無機酸とそれと複塩を形成する化合物の混合物、(ニ)金属硫酸塩、(ホ)ヘテロポリ酸または(ヘ)ピロガロール類であることを特徴とする(1)記載の蛭石処理物、
(3)(1)または(2)に記載の蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により処理物をさらに加熱した層間剥離蛭石、
(4)(3)に記載の層間剥離蛭石と水と所望によりさらに水溶性接着剤、パルプまたは無機パルプを含有してなる蛭石スラリー、
(5)(4)に記載の蛭石スラリーを抄造してなる蛭石シート、
に関する。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
蛭石を予め親水性層間侵入剤で処理する。蛭石の層間が陽イオンと水に占有されており、層間の陽イオンは一般にMg++とKが主で外界の陽イオン(または分子)と容易に入れ替わる事に着目して、蛭石を親水性層間侵入剤で処理するとKと同じイオン半径を有するヒドロニウムイオンが発生し、これが蛭石の層間の陽イオンK、Mg++とイオン交換すると共に、蛭石の層間の結晶水を脱水しようとして、蛭石層間に取り込まれる程度の大きさのアニオンが形成され、このアニオンが蛭石層間に取り込まれて蛭石の層間がさらに脆くなる。親水性層間侵入剤として、例えば五酸化燐を蛭石に接触させると初期段階には結晶水が滲み出して蛭石が濡れた状態を示すが、その後結晶水が五酸化燐に吸着されて、蛭石が乾燥したように見えるとともに蛭石層間が拡がって、蛭石の体積が増加する。このように親水性層間侵入剤で処理されて膨積した蛭石を蛭石処理物と称し、例えば蛭石を膨積させる五酸化燐のような化学物質を親水性層間侵入剤と称する。
【0009】
親水性層間侵入剤として、上記の五酸化リン(無水リン酸)をはじめ、ポリリン酸、塩化燐、6弗化リン酸、オキシ塩化燐等の燐の酸化物類、硫化水素、硫黄粉末、液状硫黄、無水硫酸、発煙硫酸、無水亜硫酸、無水チオ硫酸、硫酸+液状硫黄等の硫黄酸化物群、濃硫酸+ニトログリセリン、濃硫酸+エタノールアミン、硫酸+ヒドラジン、燐酸+ヒドラジン、硝酸+エタノールアミン等無機酸とそれと複塩を形成する化合物の混合物、無水ヒドロニウム硫酸アルミ(ヒドロニュウムアルナイト構造)、ヒドロニウム硫酸鉄(無水ジャロサイト構造)、無水明礬、クロム硫酸等の金属硫酸塩、リンモリブデン酸、シリカモリブデン酸、リンタングステン酸、シリカタングステン酸等のヘテロポリ酸またはピロガロール類等が挙げられる。これらの内、親水性層間侵入剤として五酸化リン(無水リン酸)、硫化水素、発煙硫酸および硫酸+ヒドラジンが好ましい。
【0010】
親水性層間侵入剤としては、通常の酸のように水と接触してヒドロニウムイオンを形成することと脱水作用を有し蛭石の層間に侵入できる大きさのアニオンを形成することが必要条件である。親水性層間侵入剤は単独の化合物であってもよいし、無機酸とそれと複塩を形成する化合物の混合物であってもよい。 蛭石に親水性層間侵入剤を接触させる方法としては、親水性層間侵入剤が粉体の場合はこれを単に蛭石と混合するだけでよい。例えば、親水性層間侵入剤として五酸化リンを使用する場合について上記に説明したように初期段階においては蛭石が濡れたように見え、その後直ちに再び乾燥した状態になり、黒ずんで蛭石体積の増加が知見される。親水性層間侵入剤が液体の場合は、所望する蛭石の膨積の程度に応じて蛭石に所定量の親水性層間侵入剤を添加すればよいが、蛭石処理物を乾燥状態に保持するのが好ましく、したがって親水性層間侵入剤を数度に分けて蛭石に添加して乾燥状態で処理することが好ましい。親水性層間侵入剤の添加量は通常蛭石100g当たり約0.0001〜2molが好ましく、蛭石100g当たり約0.0001〜0.005molの添加量がより好ましい。所望によりより大きな蛭石ラメラを得ようとする場合には、より多くの親水性層間侵入剤を添加することができる。
【0011】
次いで蛭石処理物をガス発生層間剥離膨積剤で処理する。蛭石処理物にガス発生層間剥離膨積剤、例えば過酸化水素水を添加すると一種の乾燥剤のように過酸化水素水が蛭石処理物の層間に吸収されて、過酸化水素水が分解されて発生した酸素によって蛭石処理物の層間が押し広げられ蛭石処理物の層が剥離されて、蛭石処理物の層が乾燥状態を保持したままで膨積される。蛭石処理物を膨積させるために、所望により自然発熱を含む加熱、電磁波加熱、高周波加熱、超音波加熱および放射線照射等物理的操作をさらに蛭石処理物に加えることもできる。この場合、加熱温度として400℃以下が好ましく、200℃以下がより好ましい。蛭石処理物をこのように処理して得たさらに膨積させた状態の蛭石処理物を層間剥離蛭石と称し、例えば蛭石処理物をさらに膨積させる過酸化水素水のような化学物質をガス発生層間剥離膨積剤と称する。ガス発生層間剥離膨積剤として例えば、過酸化物、ヒドラジンおよびアジ化塩等が挙げられる。過酸化物としては、例えば過酸化水素水、有機過酸化物(有機酸過酸化物、有機ケトン過酸化物等)、過酸化物付加体(過酸化カルバメート、過硼酸ナトリウム、過炭酸ナトリウムおよび過酸化カルシュウム等)等が挙げられる。液状又はペースト状である過酸化水素水および有機過酸化物については蛭石処理物にこれらを単に混合するだけでよい。一般に粉末の形態である過酸化付加体についても、蛭石処理物にこれらを単に混合するだけで通常蛭石処理物の有する結晶水と反応してガスが発生しこれにより蛭石処理物の層が膨積するが、蛭石処理物の層の膨積があまり進行しない時は少量の水を加えることによって蛭石処理物の層のさらなる膨積を促進することができる。ヒドラジンとしては、一般に液状のヒドラジン・モノ水和物等、一般に粉末状のヒドラジン硫酸塩、ヒドラジンリン酸塩、ヒドラジン硝酸塩等が挙げられる。これらの粉末状の塩の場合、蛭石処理物の層の膨積があまり進行しなければ過酸化物の場合と同様に少量の水を蛭石処理物に添加することによって蛭石処理物の層のさらなる膨積を促進することができる。アジ化塩としては、アジ化リチュウム、アジ化ナトリウム等が挙げられ、これらはいずれも粉末であり単純に蛭石処理物に混合するだけで、蛭石の結晶水または水分と反応して発生したガスによって蛭石処理物の層が膨積する。これらの内、ガス発生層間剥離膨積剤としてヒドラジンおよび過酸化水素水が好ましい。粉末状のガス発生層間剥離膨積剤の場合には、一般的にガス発生層間剥離膨積剤は液状で使用されることが好ましいのでこれらを水に溶解して用いてもよいが、水を多量に用い過ぎると蛭石処理物の膨積時に熱が奪われる為に処理工程上効率的でなく且つ湿式反応となり反応速度が遅くなり、イオン交換法の場合と同様になって本発明のメリットがなくなり好ましくない。例えば過酸化水素水の場合、通常約5〜35重量%濃度のものが使用される。これらガス発生層間剥離膨積剤の添加量は、通常蛭石処理物100gに対して約0.04〜1.00mol程度が好ましい。ガス発生層間剥離膨積剤を蛭石処理物100gに対して約1.00molを超えて必要以上に添加するのは上記した理由により好ましくない。本発明は、蛭石に親水性層間侵入剤を添加する場合または蛭石処理物にガス発生層間剥離膨積剤を添加する場合のいずれの場合も、また添加されるこれらの親水性層間侵入剤またはガス発生層間剥離膨積剤の形態が液体の場合であっても、蛭石または蛭石処理物の層間にこれらの化学物質が含浸吸収された結果起こる反応を利用している為に、蛭石処理物も層間剥離蛭石もアコーデオン状態に膨積された乾燥物として得られることを特徴とする。本発明による膨積蛭石は、焼成して膨積させた蛭石、あるいは蛭石を過酸化水素水のみで膨積させ、乾燥して得られた膨積蛭石に比べて明らかに小さい比表面積を有する。これは本発明による蛭石層間にアニオン又はその塩が含まれることによる為である。本発明による層間剥離蛭石は、X線回折法による分析または比表面積の測定により特定され得る。
【0012】
本発明により、湿式ではなく常温で乾燥した状態で、親水性層間侵入剤を蛭石の層に充分浸透させて蛭石処理物とし、次いで該蛭石処理物にガス発生層間剥離膨積剤を常温で乾燥した状態で処理して層間の剥離をより深くまで起こさせて得たアコーデオン状態に膨積された層間剥離蛭石を多量の水の中に投入することにより、層間剥離蛭石の層が剥離、崩壊してアスペクト比の大きい厚み約0.1μmの薄い蛭石ラメラから成る蛭石スラリーが得られる。本発明により得られた層間剥離蛭石は水に投入された初期段階には層間剥離蛭石の層間に未だガスが残存するため水に浮いている。その間に層間剥離蛭石中に含まれる母岩や膨積されていない雲母類等の不純物が急速に沈降するために、浮上している層間剥離蛭石のみを掬い取るかデカンテーション法にて分離することによって不純物が除去された高純度の層間剥離蛭石のみが得られる。次いでこの不純物が除去された高純度の分離された層間剥離蛭石を水中で単純に攪拌すると、層間剥離蛭石の層間に水が侵入してかつて蛭石層中に存在したとほぼ同等の大きさを保ったままの蛭石ラメラから成る良好な分散性を有する蛭石スラリーが得られる。本発明は、蛭石を親水性層間侵入剤で処理し、次いで該蛭石処理物にガス発生層間剥離膨積剤を処理して層間剥離蛭石とする工程において湿式ではなく、常温でほぼ乾燥した状態で行われることを特徴とする。また本発明は、蛭石スラリーが高純度の蛭石ラメラから成ることを特徴とする。得られた蛭石スラリーを砥石が回転して粒子を擂り潰す構造のコロイドミルに通すと、寸法が小さくなった蛭石ラメラから成るペースト状の蛭石スラリーが得られる。これらの蛭石スラリーにトリポリリン酸ナトリウム等のごとき分散助剤を添加したり、ポリエチレンオキサイドおよびポリアクリルアマイド等の凝集剤を添加して、できるかぎり含水量を減少させた蛭石スラリーを使用することもできる。該蛭石スラリーから後述するシート作製時において、これらの分散助剤、凝集剤を用いて蛭石スラリーの濾水量を調整するのは通常公知の製紙方法の場合と同様である。該蛭石スラリーから鋳込み法による成型物を作製したり、該成型物を焼成してセラミック化する時には、可塑性を付与するために可塑性付与剤としてのメチルセルロース等を該蛭石スラリーに添加することができ、これは通常公知のセラミック製造の場合と同様である。本発明により得られた蛭石スラリーは下記のごとき特徴を有している。
【0013】
蛭石スラリーの特徴:
1)分散体が高アスペクト比を持つ蛭石のラメラからなっている。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は雲母に変化またはガラス化している。)
2)分散体の表面に水酸基を多量に有しているので、分散体が水に分散し易い。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は水面に浮くかまたは沈殿する。)
3)分散体がソフトである。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は硬くて、脆い。)
4)分散体がイオン交換能力を保持している。
(本発明以外による蛭石を焼成して、膨積させて得た分散体はイオン交換能力を有しない。)
5)分散体が水分に対する呼吸性を有する。
(本発明以外による蛭石を焼成して、膨積させて得た分散体は水分に対する呼吸性を有しない。)
6)分散体の形状が平板状である。
(本発明以外による蛭石を焼成して、膨積させて得た分散体の形状は波打ち状である。)
7)蛭石スラリーを濾過乾燥すると、水素結合でバインダーなしでも水素結合により蛭石シートの形成が可能である。
(本発明以外による蛭石を焼成して、膨積させて得た分散体から成る蛭石スラリーを濾過乾燥すると分散体同士が結合しないので単なる粉末になる。)
8)蛭石スラリーを濾過乾燥して得た蛭石シートを焼結すると成型セラミックシートを作製することができる。
(本発明以外による蛭石を焼成して、膨積させて得た分散体から成る蛭石スラリーを濾過乾燥して得たシートを焼結しても保型出来ず、単なる粉末になる。)
【0014】
