JP2004268283A - Sheet having gas molecule adsorbing function - Google Patents

Sheet having gas molecule adsorbing function Download PDF

Info

Publication number
JP2004268283A
JP2004268283A JP2003058359A JP2003058359A JP2004268283A JP 2004268283 A JP2004268283 A JP 2004268283A JP 2003058359 A JP2003058359 A JP 2003058359A JP 2003058359 A JP2003058359 A JP 2003058359A JP 2004268283 A JP2004268283 A JP 2004268283A
Authority
JP
Japan
Prior art keywords
sheet
polymer
film
molecule
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003058359A
Other languages
Japanese (ja)
Other versions
JP4717328B2 (en
Inventor
Tadashi Sato
正 佐藤
Tomohiko Soyama
智彦 楚山
Koji Kazumori
康二 数森
Takaomi Kobayashi
高臣 小林
Takashi Onodera
崇 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP2003058359A priority Critical patent/JP4717328B2/en
Publication of JP2004268283A publication Critical patent/JP2004268283A/en
Application granted granted Critical
Publication of JP4717328B2 publication Critical patent/JP4717328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Laminated Bodies (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheet having a gas molecule adsorbing function used for selectively removing a specific gas molecule, not causing the falling-off/scattering of an adsorbing material at all and excellent in processability and usability. <P>SOLUTION: This sheet having the gas molecule adsorbing function is constituted by supporting a polymer, which has a region for recognizing a template molecule formed thereto by utilizing a molecule imprinting method, on the surface of a sheet. Herein, the supporting of the polymer means a state that the polymer is strongly bonded to the surface of the sheet without causing falling-off/scattering. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、工業用クリーンルーム内で製造製品に影響を与えるガス、あるいはビル、住居、病院・検査施設等を始めとするあらゆる閉鎖居住空間において人間に嫌悪感を与える悪臭ガス、人間に健康被害を与えうるガスなど、問題となるガス(気体分子)を除去するために用いられるシートに関するものである。
【0002】
【従来の技術】
近年の半導体の微細化、高集積化にともない、クリーンルーム中に浮遊する粒子状汚染物質だけでなく、気体状態で存在する分子状汚染物質についても問題視されてきている。分子状汚染物質も、粒子状汚染物質と同様にシリコンウエハ上に吸着して、製品歩留まりを低下させるという問題を引き起こすのである。シリコンウエハ上に吸着する分子状汚染物質の中でも、プラスチックの添加剤として用いられているフタル酸ジブチル(DBP)やフタル酸ジオクチル(DOP)等のフタル酸エステル類は、たとえその存在量が微量であっても、シリコンウエハ上に選択的に吸着することから、特に問題視されている。