本発明による蛭石スラリーを蛭石のラメラを通さないメッシュの網で濾過乾燥する事によって蛭石シートが得られる。本発明による蛭石スラリーからの蛭石シートの抄造については和紙を抄く通常公知の方法にて行うことができる。本発明による蛭石スラリーから抄造された蛭石シートを乾燥するだけで、蛭石の粘土としての性質、結晶水と水酸基の水素結合によって、特に接着剤を使用することなしに蛭石シートを形成することができる。本発明による蛭石シートをX線回折法によって分析した結果、C面の回折のみが観測されることによって該蛭石シート表面層上で完全に配向していることを確認することができ、また後述の実験によって該蛭石シートがガスバリアー性能をも有することが証明された。さらに該蛭石シートを約300℃以上に加熱すると焼結蛭石シートを形成することができた(X線回折法による分析の結果、確認できた)。機械による大量生産に際しては、蛭石シートの湿式強度が弱いために、抄き込み後の引っ張りに耐えられないので、通常、例えばパルプ、無機繊維、セピオライトおよびパリゴルスカイト等の無機パルプ、水溶性バインダー等を蛭石スラリーに添加することによって蛭石シートの湿式強度を向上させて長尺の連続蛭石シートを生産することができる。本発明による蛭石シートに対して上記のパルプ、無機繊維または無機パルプを約50重量%以下、好ましくは約20重量%以下、より好ましくは約10重量%以下添加することができる。一般に繊維成分を約10重量%程度以上加えると、ガスバリアー性能が低下し、有機成分が多くなると耐火性能が低下するが、蛭石シートは高いガスバリアー性を有するので約50重量%程度の有機成分を添加しても自然消火性能を依然として保持する。本発明による蛭石シートに対して水溶性バインダーを10〜30重量%、好ましくは10〜20重量%添加することができる。また、陶器の成型時に通常公知に用いられる鋳込み法に準じて、予め作成した型に上記蛭石スラリーを流し込み、脱水させる事によって所定の形態を有する成型物を作製することもできる。本発明による蛭石のラメラがソフトであるために、上記鋳込み法の適用が可能となる。このようにして作製した成型物を焼結してセラミック成型品を得ることができる。無機繊維として、例えばガラス繊維、石英繊維、アルミナーシリカ繊維、チラノ繊維、炭素繊維、活性炭繊維、アルミナ繊維、炭化ケイ素繊維、ジルコニア繊維、炭化ケイ素ウィスカ、窒化ケイ素ウィスカ、チタン酸カリウム、石綿などが挙げられる。
水溶性バインダーとして、例えば酸化澱粉、酵素変性澱粉、カチオン化澱粉などの澱粉類、カルボキシメチルセルロース、メチルセルロース、ヒドロキシアルキルセルロースなどの水溶性セルロース化合物、ポリビニルアルコール化合物やポリアクリルアミド類等が挙げられる。
【0015】
本発明による蛭石シートは蛭石を、例えば化学的処理等によって膨積および蛭石の層を剥離させて得た蛭石本来の性能を保持したままの蛭石ラメラから形成されたもので、以下の性能を有する。
1)ガスバリアー性
2)不燃性
3)焼結性
4)イオン交換性
5)水分呼吸性
【0016】
以下各々について詳細に説明する。
1)ガスバリアー性
図1を参照して説明する。
容器3にガスを発生し易い液2を約500ml投入してガスを発生させて、容器3のキャップ4の中央部の円形孔に貼り付けた試験シート1を通じて、ガスの漏れ状況を官能検査により確認した。ガス源となる化合物としてアルコール・ドライアイス・酢酸(アルコール中にドライアイスを添加し、酢酸を数滴添加したもの)、ホルマリンアルコール液(アルコール中にホルムアルデヒドを溶解したもの)、アンモニア・カセイソーダ(アンモニア水にカセイソーダを添加したもの)および酢酸エチル、試験シートとしてアルミニウムラミネート紙、蛭石ラメラ100重量%含有シート、蛭石ラメラ90重量%含有シート、蛭石ラメラ80重量%含有シート、蛭石ラメラ70重量%含有シートおよび通常紙を使用した。結果は表1の通りであった。
【0017】
【表1】

Figure 2004269292
(注1)試験シートの内容 ▲1▼:アルミニウムラミネート紙、▲2▼:蛭石ラメラ100重量%含有蛭石シート、▲3▼:蛭石ラメラ90重量%含有蛭石シート、▲4▼:蛭石ラメラ80重量%含有蛭石シート、▲5▼:蛭石ラメラ70重量%含有蛭石シート、▲6▼:通常紙
(注2) ◎ : 匂わない 、 ○ :わずかに臭う 、△:かなり匂う、 × : 強く臭う
【0018】
2)不燃性
図2を参照して説明する。
各試験シート5を洗濯バサミ6に挟んで吊るし、シートの下方からバーナー7(約1000℃)で燃焼試験を行った。結果は表2の通りであった。
【0019】
【表2】
Figure 2004269292
(注1)試験シートの内容 ▲1▼:蛭石ラメラ100重量%含有蛭石シート(坪量100g/m)▲2▼:蛭石ラメラ90重量%含有蛭石シート(坪量100g/m)▲3▼:蛭石ラメラ80重量%含有蛭石シート(坪量100g/m)▲4▼:蛭石ラメラ70重量%含有蛭石シート(坪量100g/m)▲5▼:蛭石ラメラ10重量%含有蛭石シート(坪量50g/m
【0020】
3)焼結性
水酸化アルミニウム「Al(OH)」を添加した塩ビの壁紙を図2に示したように燃焼試験を行うと、燃焼後はシートの形態を残すことなく粉々に崩壊する。本発明による蛭石ラメラから成る蛭石シートでは、例えばパルプが30重量%も添加されたシートでさえ燃焼後黒化するものの元のシートの形態を保持している。しかしながら本発明以外による蛭石を焼成して膨積させて得た蛭石ラメラから成る蛭石シートの場合は、該蛭石シートの燃焼後もはや元のシートの形態を保持しない。これは本発明による蛭石ラメラが焼結性を持っているからである。化学的処理等により膨積させたために、本発明による蛭石ラメラは結晶水および珪酸層の水酸基を保持しており、したがって本発明による蛭石ラメラから成る蛭石シートが依然として焼結性という性質を残している。燃焼試験後の本発明による蛭石ラメラから成る蛭石シートが、本発明以外の方法により蛭石を焼成して膨積させて得た蛭石ラメラから成る蛭石シートと同じ結晶のX線回折パターンを示すことから、燃焼により一種のセラミックシートに変化したと考えられる。このことからも本発明による蛭石ラメラから成る蛭石シートが焼結性を有していることが証明された。
【0021】
4)イオン交換性
本発明による蛭石ラメラから成る蛭石シートにはイオン交換性が依然として保持されている。該蛭石シートは例えば、通常のイオンに対しては 約180meq/100g(蛭石シートの重量)、特にアンモニウムイオンに対しては約280meq/100g(蛭石シートの重量)の高イオン交換容量を示す。これはアンモニアガスに換算すると、該シート約100gが約4.8gのアンモニアガスを吸着することになる。したがって該蛭石シートは通常公知のアンモニアガスの吸着剤よりも優れていることになる。
【0022】
5)水分呼吸性
本発明による蛭石ラメラを粉砕したものと蛭石を粉砕したものを比較するとほとんど特性の差はない。本発明による蛭石ラメラ100%から成る蛭石シートを粉砕して(測定の都合上)その水分呼吸性を分析したところ、図3の結果が得られた。図3の結果から本発明による蛭石ラメラから成る蛭石シートが水分呼吸性を有することが分かる。尚、蛭石ラメラの吸脱着等温線はBET法に基づいて得られた。
【0023】
【実施例】
以下に本発明を実施例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。
【0024】
〔実施例1〕
ポリエチレン製袋に南アフリカ産蛭石2号(X線回折法により分析した結果、バーミキュライト(vermiculite)、ホロゴパイト(phologopite)、バーミキュライト50重量%−ホロゴパイト50重量%の混合層、バーミキュライト35重量%−ホロゴパイト65重量%の混合層から成ることを確認)10kg(嵩比重1.0)と粉末五酸化リン500gとを加え振動させて均一化した。その後、蛭石の表面に艶が出て、蛭石が黒ずんできた。約3時間放置すると、黒ずみ、乾燥した蛭石が得られた(蛭石処理物)。この時点では五酸化リンの白い粉末を確認することはできず、蛭石処理物の体積が蛭石の体積より20%増加し、蛭石処理物の嵩比重が0.87であった。
次いで、ポリエチレン製袋に上記の体積が20%増加した蛭石処理物1.05kgを採取し、これに35重量%の過酸化水素水120mlを加えて均一に攪拌すると蛭石処理物が膨積を開始し、4時間後に蛭石処理物の膨積が停止した(層間剥離蛭石)。この時点の層間剥離蛭石の体積は10.5リットル、重量は1.18kg、嵩比重は0.112であった。別にポリエチレン製袋に蛭石処理物1.05kgを採取して、35重量%過酸化水素水150mlを加え、軽く口を閉めて、500kw電子レンジで1分間加熱すると膨積を開始した。膨積終了後の体積は12.0リットル、重量は1.14kg、嵩比重は0.095であった(層間剥離蛭石)。100リットル容量のポリバケツに90リットルの水を入れ、これに上記のように35重量%過酸化水素水で処理後電子レンジで1分間加熱して膨積させた層間剥離蛭石1.14kgを投入し撹拌すると、上部に層間剥離蛭石が浮上し、不純物成分が沈殿した。浮上した層間剥離蛭石を掬い上げて別に用意した10リットルの水の中に投入し、撹拌するとこの層間剥離蛭石が剥離、崩壊して生じた蛭石ラメラが水に分散し、蛭石ラメラから成るpH5、蛭石ラメラ5重量%の蛭石スラリーが得られた。上部に浮上した層間剥離蛭石を掬い上げた残液のpHは2、沈殿した不純物は母岩の輝石類および膨積しなかったフロゴパイト等であった。これら不純物の重量は0.287kgであった。上記蛭石スラリーを150ml採取し、さらに350mlの水をこれに添加し、家庭用のミキサーで1分間攪拌し、さらに水を添加して全量を5リットルとした蛭石スラリーを製紙試験機(T.S.S.式標準角型シートマシン、株式会社東洋精機製作所製)で抄造することによって蛭石シートを作製した。この蛭石シートを濾紙に移して乾燥すると、蛭石ラメラのみから成る蛭石シートが得られた。このシートの坪量は89.7g/mであった。
【0025】
〔実施例2〕
福島県田村郡の国産の蛭石(X線回折法により分析した結果、結晶度の低いハイドロ−バイオタイト「hydro−biotite」であることを確認)100gを塩ビ製の籠に入れたものを予め用意し、これを底部に発煙硫酸および硫黄粉末を入れたデシケーター内に中吊りにして蓋を閉めた。この状態で2日間放置すると、蛭石が三酸化硫黄を吸収して体積が30%増加し、重量が105gになった(蛭石処理物)。この間蛭石処理物は乾燥した状態であった。この蛭石処理物に30重量%過酸化水素水20mlを加えると30秒後に膨積し始めて、さらに5分後にはその体積が1.1リットルになった。別に、同産地の蛭石100gを600℃に加熱したところその体積が同じく1.1リットルになった。加熱による焼成をした層間剥離蛭石(焼成膨積蛭石と称す)は金茶色の金雲母となり、過酸化水素水によって膨積させた層間剥離蛭石(化学的膨積蛭石と称す)は金緑黒色の金雲母であった。両膨積蛭石の特性を比較すると下表のようになった。
【0026】
【表3】
Figure 2004269292
【0027】
上記層間剥離蛭石(化学膨積蛭石)を1リットルの水に投入して攪拌すると化学膨積蛭石が剥離、崩壊して蛭石ラメラが水に分散し、不純物である白色の長石成分が沈殿した。分散液をデカンテーションにて分離して蛭石ラメラから成る蛭石スラリーを得た。一方焼成膨積蛭石を同量の水に投入して攪拌すると蛭石層が細かく剥離、崩壊して不純物と共に沈殿した。上記化学膨積蛭石の場合のように蛭石ラメラから成る蛭石スラリーを分離することは不可能であった。内容積10cm×7cm×0.5cmの石膏型または底に直径1mmの穴を無数設けたポリエチレン製容器に上記の化学膨積蛭石から得た蛭石ラメラ5重量%の蛭石スラリーを流し込み、乾燥させて厚み2mmの蛭石シートを得た。この蛭石シートは可撓性を持っていて、湿らせた後ガラス棒に巻きつけて乾燥することによって不燃性紙管が得られた。
【0028】
〔実施例3〕
ジンバブエ産蛭石ミディアムグレード(X線回折法により分析の結果、純粋のバーミキュライトであることを確認)100gに硫酸5gを添加して十分蛭石に吸収させた後、ヒドラジン5gを加えるとやや発熱して、蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物サンプルを2個作り、一方に35重量%過酸化水素水10mlを添加すると激しく反応して蛭石処理物が膨積して、体積が蛭石の12倍〜15倍に膨積した(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、この層間剥離蛭石が蛭石の本来有する特性を失わず保持していた。他方の上記層間剥離蛭石サンプルに過酸化水素水の代わりにヒドラジン水和物をさらに10g添加すると体積が蛭石の8倍に膨積した(層間剥離蛭石)。次いでヒドラジン水和物を追加添加して膨積させた上記の層間剥離蛭石を200℃に加熱すると爆発的に膨積して、体積が蛭石の15倍に増大した。この15倍に増大した層間剥離蛭石をX線回折法により分析した結果、蛭石の本来有する特性を失わず保持したままであるが、ホロゴパイト−バーミキュライト混合層に変化していた。
これら両者の層間剥離蛭石を各々多量の水の中に投入し、撹拌すると各々層間剥離蛭石が浮上した。各々の層間剥離蛭石を掬い取った。掬い取った各々の層間剥離蛭石を各2リットルの水に投入して攪拌することにより、各々の層間剥離蛭石が剥離、崩壊して蛭石ラメラが水に分散し、5重量%の蛭石ラメラから成る蛭石スラリーを得た。このようにして得た両者の蛭石ラメラから成る蛭石スラリー各200mlを採取し、各5リットルの水に投入して分散後、実施例1で用いた抄紙試験機により抄紙し、乾燥した蛭石シートを得た。各々の層間剥離蛭石、得られた蛭石スラリーおよび蛭石シートを分析し、下記のような結果を得た。
【0029】
【表4】
Figure 2004269292
ガスバリアー性:上記の官能検査に基づいて行った(図1参照)。
【0030】
〔実施例4〕
南アフリカ、パラボラ産の蛭石(X線回折法により分析の結果、ハイドロ−フロゴパイト「hydro−phlogopite」であることを確認」の半透明な赤茶褐色の鉱物片5gを採取し、これを1cm程度の小片に細断した。細断後の小片の厚みは0.4mm、嵩比重1.2程度であった。これをポリエチレン製小袋に投入し、次いで五酸化燐300mgを添加して袋内で攪拌した。密封して24時間放置すると、五酸化燐の白色粉末が消失して、やや黒ずんだ茶褐色の小片群(嵩比重1.0)となった(蛭石処理物)。これに0.5mlのヒドラジン水和物を加えて均一に湿らせると、嵩比重0.8の乾燥した褐色で光沢のあるさらに膨積した層間剥離蛭石を得た。別のポリエチレン小袋にこのさらに膨積した層間剥離蛭石を移し換えて、35重量%過酸化水素水1.0mlを添加し均一に混合した。その数分後層間剥離蛭石が発熱して、体積が50mlまで膨積した(層間剥離蛭石)。この間、層間剥離蛭石の小片の厚みは0.4mmから見掛け上2〜4cmのアコーデオン状に膨積した。このように膨積した層間剥離蛭石をX線回折により分析した結果、蛭石が本来有する特性を失わず保持していた。膨積した層間剥離蛭石の小片を500mlの水の中に投入して家庭用のジューサーミキサーで2分間攪拌すると、層間剥離蛭石の層が剥離、崩壊して2mm角、厚み1μm程度の蛭石ラメラから成る蛭石スラリーが得られた。この蛭石スラリーは比較的簡単に蛭石ラメラの沈降を起こすので、例えば分散助剤トリポリリン酸ナトリウム50mgをこの蛭石スラリーに添加した。この蛭石スラリーにさらに1gの牛乳パックの破片と市販のポバール糊1mlを添加して家庭用のジューサーミキサーを用いて攪拌し、竹製の簾の子にブロードの生地を張りつけた濾過布で濾過後乾燥することによって蛭石シートを得ることができた。
【0031】
〔実施例5〕
以下に示した中国産の3種類の蛭石を用いて化学処理を行い蛭石ラメラからなる蛭石スラリーを得て、これを抄造して蛭石シートを作製した。3種類の蛭石の結晶種、処理条件、蛭石スラリーおよび蛭石シートの性能について下表に示す。
(1)新彊産蛭石
新彊産蛭石 (X線回折法により分析した結果、バーミキュライト−ホロゴパイト混合層であることを確認)100gを採取し、これに硫酸4gを添加して充分吸収させた後、ヒドラジン2gを添加すると発熱して蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物に35重量%過酸化水素水20mlを添加すると激しく蛭石処理物と反応して蛭石処理物の体積がさらに膨積して蛭石の14倍になった(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、蛭石が本来有する特性を保持していた。この層間剥離蛭石を多量の水の中に投入し、撹拌することにより層間剥離蛭石が浮上し、不純物が沈殿した。浮上した層間剥離蛭石を掬い取った。この際、沈殿した不純物をデカンテーション法で分離して不純物を定量した。掬い取った層間剥離蛭石を2リットルの水に投入し、撹拌し層間剥離蛭石を剥離、崩壊させて得た蛭石ラメラから成る蛭石スラリーを得た。このようにして得た蛭石スラリー200mlを採取し、5リットルの水に投入して分散させた後、実施例1で用いた製紙試験機により抄造し、乾燥後蛭石シートを得た。
(2)河南省産黒蛭石
河南省産黒蛭石(X線回折法により分析した結果、ハイドロ−バイオタイトであることを確認)100gを採取し、これに五酸化燐5gを添加して充分吸収させると蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物に35重量%過酸化水素水20mlを添加すると激しく蛭石処理物と反応して蛭石処理物がさらに膨積して蛭石の体積が10倍になった(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、蛭石が本来有する特性を保持していた。この層間剥離蛭石を多量の水の中に投入し、撹拌することにより層間剥離蛭石が浮上し、不純物が沈殿した。浮上した層間剥離蛭石を掬い取った。この際、沈殿した不純物をデカンテーション法で分離して不純物を定量した。掬い取った層間剥離蛭石を2リットルの水に投入し、撹拌し層間剥離蛭石を剥離、崩壊させて得た蛭石ラメラから成る蛭石スラリーを得た。このようにして得た蛭石スラリー200mlを採取し、5リットルの水に投入して分散させた後、実施例1で用いた製紙試験機により抄造し、乾燥後蛭石シートを得た。
(3)河南省産白蛭石
河南省産白蛭石(X線回折法により分析した結果、バーミキュライト「ハイドロクロライト(hydro−chrolite)崩れ」であることを確認)100gを採取し、これに五酸化燐3gを添加して振動させて均一化した。次いでアジ化ナトリウム2gを添加すると蛭石の体積が1.5倍になった(蛭石処理物)。この蛭石処理物に35重量%過酸化水素水20ml添加すると激しく蛭石処理物と反応して蛭石処理物がさらに膨積して蛭石の体積が9倍になった(層間剥離蛭石)。この層間剥離蛭石をX線回折法により分析した結果、蛭石が本来有する特性を保持していた。この層間剥離蛭石を多量の水の中に投入し、撹拌することにより層間剥離蛭石が浮上し、不純物が沈殿した。浮上した層間剥離蛭石を掬い取った。この際、沈殿した不純物をデカンテーション法で分離して不純物を定量した。掬い取った層間剥離蛭石を2リットルの水に投入し、撹拌し層間剥離蛭石を剥離、崩壊させて得た蛭石ラメラから成る蛭石スラリーを得た。このようにして得た蛭石スラリー200mlを採取し、5リットルの水に投入して分散させた後、実施例1で用いた製紙試験機により抄造し、乾燥後蛭石シートを得た。
【0032】
【表5】
Figure 2004269292
(1)=@、>@および<@は南アフリカパラボラ産の蛭石を化学処理により膨積した蛭石ラメラから成る蛭石スラリーおよび該スラリーを抄造した蛭石シートを実施例1に基づいて作製した蛭石シートとの比較を意味する。(@は実施例1で作製した蛭石スラリーの分散安定性およびシートの柔軟性の性能レベルを意味する)
(2)ガスバリアー性:上記の官能検査に基づいて行った(図1参照)。
(3)蛭石スラリーの分散安定性:目視検査による。
【0033】
【発明の効果】
蛭石を親水性層間侵入剤で処理した蛭石本来の特性を保持した蛭石処理物および該蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により該蛭石処理物をさらに加熱した蛭石本来の特性を保持した層間剥離蛭石、該層間剥離蛭石を崩壊させて得た高アスペクト比、不燃性およびソフト性等に富んだ蛭石本来の特性を保持した高純度の蛭石ラメラからなる良好な水分散性蛭石スラリーおよび該蛭石スラリーを抄造してなる水分呼吸性、ガスバリアー性および不燃性等の蛭石本来の特性を保持した蛭石シートを提供することができる。
【図面の簡単な説明】
【図1】ガスバリアー性を検査する装置。
【図2】不燃性を測定する方法。
【図3】蛭石吸脱着等温線。
【符号の説明】
1 試験蛭石シート
2 ガス源となる化合物
3 ガラス容器
4 キャップ
5 試験蛭石シート
6 洗濯バサミ
7 ガスバーナー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a processed vermiculite obtained by treating vermiculite with a hydrophilic interlayer invading agent, a delaminated vermiculite obtained by treating the processed vermiculite with a gas-generating delamination expanding agent, and contains the delaminated vermiculite and water. The present invention relates to a vermiculite slurry (dispersion liquid) and a vermiculite sheet formed from the vermiculite slurry.
[0002]
[Prior art]
It is known that vermiculite, a natural hydrous silicate mineral, can be multiplied many times by aqueous salts. Next, the expanded vermiculite is delaminated by the shearing force, and as a result, individual particles or lamellar (fine scale) constituting vermiculite are obtained. These lamellas are known to be lightweight, heat insulating, sound absorbing, non-flammable, and also have a high aspect ratio (length or width of lamella divided by lamella thickness). Utilizing the characteristics of limestone lamella as a raw material, it is processed into various forms such as paper / films, laminates, paints, foams, and other articles (eg, gaskets) to be used as building materials, heat insulation materials, packing materials, etc. It is used for many purposes. In Japan, vermiculite (vermiculite) is a generic term for mica minerals having water of crystallization, and refers to hydrated silicate minerals that accumulate like accordion when this layered mineral piece is fired at a temperature close to 1000 ° C. . However, various types of vermiculite exist depending on the place of origin, and hydrated weathered mica such as phlogopite and hydro-biotite, original vermiculite, weathered hydro-chlorite, etc., and a mixture of these mineral species including mica Layer minerals are known. After delaminating and reducing the size of the individual particles or lamellae that make up the expanded vermiculite to a colloidal size, it is not possible to make a flexible sheet of the vermiculite particles or lamellae. It is already known (Patent Documents 1 and 2). Since the swelling during the processing of vermiculite has a large effect on the physical properties, such as flexibility and strength, of the molded article manufactured from the vermiculite lamella that has been adjusted to an appropriate size thereafter, Various proposals have been made regarding the swelling method.