【0003】
また、ビル、住居、病院・検査施設等を始めとするあらゆる閉鎖居住空間で、シックビル症候群、シックハウス症候群、化学物質過敏症、内分泌撹乱物質によるホルモン異常などが近年問題となっており、その原因として建築材、家具、衣類、化粧品等から発生するガス状微量化学物質が挙げられている。さらに様々な悪臭物質に対する低減要望も市場ニーズとしてある。
【0004】
従来、クリーンルーム中の分子状汚染物質や閉鎖居住空間のガス状微量化学物質や悪臭物質を除去するために、粉末状活性炭を担持させた濾材(例えば、特許文献1)や、イオン交換樹脂と活性炭の粉粒体を担持させた濾材(例えば、特許文献2)、紙支持体の少なくとも一方の面に光触媒分解能を有する酸化チタン層を担持させた紙(例えば、特許文献3)のような、吸着材、光触媒を利用したシート、濾材、エアフィルタが広く用いられている。
【0005】
これら吸着材、光触媒は、空気中に存在するさまざまな気体分子を吸着あるいは分解するため、目的とする気体分子のみを重点的に除去することは非常に難しい。そのため、吸着材は、使用環境によっては目的以外の気体分子のみ吸着され、期待される性能を十分に発揮することなく寿命が来てしまうことがある。また、酸化チタン光触媒は、気体成分によっては分解後、有毒な成分へと変化し新たな問題を引き起こす場合がある。
【0006】
さらに、これら吸着材、光触媒は、粉体状であることが多く、加工時や使用時にシートから脱落・飛散することを防止するため、シート基材中あるいは基材上にバインダーで接着して担持させている場合が多い。しかし、必要な接着力を確保するには相当量のバインダーが必要であるが、バインダー量を増やすとバインダーに吸着材、光触媒が覆われて吸着・分解性能が低下する大きな問題がある。
【0007】
エアフィルタとして使用する場合、粉末状吸着材は、それ自体に粒子状の浮遊粉塵を除去する能力はないため、これらを用いたケミカルフィルタとは別に浮遊粉塵を除去するエアフィルタを使用する必要がある。そこで、ケミカルフィルタに粒子除去機能を持たせる目的で、活性炭繊維やイオン交換繊維等の繊維状吸着材を利用した濾材(例えば、特許文献4および特許文献5)も提案されているが、繊維状吸着材の量を増やすと十分な粉塵除去性能が得られなくなる。また、仮に十分な粉塵除去性能を持たせることが可能であっても、これら繊維状吸着材を用いて特定の分子を重点的に除去することは、前述の粉末状吸着材の場合と同様に非常に難しい。
【0008】
近年、特定の分子を選択的に捕捉する材料として、分子インプリント法を用いたポリマーが注目されており、特に液相中における選択的分子捕捉の例が多数提案されている(例えば、特許文献6)。しかし、これを気相中の気体分子捕捉に使用した例は殆んど無く、唯一、芳香物質を保持し悪臭物質を捕捉するポリマーが提案されている(特許文献7)。しかしこれは、粉体状のポリマーであって、吸着用材料、エアフィルタなど様々な用途へ展開していくには前出の脱落・飛散の問題が同様にあった。
【0009】
一方、用途が多岐に渡る気体分子吸着用材料は、シート形状していることが大変都合良く、単板シートは押入れなどの隙間吸着剤、壁紙、カーテンなどに使用でき、また吸着面積を稼ぐためシートをジャバラに折るプリーツ加工をして使用する場合がある。さらに、シートをコルゲート加工するなどして、ハニカム状(蜂の巣状)に成型して使用する場合もある。
【0010】
しかし、目的気体分子を選択的に除去し、かつ吸着材の脱落・飛散が全くなく、さらにシート形状をした気体分子吸着材料はこれまでに無く、この様な材料が求められている。
【0011】
【特許文献1】特開2001−317000号公報
【0012】
【特許文献2】特開2002−248308号公報
【0013】
【特許文献3】特開平8−120594号公報
【0014】
【特許文献4】特開平11−47552号公報
【0015】
【特許文献5】特開2001−300218号公報
【0016】
【特許文献6】特開2000−342943号公報
【0017】
【特許文献7】特開平11−240916号公報
【0018】
【特許文献8】特開平11−315150号公報
【0019】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、特定の気体分子を選択的に除去し、かつ吸着材の脱落・飛散が全くなく、さらに後加工性、使用性に優れた気体吸着機能を有したシートを提供することである。
【0020】
【課題を解決するための手段】
本発明者はこの課題が、分子インプリント法を利用して鋳型分子の認識部位が形成されているポリマーをシート面上に担持していることを特徴とする、気体分子吸着機能を有するシートによって解決できることを見出した。ここで担持とは、ポリマーがシート面上に脱落・飛散なく強固に付着した状態を言う。
【0021】
【発明の実施の形態】
本発明の有利な実施態様においては、 シートが紙、不織布、織布などの繊維状構造物、特に主体繊維が極細ガラス繊維である繊維状構造物または有機質フィルムである。
【0022】