[0003]
The proposed methods for expanding vermiculite are: 1) Firing method: a method of calcining vermiculite in a furnace generally near 1000 ° C (physical vermiculite weathering-in this case, vermiculite has already been altered. And 2) peroxide method: a completely wet type delamination method in which vermiculite is expanded using a peroxide such as hydrogen peroxide solution (Patent Document 3), 3) Ion exchange method: Li+, NH4 +And a method in which amines are inserted between layers of vermiculite by ion exchange to cause swelling (can only be performed by a wet method) (Patent Document 4) and the like. According to the firing method 1), vermiculite can be easily expanded, but a furnace must be installed for that purpose. In addition, vermiculite obtained after firing is turned into a ceramic, and vermiculite containing a large amount of iron is melted and vitrified, and the good properties inherent in vermiculite are lost, and this is used as a raw material. Products are unlikely to be unique. Regarding the peroxide method 2), the cost for swelling is high because the chemical agent as a treating agent is expensive. Regarding the ion exchange method 3), an electrolyte solution must be used for ion exchange. In addition, since the ion exchange time is long depending on the ion species, a large storage tank is required. In addition, there is a disadvantage that clay products which are difficult to dry must be dried at a low temperature when commercialized. Since the electrolyte remains in the waste liquid, a large-scale system is required. Therefore, the expanded vermiculite (in the present invention, the vermiculite is referred to as a hydrophilic interlayer) having the original properties of vermiculite (meaning the vermiculite ore which is a starting material in the present invention) is highly efficient and economically advantageous. The treated vermiculite treated with an invasive agent and the treated vermiculite are treated with a gas-generating delamination expanding agent, and if necessary, the treated vermiculite is delaminated vermiculite.) A vermiculite slurry (dispersion liquid) comprising vermiculite lamella having original properties obtained by disintegrating vermiculite and a vermiculite sheet obtained by forming the vermiculite slurry and having vermiculite original properties are still being developed. It has not been.
[0004]
[Patent Document 1]
British Patent No. 1016385 (Claims 1 and 2)
[Patent Document 2]
British Patent No. 1119305 (Claim 1)
[Patent Document 3]
Japanese Patent Publication No. 55-6600 (Claim 1)
[Patent Document 4]
JP-B-59-11547 (Claim 1)
[0005]
[Problems to be solved by the invention]
Vermiculite treated with a hydrophilic interlayer intrusion agent, vermiculite treated material retaining the original properties of vermiculite, and treated vermiculite treated with a gas-generating delamination expanding agent, and if necessary, further processed vermiculite Exfoliated vermiculite retaining the original properties of heated vermiculite, high aspect ratio obtained by collapsing the exfoliated vermiculite, high purity of non-flammable and soft, retaining the original properties of vermiculite rich in softness, etc. Provided is a good water-dispersible vermiculite slurry comprising vermiculite lamella and a vermiculite sheet obtained by paper-making the vermiculite slurry, which retains the essential properties of vermiculite such as water respiration, gas barrier properties and non-combustibility. With the goal.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the various problems described above with the methods developed so far, and as a result, retained the original properties of vermiculite obtained by treating vermiculite with a hydrophilic intercalation agent. The processed vermiculite and the processed vermiculite are treated with a gas-generating delamination swelling agent, and the vermiculite processed material is further heated as required. Good water-dispersible vermiculite slurry consisting of high-purity vermiculite lamella retaining the original properties of vermiculite rich in high aspect ratio, non-combustibility and softness obtained by collapsing vermiculite and vermiculite slurry The vermiculite sheet, which is made from paper and retains the original properties of vermiculite such as moisture respiration, gas barrier properties, and noncombustibility, solves the various problems described above, and has been further studied. The invention has been completed.
[0007]
That is, the present invention
(1) vermiculite treated material obtained by treating vermiculite with a hydrophilic interlayer intrusion agent;
(2) the hydrophilic intercalation agent is (a) a phosphorus oxide, (b) a sulfur oxide, (c) a mixture of an inorganic acid and a compound which forms a double salt thereof, (d) a metal sulfate, (e) The processed vermiculite according to (1), which is a heteropolyacid or (f) pyrogallol.
(3) A delaminated vermiculite obtained by treating the vermiculite treated product according to (1) or (2) with a gas-generating delamination expanding agent and, if desired, further heating the treated product.
(4) a vermiculite slurry comprising the delaminated vermiculite according to (3), water and, if desired, a water-soluble adhesive, pulp or inorganic pulp;
(5) A vermiculite sheet obtained by papermaking the vermiculite slurry according to (4),
About.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The vermiculite is pre-treated with a hydrophilic intercalation agent. The layers of vermiculite are occupied by cations and water, and the cations between the layers are generally Mg++And K+Focusing on the fact that is mainly replaced easily with external cations (or molecules), treatment of vermiculite with a hydrophilic interlayer intrusion agent results in K+Hydronium ion having the same ionic radius as+Is generated, and this is the cation K between the layers of the vermiculite+, Mg++At the same time as ion exchange, the anion of a size large enough to be taken in between the vermiculite layers is formed in an attempt to dehydrate the water of crystallization between the vermiculite layers. Becomes brittle. As a hydrophilic intercalation agent, for example, when phosphorus pentoxide is brought into contact with vermiculite, crystal water oozes out in the initial stage and vermiculite shows a wet state. The vermiculite appears dry and the vermiculite layers expand, increasing the volume of the vermiculite. The vermiculite treated and expanded by the hydrophilic intercalation agent is referred to as a vermiculite treated product, and a chemical substance such as phosphorus pentoxide that causes the vermiculite to expand is referred to as a hydrophilic intercalation agent.
[0009]
Phosphorus oxides such as phosphorus pentoxide (phosphoric anhydride), polyphosphoric acid, phosphorous chloride, phosphorous hexafluoride, phosphorous oxychloride, hydrogen sulfide, sulfur powder, liquid Sulfur, sulfuric anhydride, fuming sulfuric acid, sulfurous anhydride, thiosulfuric anhydride, sulfuric acid group such as sulfuric acid + liquid sulfur, concentrated sulfuric acid + nitroglycerin, concentrated sulfuric acid + ethanolamine, sulfuric acid + hydrazine, phosphoric acid + hydrazine, nitric acid + ethanolamine A mixture of an inorganic acid and a compound which forms a double salt with the same, metal sulfates such as anhydrous hydronium sulfate aluminum (hydronium alunite structure), hydronium iron sulfate sulfate (anhydrosite jarosite structure), anhydrous alum, chromium sulfate, and phosphomolybdenum Examples thereof include heteropoly acids such as acid, silica molybdic acid, phosphotungstic acid, and silica tungstic acid, and pyrogallols. Of these, phosphorus pentoxide (phosphoric anhydride), hydrogen sulfide, fuming sulfuric acid and sulfuric acid + hydrazine are preferred as hydrophilic intercalation agents.
[0010]
As a hydrophilic intercalation agent, hydronium ion+And the formation of anions having a size that has a dehydrating effect and can penetrate between the layers of vermiculite. The hydrophilic intercalation agent may be a single compound or a mixture of an inorganic acid and a compound that forms a double salt with the inorganic acid. As a method of bringing a hydrophilic intercalation agent into contact with vermiculite, when the hydrophilic intercalant is a powder, it may be simply mixed with vermiculite. For example, as described above in the case of using phosphorus pentoxide as a hydrophilic intercalation agent, in the initial stage, vermiculite looks wet, and then immediately becomes dry again, and becomes dark and vermiculite volume. An increase is found. When the hydrophilic intercalation agent is a liquid, a predetermined amount of the hydrophilic intercalation agent may be added to the vermiculite according to the desired degree of expansion of the vermiculite, but the processed vermiculite is kept in a dry state. Therefore, it is preferable that the hydrophilic intercalation agent is divided into several degrees and added to vermiculite to be treated in a dry state. The amount of the hydrophilic interlayer intrusion agent to be added is usually preferably about 0.0001 to 2 mol per 100 g of vermiculite, and more preferably about 0.0001 to 0.005 mol per 100 g of vermiculite. If a larger vermiculite lamella is to be obtained, if desired, more hydrophilic interpenetrating agent can be added.
[0011]
Next, the processed vermiculite is treated with a gas generating delamination swelling agent. When a gas-generating delamination swelling agent, such as hydrogen peroxide, is added to the vermiculite treatment, the hydrogen peroxide is absorbed between the layers of the vermiculite treatment as a kind of desiccant, and the hydrogen peroxide is decomposed. The layers of the processed vermiculite are expanded by the generated oxygen, the layers of the processed vermiculite are peeled off, and the layers of the processed vermiculite are expanded while maintaining the dry state. In order to expand the processed vermiculite, physical operations such as heating including spontaneous heating, electromagnetic wave heating, high-frequency heating, ultrasonic heating, and radiation irradiation can be further applied to the processed vermiculite. In this case, the heating temperature is preferably 400 ° C. or lower, more preferably 200 ° C. or lower. The expanded vermiculite obtained by treating the vermiculite in this manner is referred to as delaminated vermiculite, for example, a chemical such as hydrogen peroxide that further expands the vermiculite. The material is referred to as a gas generating delamination swelling agent. Examples of the gas generating delamination swelling agent include peroxide, hydrazine and azide. As the peroxide, for example, aqueous hydrogen peroxide, organic peroxides (organic acid peroxide, organic ketone peroxide, etc.), peroxide adducts (carbamate, sodium perborate, sodium percarbonate and peroxides) Calcium oxide and the like). As for the liquid or paste-like aqueous hydrogen peroxide and the organic peroxide, these may be simply mixed with the vermiculite treatment product. In the case of peroxide adducts, which are generally in the form of powder, simply mixing these with the vermiculite treated product usually reacts with the water of crystallization of the vermiculite treated product to generate gas, thereby forming a layer of the vermiculite treated product. When the expansion of the layer of the processed vermiculite does not progress very much, the further expansion of the layer of the processed vermiculite can be promoted by adding a small amount of water. Examples of the hydrazine include hydrazine monohydrate, which is generally in liquid form, and hydrazine sulfate, hydrazine phosphate, and hydrazine nitrate which are generally in powder form. In the case of these powdered salts, if the swelling of the layer of the vermiculite treatment does not progress very much, a small amount of water is added to the vermiculite treatment as in the case of the peroxide, so that the vermiculite treatment is reduced. Further swelling of the layer can be promoted. Examples of the azide salt include lithium azide, sodium azide, and the like. All of these are powders and are simply mixed with the processed vermiculite, and are generated by reacting with vermiculite crystal water or moisture. The gas causes the layer of the processed vermiculite to swell. Of these, hydrazine and hydrogen peroxide are preferred as the gas generating delamination swelling agent. In the case of a powdery gas-generating delamination swelling agent, it is generally preferable that the gas-generation delamination swelling agent be used in a liquid form, and these may be used by dissolving them in water. If too much is used, the heat is lost during the expansion of the vermiculite treated material, so that it is not efficient in the treatment process and the reaction becomes wet and the reaction rate is slowed down. Is not preferred. For example, in the case of a hydrogen peroxide solution, one having a concentration of about 5 to 35% by weight is usually used. The addition amount of these gas-generating delamination swelling agents is usually preferably about 0.04 to 1.00 mol per 100 g of the processed vermiculite. It is not preferable to add the gas-generating delamination swelling agent more than necessary in excess of about 1.00 mol to 100 g of the vermiculite treated product for the above-mentioned reason. The present invention relates to the addition of a hydrophilic interpenetrating agent to vermiculite or to the addition of a gas-generating delamination expanding agent to a vermiculite treatment, and also to the addition of these hydrophilic intercalating agents. Even when the form of the gas-generating delamination swelling agent is a liquid, since the reaction resulting from the impregnation and absorption of these chemicals between the layers of vermiculite or vermiculite is used, Both the stone-treated product and the exfoliated vermiculite are obtained as dried products which are expanded in an accordion state. The expanded vermiculite according to the present invention is a vermiculite that has been fired and expanded, or a vermiculite that is obtained by expanding the vermiculite with only hydrogen peroxide solution and drying. Has surface area. This is because an anion or a salt thereof is contained between the vermiculite layers according to the present invention. The exfoliated vermiculite according to the present invention can be identified by analysis by X-ray diffraction or measurement of the specific surface area.
[0012]
According to the present invention, in a state of being dried at room temperature instead of a wet type, a hydrophilic interpenetrating agent is sufficiently penetrated into a vermiculite layer to obtain a vermiculite treatment product, and then a gas-generating delamination expanding agent is added to the vermiculite treatment product. The delaminated vermiculite expanded in the accordion state obtained by treating it in a dry state at room temperature to cause delamination to a greater depth is poured into a large amount of water to form a layer of delaminated vermiculite. Is peeled off and collapsed to obtain a vermiculite slurry composed of a thin vermiculite lamella having a large aspect ratio and a thickness of about 0.1 μm. The exfoliated vermiculite obtained according to the present invention floats in the water at the initial stage of being introduced into water because gas still remains between the layers of the exfoliated vermiculite. During that time, impurities such as host rock and unexpanded mica contained in the delaminated vermiculite rapidly settle, so only the floating delaminated vermiculite is scooped or separated by the decantation method. As a result, only high-purity exfoliated vermiculite from which impurities have been removed can be obtained. Subsequently, the high-purity separated exfoliated vermiculite from which the impurities have been removed is simply agitated in water, and water invades between the layers of the exfoliated vermiculite and has a size substantially equal to that which was once present in the vermiculite layer. A vermiculite slurry with good dispersibility consisting of vermiculite lamella while maintaining the same is obtained. The present invention provides a process of treating vermiculite with a hydrophilic interlayer invading agent, and then treating the vermiculite treated material with a gas-generating delamination expanding agent to form a delaminated vermiculite, rather than a wet process. It is characterized in that it is performed in a state where it is performed. Further, the present invention is characterized in that the vermiculite slurry is composed of high-purity vermiculite lamella. When the obtained vermiculite slurry is passed through a colloid mill having a structure in which a grindstone rotates and grinds particles, a paste-like vermiculite slurry composed of vermiculite lamella of reduced size is obtained. Use a vermiculite slurry in which the water content is reduced as much as possible by adding a dispersing aid such as sodium tripolyphosphate to these vermiculite slurries or by adding a flocculant such as polyethylene oxide and polyacrylamide. You can also. Adjustment of the amount of drainage of the vermiculite slurry by using these dispersing aids and coagulants at the time of preparing a sheet described later from the vermiculite slurry is the same as in the case of a generally known papermaking method. When a molded product is produced from the vermiculite slurry by a casting method, or when the molded product is baked to be ceramicized, methylcellulose or the like as a plasticizer may be added to the vermiculite slurry to impart plasticity. Yes, this is the same as in the case of generally known ceramic production. The vermiculite slurry obtained by the present invention has the following features.
[0013]
Characteristics of vermiculite slurry:
1) The dispersion consists of vermiculite lamella with a high aspect ratio.