本発明を以下に更に詳細に説明する。
【0023】
本発明における分子インプリント法は、ポリマーの組織化を利用した方法である。まず、鋳型分子と結合可能な官能基を有するポリマー樹脂溶液と鋳型分子を混合する。次に、この溶液から溶媒を除去することでポリマー皮膜を形成させる。この段階では、鋳型分子はポリマー皮膜中にポリマー中の官能基と結合した形で存在している。こうして得られたポリマー皮膜から鋳型分子を除去することで、ポリマー皮膜中に鋳型分子の認識部位が形成される。こうして鋳型分子を選択的に吸着除去可能なインプリントポリマー皮膜を得ることができる。
【0024】
また、ポリマー皮膜の原材料モノマーからインプリントポリマー皮膜を形成させることも可能である。即ち、モノマーと鋳型分子を混合し、これを重合させポリマー皮膜を得る。鋳型分子を除去する工程は前述と同様である。
【0025】
本発明は、気体分子の選択的吸着能を有したインプリントポリマー皮膜に、同時にバインダー機能を持たせて、インプリントポリマー皮膜を所定のシート基材中あるいは基材上に担持させたものである。これまでの吸着材は、それ自身バインダー機能を持っておらずシート基材から脱落・飛散するので別にバインダーが必要であり、これが吸着性能低下の原因であった。本発明のインプリントポリマー皮膜はこの様な問題が無く、全く新規のものである。
【0026】
本発明で用いられるポリマー樹脂は、バインダーとして基材と接着する機能を持つものの中から選択される。また、バインダーとして機能すると同時に、水素結合やイオン結合などの相互作用によって鋳型分子と結合可能となるような官能基を、ポリマーの主鎖または側鎖として有している必要がある。これら官能基としては、水酸基、カルボキシル基、カルボニル基、アミノ基等が挙げられる。ポリマー樹脂の種類としては、アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられる。また、モノマーを原材料とする場合は、目的のポリマー皮膜を形成するために重合すべく、選択されたモノマーが用いられる。
【0027】
捕捉対象である鋳型分子としては、クリーンルーム汚染物質であるフタル酸エステル、リン酸エステル、フェノール系化合物等や、その他、居住環境に存在しシックハウス症候群を引き起こすとして問題視されているホルムアルデヒド、トルエン、キシレン等、捕捉目的に合わせて選ぶことができる。
【0028】
また、所定のシート基材とは、紙、織布(織物)、不織布、フィルム等、上記ポリマー樹脂と接着可能なものであれば、自由に選択することが可能であり、後加工や使用時の目的・形状などの観点から選ばれる。フィルムであれば、前記ポリマー樹脂は基材表層にポリマー膜層を形成させる。先行技術で、インプリントポリマーをキャスト法でフィルム化した例がある(特許文献8; 特開平11−315150号公報)が、この場合、ポリマー樹脂の選定段階で鋳型分子と結合可能なものが優先されるので、必ずしも後加工性や使用性に適合するものではなく、応用性、汎用性が乏しいものになってしまう。本発明のフィルムであれば、後加工性や使用性に適したフィルム基材を選べば良く、より応用性、汎用性を高くすることができる。フィルムの材質としては、ポリエステル、ポリ塩化ビニル、ポリ塩化ビフェニル、ポリエチレン、ポリプロピレンなど、本発明のポリマー樹脂と固着可能なあらゆる素材から選択できる。
【0029】
また、紙、織布、不織布であれば、フィルム同様に基材表層のみに本発明のインプリントポリマー皮膜層を形成させる場合と、ポリマー樹脂を基材内部まで浸透させて基材全体にインプリントポリマー皮膜を形成させる場合とがある。後者の場合、インプリントポリマー皮膜をシート基材の主体繊維どうしの接着するバインダーとしても使用することが可能である。即ち、紙、不織布の主体繊維、例えば、有機化合繊や無機繊維はパルプのようにそれ自体に自己接着機能が無いものが多く、繊維間を結合させるバインダーを必要とするケースが多々あるが、本発明のインプリントポリマー皮膜はバインダー機能を有するため、他のバインダーを併用しないことが可能である。これは、繊維状エアフィルタ濾材には有効で、濾材本来の繊維部での浮遊粉塵除去だけでなく、バインダー皮膜部で目的気体分子を除去する特性を同時に兼ね備えた濾材をつくることが可能となる。
【0030】
吸着特性の観点では、繊維状構造物の場合フィルムと異なり、繊維1本1本の表面積の総計で基材の比表面積が大きくなるので、基材全体にインプリントポリマー皮膜を形成させる方法であれば、各繊維上に皮膜層を形成させることができ、この結果、皮膜層の総表面積を大きくし気体分子吸着量を増加させることができる。
【0031】
紙、織布、不織布など繊維構造体の主体繊維としては、無機繊維、天然繊維、有機合成繊維などの中から自由に選ぶことができ、特に極細ガラス繊維は繊維経が非常に細く、比表面積が大きいので、不織布の主体繊維として使用することはより効果的である。また、シートの通気性が低く濾過抵抗が少ないので、エアフィルタ用濾材の原材料としてはより好ましいものである。
【0032】