(The dispersion obtained by firing and expanding the vermiculite other than the present invention is changed to mica or vitrified.)
2) Since the surface of the dispersion has a large amount of hydroxyl groups, the dispersion is easily dispersed in water.
(The dispersion obtained by firing and expanding the vermiculite other than the present invention floats on the water surface or precipitates.)
3) The dispersion is soft.
(The dispersion obtained by firing and expanding the vermiculite other than the present invention is hard and brittle.)
4) The dispersion retains ion exchange capacity.
(The dispersion obtained by firing and expanding the vermiculite other than the present invention does not have ion exchange capacity.)
5) The dispersion has breathability for moisture.
(A dispersion obtained by baking and expanding vermiculite according to a method other than the present invention does not have respirability to moisture.)
6) The shape of the dispersion is flat.
(The shape of the dispersion obtained by firing and expanding the vermiculite other than the present invention is wavy.)
7) When the vermiculite slurry is filtered and dried, a vermiculite sheet can be formed by hydrogen bonding without hydrogen binder.
(If a vermiculite slurry made of a dispersion obtained by firing and expanding a vermiculite according to a method other than the present invention is filtered and dried, the dispersions do not bond with each other and thus become a simple powder.)
8) Sintering the vermiculite sheet obtained by filtering and drying the vermiculite slurry can produce a molded ceramic sheet.
(Even if a sheet obtained by firing and drying a vermiculite slurry composed of a dispersion obtained by sintering and expanding a vermiculite according to a method other than the present invention and sintering it is not a simple powder, it becomes a simple powder.)
[0014]
The vermiculite sheet is obtained by filtering and drying the vermiculite slurry according to the present invention through a mesh net that does not pass through the vermiculite lamella. Papermaking of the vermiculite sheet from the vermiculite slurry according to the present invention can be carried out by a generally known method of making Japanese paper. By simply drying the vermiculite sheet made from the vermiculite slurry according to the present invention, the vermiculite sheet is formed by the properties of vermiculite as a clay, the hydrogen bond between the water of crystallization and the hydroxyl group, particularly without using an adhesive. can do. As a result of analyzing the vermiculite sheet according to the present invention by the X-ray diffraction method, it can be confirmed that only the C-plane diffraction is observed and that the vermiculite sheet is completely oriented on the vermiculite sheet surface layer. The experiments described below proved that the vermiculite sheet also had gas barrier properties. Further, when the vermiculite sheet was heated to about 300 ° C. or higher, a sintered vermiculite sheet could be formed (as a result of analysis by the X-ray diffraction method, it was confirmed). At the time of mass production by a machine, since the wet strength of the vermiculite sheet is weak, it cannot withstand pulling after paper-making, and therefore, usually, for example, pulp, inorganic fibers, inorganic pulp such as sepiolite and palygorskite, a water-soluble binder, etc. Is added to the vermiculite slurry, thereby improving the wet strength of the vermiculite sheet and producing a long continuous vermiculite sheet. The above-mentioned pulp, inorganic fiber or inorganic pulp can be added to the vermiculite sheet according to the present invention in an amount of about 50% by weight or less, preferably about 20% by weight or less, more preferably about 10% by weight or less. Generally, when the fiber component is added at about 10% by weight or more, the gas barrier performance is lowered, and when the organic component is increased, the fire resistance is lowered. However, since the vermiculite sheet has a high gas barrier property, about 50% by weight of the organic material is reduced. Even when the components are added, the natural fire extinguishing performance is still maintained. The water-soluble binder can be added to the vermiculite sheet according to the present invention in an amount of 10 to 30% by weight, preferably 10 to 20% by weight. Further, according to a casting method generally used at the time of molding pottery, the above-mentioned vermiculite slurry is poured into a previously prepared mold and dewatered to produce a molded product having a predetermined form. Since the lamella of the vermiculite according to the present invention is soft, the casting method can be applied. By sintering the molded product thus produced, a ceramic molded product can be obtained. Examples of the inorganic fiber include glass fiber, quartz fiber, alumina-silica fiber, Tyranno fiber, carbon fiber, activated carbon fiber, alumina fiber, silicon carbide fiber, zirconia fiber, silicon carbide whisker, silicon nitride whisker, potassium titanate, and asbestos. No.
Examples of the water-soluble binder include starches such as oxidized starch, enzyme-modified starch, and cationized starch; water-soluble cellulose compounds such as carboxymethyl cellulose, methyl cellulose, and hydroxyalkyl cellulose; polyvinyl alcohol compounds and polyacrylamides.
[0015]
The vermiculite sheet according to the present invention is a vermiculite sheet formed from vermiculite lamella which retains the original performance of vermiculite obtained by exfoliating the vermiculite and exfoliating the vermiculite layer by chemical treatment or the like, It has the following performance.
1) Gas barrier properties
2) Non-flammable
3) Sinterability
4) Ion exchangeability
5) Water respiration
[0016]
Hereinafter, each will be described in detail.
1) Gas barrier properties
This will be described with reference to FIG.
Approximately 500 ml of a liquid 2 which easily generates gas is introduced into the container 3 to generate gas, and a gas leak is detected by a sensory test through a test sheet 1 attached to a circular hole at the center of the cap 4 of the container 3. confirmed. Alcohol, dry ice, acetic acid (a mixture of dry ice and a few drops of acetic acid added to alcohol), formalin alcohol solution (a solution of formaldehyde in alcohol), ammonia and caustic soda (ammonia) Water with caustic soda) and ethyl acetate, aluminum laminated paper as a test sheet, a sheet containing 100% by weight of vermiculite lamella, a sheet containing 90% by weight of vermiculite lamella, a sheet containing 80% by weight of vermiculite lamella, vermiculite lamella 70 Sheets containing weight percent and regular paper were used. The results were as shown in Table 1.
[0017]
[Table 1]
Figure 2004269292
(Note 1) Contents of test sheet (1): Aluminum laminated paper, (2): Vermiculite sheet containing 100% by weight of vermiculite lamella, (3): Vermiculite sheet containing 90% by weight of vermiculite lamella, (4): Vermiculite sheet containing vermiculite lamella 80% by weight, (5): vermiculite sheet containing vermiculite lamella 70% by weight, (6): regular paper
(Note 2) ◎: No smell, ○: Smell slightly, △: Smell very much, ×: Strong smell
[0018]
2) Non-flammable
This will be described with reference to FIG.
Each test sheet 5 was hung between clothespins 6, and a combustion test was performed with a burner 7 (about 1000 ° C.) from below the sheet. The results were as shown in Table 2.
[0019]
[Table 2]
Figure 2004269292
(Note 1) Contents of test sheet (1): Vermiculite sheet containing 100% by weight of vermiculite lamella (basis weight 100 g / m)22): Vermiculite sheet containing 90% by weight of vermiculite lamella (basis weight 100g / m)23): Vermiculite sheet containing 80% by weight of vermiculite lamella (basis weight 100 g / m)24): Vermiculite sheet containing 70% by weight of vermiculite lamella (basis weight 100 g / m)25): Vermiculite sheet containing 10% by weight of vermiculite lamella (basis weight 50 g / m)2)
[0020]
3) Sinterability
Aluminum hydroxide "Al (OH)32 is subjected to a combustion test as shown in FIG. 2, and after the combustion, it collapses into pieces without leaving a sheet form. In the vermiculite sheet comprising vermiculite lamella according to the present invention, for example, even a sheet to which pulp is added as much as 30% by weight retains its original sheet form, though it blackens after burning. However, in the case of a vermiculite sheet made of vermiculite lamella obtained by firing and expanding a vermiculite according to a method other than the present invention, the vermiculite sheet no longer retains its original sheet shape after burning. This is because the vermiculite lamella according to the present invention has sinterability. Due to swelling by chemical treatment, etc., the vermiculite lamella according to the present invention retains the hydroxyl groups of the water of crystallization and the silicic acid layer, and thus the vermiculite sheet comprising the vermiculite lamella according to the present invention is still sinterable. Is leaving. X-ray diffraction of the same crystal as the vermiculite sheet composed of vermiculite lamella obtained by firing and expanding the vermiculite by a method other than the present invention after the burning test. From the pattern, it is considered that the ceramic sheet was changed to a kind of ceramic sheet by combustion. This also proves that the vermiculite sheet comprising vermiculite lamella according to the present invention has sinterability.
[0021]
4) Ion exchangeability
The vermiculite sheet comprising vermiculite lamella according to the invention still retains ion exchangeability. The vermiculite sheet has a high ion exchange capacity of, for example, about 180 meq / 100 g (weight of vermiculite sheet) for ordinary ions, and particularly about 280 meq / 100 g (weight of vermiculite sheet) for ammonium ions. Show. When converted to ammonia gas, about 100 g of the sheet adsorbs about 4.8 g of ammonia gas. Therefore, the vermiculite sheet is generally superior to the known ammonia gas adsorbent.
[0022]
5) Water respiration
When the crushed vermiculite lamella of the present invention is compared with the crushed vermiculite, there is almost no difference in properties. When the vermiculite sheet composed of 100% vermiculite lamella according to the present invention was crushed (for convenience of measurement) and its water respirability was analyzed, the results shown in FIG. 3 were obtained. From the results shown in FIG. 3, it can be seen that the vermiculite sheet made of the vermiculite lamella according to the present invention has water respiration. The adsorption and desorption isotherms of the vermiculite lamella were obtained based on the BET method.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0024]
[Example 1]
Vermiculite, phologopite, mixed layer of 50% by weight of vermiculite-50% by weight of hologopite, 35% by weight of vermiculite-hologopite 65 10 kg (bulk specific gravity: 1.0) and 500 g of powdered phosphorus pentoxide were added, and the mixture was shaken to homogenize. After that, the surface of the vermiculite became shiny and the vermiculite became dark. When left for about 3 hours, darkened and dried vermiculite was obtained (treated vermiculite). At this point, no white powder of phosphorus pentoxide could be confirmed, the volume of the processed vermiculite increased by 20% from the volume of the vermiculite, and the bulk specific gravity of the processed vermiculite was 0.87.
Next, 1.05 kg of the above-mentioned 20% increased vermiculite treatment product was collected in a polyethylene bag, and 120 ml of 35% by weight hydrogen peroxide solution was added thereto and uniformly stirred, and the vermiculite treatment product was expanded. Was started, and after 4 hours, the expansion of the processed vermiculite was stopped (exfoliated vermiculite). At this time, the volume of the exfoliated vermiculite was 10.5 liters, the weight was 1.18 kg, and the bulk specific gravity was 0.112. Separately, 1.05 kg of the processed vermiculite was collected in a polyethylene bag, 150 ml of 35% by weight hydrogen peroxide solution was added, the mouth was lightly closed, and the mixture was heated for 1 minute in a 500 kW microwave oven to start swelling. The volume after the completion of the expansion was 12.0 liters, the weight was 1.14 kg, and the bulk specific gravity was 0.095 (exfoliated vermiculite). 90 liters of water is put into a 100 liter plastic bucket, and treated with 35% by weight of hydrogen peroxide as described above, and then heated for one minute in a microwave oven and expanded for 1.14 kg of delaminated vermiculite. When the mixture was stirred, the exfoliated vermiculite floated at the top, and the impurity component precipitated. The separated exfoliated vermiculite is scooped up, put into 10 liters of water separately prepared, and stirred. The exfoliated vermiculite is separated and collapsed, and the resulting vermiculite lamella is dispersed in water. A vermiculite slurry having a pH of 5 and a vermiculite lamella of 5% by weight was obtained. The pH of the remaining liquid obtained by scooping the exfoliated vermiculite floating on the top was 2, and the precipitated impurities were pyroxene of the host rock and phlogopite that did not expand. The weight of these impurities was 0.287 kg. 150 ml of the above-mentioned vermiculite slurry was collected, further 350 ml of water was added thereto, and the mixture was stirred for 1 minute with a household mixer, and further water was added to make a total volume of 5 liter vermiculite slurry into a paper making tester (T A vermiculite sheet was prepared by making a paper with a standard square sheet machine (S.S. type, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The vermiculite sheet was transferred to filter paper and dried to obtain a vermiculite sheet consisting solely of vermiculite lamella. The basis weight of this sheet is 89.7 g / m2Met.
[0025]
[Example 2]
100 g of domestically produced vermiculite in Tamura-gun, Fukushima Prefecture (confirmed to be low-crystallinity hydro-biotite "hydro-biotite" as a result of analysis by X-ray diffraction method) was placed in a PVC basket in advance. This was prepared, suspended in a desiccator containing fuming sulfuric acid and sulfur powder at the bottom, and the lid was closed. When left for 2 days in this state, the vermiculite absorbed sulfur trioxide, increased the volume by 30%, and weighed 105 g (treated vermiculite). During this time, the processed material from the vermiculite was in a dry state. When 20 ml of a 30% by weight aqueous hydrogen peroxide solution was added to the processed vermiculite, swelling started 30 seconds later, and the volume became 1.1 liters 5 minutes later. Separately, when 100 g of vermiculite from the same production area was heated to 600 ° C., the volume became 1.1 liters. The exfoliated vermiculite (fired expanded vermiculite) fired by heating becomes golden brown phlogopite, and the delaminated vermiculite (chemically expanded vermiculite) expanded with hydrogen peroxide solution is It was gold-green-black phlogopite. A comparison of the properties of both expanded vermiculite is shown in the table below.
[0026]
[Table 3]
Figure 2004269292
[0027]
When the exfoliated vermiculite (chemically expanded vermiculite) is put into 1 liter of water and stirred, the chemically expanded vermiculite is separated and collapsed, the vermiculite lamella is dispersed in water, and the white feldspar component as an impurity Precipitated. The dispersion was separated by decantation to obtain vermiculite slurry composed of vermiculite lamella. On the other hand, when the calcined expanded vermiculite was put into the same amount of water and stirred, the vermiculite layer was finely separated, collapsed, and precipitated together with impurities. It was not possible to separate vermiculite slurries consisting of vermiculite lamella as in the case of the chemically expanded vermiculite. A vermiculite slurry of 5% by weight of vermiculite lamella obtained from the above-mentioned chemically expanded vermiculite was poured into a gypsum mold having an inner volume of 10 cm × 7 cm × 0.5 cm or a polyethylene container provided with countless 1 mm-diameter holes in the bottom, After drying, a vermiculite sheet having a thickness of 2 mm was obtained. This vermiculite sheet was flexible, and after being moistened, wound around a glass rod and dried to obtain a noncombustible paper tube.
[0028]
[Example 3]
Zimbabwean vermiculite medium grade (confirmed pure vermiculite as a result of analysis by X-ray diffraction method) 100 g of sulfuric acid was added and absorbed by vermiculite sufficiently. As a result, the volume of the vermiculite was increased 1.5 times (the processed vermiculite). When two samples of this processed vermiculite were prepared and 10 ml of 35% by weight hydrogen peroxide solution was added to one of them, a vigorous reaction was caused to expand the processed vermiculite, and the volume expanded to 12 to 15 times that of vermiculite. (Peeled vermiculite). As a result of analyzing the delaminated vermiculite by an X-ray diffraction method, it was found that the delaminated vermiculite retained the inherent properties of the vermiculite. When another 10 g of hydrazine hydrate was added to the other delaminated vermiculite sample instead of the hydrogen peroxide solution, the volume expanded to eight times that of vermiculite (delaminated vermiculite). Then, the delaminated vermiculite, which had been expanded by adding hydrazine hydrate, was explosively expanded when heated to 200 ° C., and the volume increased to 15 times that of the vermiculite. As a result of analyzing the delaminated vermiculite increased by a factor of 15 by X-ray diffraction, it was found that while maintaining the properties inherent in vermiculite without losing it, it changed to a mixed layer of hologopite-vermiculite.
Each of these delaminated vermiculite was put into a large amount of water and stirred, and then the delaminated vermiculite floated. Each exfoliated vermiculite was scooped. Each scooped-up exfoliated vermiculite is poured into 2 liters of water and agitated, whereby each exfoliated vermiculite is exfoliated and collapsed, and vermiculite lamella is dispersed in water. A vermiculite slurry consisting of stone lamella was obtained. 200 ml of each of the vermiculite slurries comprising both vermiculite lamellas thus obtained were collected, poured into 5 liters of water, dispersed, then paper-formed by the paper machine used in Example 1, and dried. I got a stone sheet. The delaminated vermiculite, the obtained vermiculite slurry and the vermiculite sheet were analyzed, and the following results were obtained.
[0029]
[Table 4]
Figure 2004269292
Gas barrier property: Performed based on the sensory test described above (see FIG. 1).
[0030]
[Example 4]
5 g of a translucent reddish-brown mineral piece of parabolite, a parabola from South Africa (confirmed to be hydro-phlogopite as a result of analysis by X-ray diffractometry)2The pieces were cut into small pieces. The small piece after shredding had a thickness of 0.4 mm and a bulk specific gravity of about 1.2. This was charged into a polyethylene small bag, and then 300 mg of phosphorus pentoxide was added and stirred in the bag. When sealed and allowed to stand for 24 hours, the white powder of phosphorus pentoxide disappeared to form a slightly dark brown-brown small piece group (bulk specific gravity: 1.0) (processed vermiculite). When 0.5 ml of hydrazine hydrate was added thereto and uniformly moistened, a dry brown, glossy and further expanded delaminated vermiculite having a bulk specific gravity of 0.8 was obtained. The further expanded delaminated vermiculite was transferred to another polyethylene pouch, and 1.0 ml of 35% by weight hydrogen peroxide solution was added and mixed uniformly. A few minutes later, the exfoliated vermiculite generated heat and expanded to a volume of 50 ml (exfoliated vermiculite). During this time, the small pieces of the delaminated vermiculite swelled in an accordion shape with an apparent thickness of 2 to 4 cm from 0.4 mm. As a result of analyzing the delaminated vermiculite thus expanded by X-ray diffraction, the properties inherent to vermiculite were retained without loss. A small piece of the exfoliated vermiculite is put into 500 ml of water and stirred for 2 minutes with a household juicer mixer. A vermiculite slurry consisting of stone lamella was obtained. Since the vermiculite slurry causes the vermiculite lamella to settle relatively easily, for example, 50 mg of a dispersing aid, sodium tripolyphosphate, was added to the vermiculite slurry. To this vermiculite slurry, 1 g of milk pack fragments and 1 ml of commercially available poval glue were further added, and the mixture was stirred using a household juicer mixer, and filtered with a filter cloth in which a broad cloth was attached to a bamboo blind. By drying, a vermiculite sheet could be obtained.
[0031]
[Example 5]
The following three types of vermiculite produced in China were subjected to chemical treatment to obtain vermiculite slurry composed of vermiculite lamella, which was then formed into a vermiculite sheet. The following table shows the three types of vermiculite crystal species, treatment conditions, vermiculite slurry and vermiculite sheet performance.
(1) Xingjiang vermiculite
100 g of Xinjiang vermiculite (confirmed to be a mixed layer of vermiculite and hologopite as a result of analysis by X-ray diffraction method), and after adding 4 g of sulfuric acid to this and sufficiently absorbing it, adding 2 g of hydrazine Heat was generated, and the volume of the vermiculite was increased 1.5 times (the processed vermiculite). When 20 ml of 35% by weight hydrogen peroxide solution is added to the processed vermiculite, it reacts violently with the processed vermiculite to further increase the volume of the processed vermiculite to 14 times that of vermiculite (exfoliated vermiculite). stone). As a result of analyzing the delaminated vermiculite by X-ray diffraction, it was found that the vermiculite retained its inherent properties. The exfoliated vermiculite was put into a large amount of water and agitated, whereby the exfoliated vermiculite floated and impurities were precipitated. The floating delamination vermiculite was scooped. At this time, the precipitated impurities were separated by a decantation method to quantify the impurities. The scooped-up exfoliated vermiculite was poured into 2 liters of water, stirred to exfoliate and exfoliate the vermiculite vermiculite, and a vermiculite slurry comprising vermiculite lamella was obtained. 200 ml of the vermiculite slurry thus obtained was collected, poured into 5 liters of water and dispersed, then paper-formed using the papermaking test machine used in Example 1, and dried to obtain a vermiculite sheet.
(2) Black stone from Henan
100 g of Henan black vermiculite (confirmed to be hydro-biotite as a result of analysis by X-ray diffraction method) was added, and 5 g of phosphorus pentoxide was added to absorb 100 g of the vermiculite. 1.5 times (Veelite processed product). When 20 ml of 35% by weight hydrogen peroxide solution is added to the processed vermiculite, it violently reacts with the processed vermiculite to further expand the processed vermiculite, thereby increasing the volume of the vermiculite by 10 times. stone). As a result of analyzing the delaminated vermiculite by X-ray diffraction, it was found that the vermiculite retained its inherent properties. The exfoliated vermiculite was put into a large amount of water and agitated, whereby the exfoliated vermiculite floated and impurities were precipitated. The floating delamination vermiculite was scooped. At this time, the precipitated impurities were separated by a decantation method to quantify the impurities. The scooped-up exfoliated vermiculite was poured into 2 liters of water, stirred to exfoliate and exfoliate the vermiculite vermiculite, and a vermiculite slurry comprising vermiculite lamella was obtained. 200 ml of the vermiculite slurry thus obtained was collected, poured into 5 liters of water and dispersed, then paper-formed using the papermaking test machine used in Example 1, and dried to obtain a vermiculite sheet.
(3) Henan-produced leechite
100g of Henan-produced vermiculite (confirmed to be vermiculite "hydro-chlorite collapse" as analyzed by X-ray diffraction) and added with 3g of phosphorus pentoxide to shake And homogenized. Then, when 2 g of sodium azide was added, the volume of the vermiculite was increased 1.5 times (the processed vermiculite). When 20 ml of 35% by weight hydrogen peroxide solution is added to the processed vermiculite, it violently reacts with the processed vermiculite to further expand the processed vermiculite, thereby increasing the volume of the vermiculite nine times (exfoliated vermiculite). ). As a result of analyzing the delaminated vermiculite by X-ray diffraction, it was found that the vermiculite retained its inherent properties. The exfoliated vermiculite was put into a large amount of water and agitated, whereby the exfoliated vermiculite floated and impurities were precipitated. The floating delamination vermiculite was scooped. At this time, the precipitated impurities were separated by a decantation method to quantify the impurities. The scooped-up exfoliated vermiculite was poured into 2 liters of water, stirred to exfoliate and exfoliate the vermiculite vermiculite, and a vermiculite slurry comprising vermiculite lamella was obtained. 200 ml of the vermiculite slurry thus obtained was collected, poured into 5 liters of water and dispersed, then paper-formed using the papermaking test machine used in Example 1, and dried to obtain a vermiculite sheet.
[0032]
[Table 5]
Figure 2004269292
(1) = @,> @, and <@ are made on the basis of Example 1 from a vermiculite slurry made of vermiculite lamella obtained by expanding vermiculite from Parabola in South Africa by chemical treatment, and a vermiculite sheet formed from the slurry. Means a comparison with the excavated vermiculite sheet. (@ means the dispersion stability of vermiculite slurry prepared in Example 1 and the performance level of sheet flexibility)
(2) Gas barrier property: Performed based on the sensory test described above (see FIG. 1).
(3) Dispersion stability of vermiculite slurry: By visual inspection.
[0033]
【The invention's effect】
Vermiculite treated with a hydrophilic interlayer intrusion agent, vermiculite treated material retaining the original properties of vermiculite, and treated vermiculite treated with a gas-generating delamination expanding agent, and if necessary, further processed vermiculite Exfoliated vermiculite retaining the original properties of heated vermiculite, high aspect ratio obtained by collapsing the exfoliated vermiculite, high purity of non-flammable and soft, retaining the original properties of vermiculite rich in softness, etc. Provided is a good water-dispersible vermiculite slurry comprising vermiculite lamella and a vermiculite sheet obtained by paper-making the vermiculite slurry, which retains the essential properties of vermiculite such as water respiration, gas barrier properties and non-combustibility. Can be.
[Brief description of the drawings]
FIG. 1 shows an apparatus for inspecting gas barrier properties.
FIG. 2 is a method for measuring nonflammability.
FIG. 3 is a vermiculite adsorption / desorption isotherm.
[Explanation of symbols]
1 Test vermiculite sheet
2 Compounds serving as gas sources
3 glass container
4 caps
5 Test vermiculite sheet
6 Clothespin
7 Gas burner

Claims (5)

蛭石を親水性層間侵入剤で処理した蛭石処理物。Vermiculite treated material obtained by treating vermiculite with a hydrophilic intercalation agent. 親水性層間侵入剤が(イ)燐の酸化物、(ロ)硫黄酸化物、(ハ)無機酸とそれと複塩を形成する化合物の混合物、(ニ)金属硫酸塩、(ホ)ヘテロポリ酸または(ヘ)ピロガロール類であることを特徴とする請求項1記載の蛭石処理物。The hydrophilic interlayer intercalating agent is (a) an oxide of phosphorus, (b) a sulfur oxide, (c) a mixture of an inorganic acid and a compound which forms a double salt thereof, (d) a metal sulfate, (e) a heteropolyacid or (F) Pyrogallols, the processed vermiculite product according to claim 1, wherein 請求項1または2に記載の蛭石処理物をガス発生層間剥離膨積剤で処理し、所望により処理物をさらに加熱した層間剥離蛭石。A delaminated vermiculite, wherein the processed vermiculite according to claim 1 or 2 is treated with a gas-generating delamination expanding agent, and the processed material is further heated as required. 請求項3に記載の層間剥離蛭石と水と所望によりさらに水溶性接着剤、パルプまたは無機パルプを含有してなる蛭石スラリー。A vermiculite slurry comprising the delaminated vermiculite according to claim 3, water, and optionally a water-soluble adhesive, pulp or inorganic pulp. 請求項4に記載の蛭石スラリーを抄造してなる蛭石シート。A vermiculite sheet obtained by papermaking the vermiculite slurry according to claim 4.
JP2003059866A 2003-03-06 2003-03-06 Meteorite sheet Expired - Lifetime JP4349822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059866A JP4349822B2 (en) 2003-03-06 2003-03-06 Meteorite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059866A JP4349822B2 (en) 2003-03-06 2003-03-06 Meteorite sheet

Publications (2)

Publication Number Publication Date
JP2004269292A true JP2004269292A (en) 2004-09-30
JP4349822B2 JP4349822B2 (en) 2009-10-21

Family

ID=33122569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059866A Expired - Lifetime JP4349822B2 (en) 2003-03-06 2003-03-06 Meteorite sheet

Country Status (1)

Country Link
JP (1) JP4349822B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741074A (en) * 2015-04-07 2015-07-01 石河子大学 Method for preparing expanded vermiculite adsorbent
CN111573686A (en) * 2020-05-19 2020-08-25 陕西科技大学 Preparation method of vermiculite ultrafine powder
CN111655619A (en) * 2018-01-26 2020-09-11 穆尔工程系统有限公司 Insulating board
CN115231582A (en) * 2022-07-19 2022-10-25 西安交通大学 Two-dimensional montmorillonite large-size nanosheet stripping method
CN116196889A (en) * 2023-03-09 2023-06-02 西南科技大学 Toluene adsorbent prepared from industrial vermiculite and method and application thereof
US11964913B2 (en) 2018-01-26 2024-04-23 Mühl Engineering Systems Gmbh Insulation panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446643B (en) * 2014-10-29 2016-08-24 武汉艾迪创研科技有限公司 A kind of activation recovering agent of reducible space sand plain looks and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741074A (en) * 2015-04-07 2015-07-01 石河子大学 Method for preparing expanded vermiculite adsorbent
CN111655619A (en) * 2018-01-26 2020-09-11 穆尔工程系统有限公司 Insulating board
US11964913B2 (en) 2018-01-26 2024-04-23 Mühl Engineering Systems Gmbh Insulation panel
CN111573686A (en) * 2020-05-19 2020-08-25 陕西科技大学 Preparation method of vermiculite ultrafine powder
CN115231582A (en) * 2022-07-19 2022-10-25 西安交通大学 Two-dimensional montmorillonite large-size nanosheet stripping method
CN115231582B (en) * 2022-07-19 2023-12-19 西安交通大学 Two-dimensional montmorillonite large-scale-diameter nano sheet stripping method
CN116196889A (en) * 2023-03-09 2023-06-02 西南科技大学 Toluene adsorbent prepared from industrial vermiculite and method and application thereof

Also Published As

Publication number Publication date
JP4349822B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP5066766B2 (en) Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
JPS61286278A (en) Low density ceramic rotary ellipsoid and manufacture
JP5442601B2 (en) Expanded vermiculite forming method and compressed material manufacturing method
JP2019521071A (en) Method of manufacturing geopolymer or geopolymer composite
ES2369619T3 (en) RAW MATERIAL WITH HIGH CONTENT IN ALUMINUM CLAY AND METHOD FOR MANUFACTURING.
CN108314054A (en) A method of preparing microporous calcium silicate powder
JP2003306325A (en) Basic magnesium carbonate, its production method, and composition or structure including the basic magnesium carbonate
JP4349822B2 (en) Meteorite sheet
Alizadeh Arasi et al. Extraction of nano‐porous silica from hydrosodalite produced via modification of low‐grade kaolin for removal of methylene blue from wastewater
EP0166789B1 (en) Formed article of calcium silicate and method of the preparation thereof
CN105084398B (en) A kind of method of asbestos tailings comprehensive utilization
CN113636565A (en) Method for preparing industrial vermiculite from phlogopite under normal pressure and industrial vermiculite
Abo-Almaged et al. Hydrothermal treatment management of high alumina waste for synthesis of nanomaterials with new morphologies
JP6383188B2 (en) Method for producing α-sodium ferrites
Kurama et al. Magnesium hydroxide recovery from magnesia waste by calcinations and hydration processes
KR101441238B1 (en) Method for separating of Ca compound from dolomite
JP7356706B2 (en) Method for manufacturing tobermorite-containing building materials, tobermorite and tobermorite-containing building materials
JP6670534B2 (en) Phosphorus recovery material and method for producing the same
JP4426752B2 (en) Method for producing calcium silicate hydrate
Parida et al. A Study on the water absorption efficiency of porous silica gel prepared from rice husk ash
JP2008074648A (en) Method for producing porous material
CN115010511B (en) Light functional ceramic tile and preparation method and application thereof
El-Korashy Cation exchange of alkali metal hydroxides with some hydrothermally synthesized calcium silicate compounds
ES2919251B2 (en) Pillared clays with improved textural properties, their preparation from salt slag from aluminum recycling processes and their use
KR101183421B1 (en) The method of inorganic matrial with porosity

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

EXPY Cancellation because of completion of term
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371