本発明のシートの製造方法としては、特に限定はしないが、例えば、シート基材に鋳型分子とポリマー樹脂の混合溶液(以下、バインダー液と称する)をロール塗工処理、または浸漬、スプレー等の含浸処理を行う方法や、あるいは湿式抄造法で紙、不織布のシート形成をさせる場合、主体繊維を離解したスラリー中にバインダー液を添加してシート化する方法(内添法)が挙げられる。これらは、既存の設備でも十分製造可能である。モノマーと鋳型分子の混合液からスタートする場合は、塗工、含浸方法は前述と同じであるが、その後に重合工程が必要である。次工程のポリマー皮膜を形成させる方法としては、鋳型分子が揮発しない条件において溶媒を揮発させて乾燥皮膜を形成する方法、ポリマー樹脂の溶解度が低い溶媒に浸して相転移させて皮膜を形成する方法等が挙げられる。また、ポリマー皮膜中の鋳型分子を除去する方法としては、溶媒を用いて洗浄除去する方法、減圧や加熱などにより揮発除去する方法等が挙げられる。シート基材に対するインプリントポリマー皮膜の付着量は、同皮膜の吸着特性に応じて設計される。
【0033】
本発明の気体分子吸着用シートは、先述のとおり、シート形状しているため加工性や使用勝手が良く、単板シートは押入れなどの隙間用吸着剤、吸着性能を有した壁紙、カーテンなどや、シートをプリーツ加工したり、ハニカム状に成型してエアフィルタ用途に使用することができる。
【0034】
【実施例】
次に、実施例および比較例により本発明をより具体的に説明するが、本発明はこれにより何ら限定されるものではない。
【0035】
実施例1:
平均繊維径0.65μmの極細ガラス繊維60重量%、平均繊維径2.70μmの極細ガラス繊維35重量%、平均繊維径6μmのチョップドガラス繊維5重量%を、濃度0.5%、硫酸酸性pH2.5でパルパーで離解した。次いで、手抄装置を用いて抄紙して湿紙を得た。次に、水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))と、鋳型分子となるフタル酸ジメチル(試薬一級、製造元:和光純薬工業(株)、以下DMPと略す)を有効成分重量比で100/5となるように混合したバインダー液を湿紙に付与し、その後ドライヤーで50℃×30分間乾燥した。次に、この濾材をエタノールで洗浄し、DMPを除去した。こうして、目付重量70g/m、バインダー付着量5.5重量%の濾材を得た。
【0036】
比較例1:
平均繊維径0.65μmの極細ガラス繊維60重量%、平均繊維径2.70μmの極細ガラス繊維35重量%、平均繊維径6μmのチョップドガラス繊維5重量%を、実施例1と同様にして抄紙し、得られた湿紙に、水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))のみをバインダー液として付与し、ドライヤーで50℃×30分間乾燥した。その後、条件を同一にするために、実施例1と同様のエタノール洗浄を行い、目付重量70g/m、バインダー付着量5.5重量%の濾材を得た。
【0037】
得られた濾材の圧力損失、捕集効率の評価は、下記の方法によって行った。
【0038】
圧力損失は、有効面積100cmの濾材に面風速5.3cm/秒で通風した時の差圧を微差圧計を用いて測定した。
【0039】
DOP捕集効率は、ラスキンノズルで発生させた多分散DOP粒子を含む空気を、有効面積100cmの濾材に面風速5.3cm/秒で通過させた時のDOP捕集効率をレーザーパーティクルカウンターを用いて測定した。なお、対象粒径は0.3〜0.4μmとした。
【0040】
吸着性能の評価は、まず、濾材とDMPを密閉したデシケーター中に共存させ、23℃×2時間静置してDMPを気相吸着させた。次いで、濾材をHe気流中で100℃および200℃で加熱して濾材からDMPを脱着させ、これを捕集濃縮し、ガスクロマトグラフ質量分析計に導入してDMP脱着量を測定し、各温度における濾材1gあたりのDMP脱着量の比較を行った。
【0041】
実施例1および比較例1の評価結果を表1に示す。
【0042】
【表1】

Figure 2004268283
バインダーポリマーにインプリント処理を施した実施例1においては、DOP捕集効率はインプリント処理を施していない比較例1と同様に高く、エアフィルタ用濾材として十分なレベルにある。
【0043】
DMP脱着量を比較すると、100℃加熱においては、実施例1と比較例1ではほとんど差がない。一方、200℃加熱においては、実施例1の方が脱着量が多い。この場合において、100℃加熱での脱着量は、濾材表面に弱く吸着したDMPの量であり、また、200℃加熱での脱着量は、濾材表面に弱く吸着したDMPの量と、インプリントによって形成されたDMP認識部位に強く吸着したDMPの量の合計とみなすことができる。すなわち、実施例1で見られる100℃加熱と200℃加熱での脱着量の差2.4mg/gはDMP認識部位に強く吸着して取り込まれたDMP量を示しており、よって、インプリント法によってDMP認識部位が形成されていることを示している。
【0044】
実施例2:
水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))と、鋳型分子となるフタル酸ジメチル(試薬一級、製造元:和光純薬工業(株))を有効成分重量比で100/5となるように混合した液を、PET樹脂フィルム(商品名:ルミラーT、製造元:東レ(株)、厚さ75μm)に塗工量5g/mとなるように塗工し、その後ドライヤーで50℃×30分間乾燥した。次に、このフィルムをエタノールで洗浄し、DMPを除去し、塗工PETフィルムを得た。
【0045】
比較例2:
実施例1と同様にして、水性ウレタン樹脂(商品名:ハイドランAP−40F、製造元:大日本インキ化学工業(株))のみをPET樹脂フィルム(商品名:ルミラーT、製造元:東レ(株)、厚さ75μm)に塗工量5g/mとなるように塗工し、ドライヤーで50℃×30分間乾燥した。その後、条件を同一にするために、実施例2と同様のエタノールで洗浄し、塗工PETフィルムを得た。
【0046】
得られた塗工PETフィルムについて、実施例1でおこなったのと同様にして吸着性能の評価を行い、フィルム1mあたりのDMP脱着量の比較を行った。
【0047】
実施例2および比較例2の評価結果を表2に示す。
【0048】
【表2】
Figure 2004268283
実施例2においても、実施例1の場合と同様にして、DMP認識部位が形成されたことを示す、200℃で加熱した時と100℃で加熱した時の脱着量の差が確認された。
【0049】
【発明の効果】
以上の説明のとおり、本発明のシートによれば、特定の分子気体を選択的に除去し、かつ吸着材の脱落・飛散が全くなく、さらに後加工性、使用性に優れた気体分子吸着機能を有したシートを、またこれをエアフィルタに展開した場合、粉塵除去機能にさらに気体分子吸着機能を付加させたエアフィルタ濾材を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention relates to a gas that affects manufactured products in an industrial clean room, or an odorous gas that gives an aversion to humans in buildings, dwellings, hospitals, inspection facilities, and any other closed living spaces. The present invention relates to a sheet used for removing a problematic gas (gas molecule) such as a gas that can be given.
[0002]
[Prior art]
With recent miniaturization and high integration of semiconductors, not only particulate contaminants floating in a clean room, but also molecular contaminants existing in a gaseous state have been regarded as a problem. Like the particulate contaminants, the molecular contaminants also adsorb on the silicon wafer, causing a problem that the product yield is reduced. Among the molecular contaminants adsorbed on silicon wafers, phthalate esters such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP) used as additives for plastics have a very small amount. Even so, it is particularly problematic because it is selectively adsorbed on a silicon wafer.
[0003]
In addition, sick building syndrome, sick house syndrome, chemical hypersensitivity, hormonal abnormalities due to endocrine disrupting substances, etc. have recently become a problem in all enclosed living spaces including buildings, dwellings, hospitals and laboratory facilities, and the causes are as follows. Gaseous trace chemical substances generated from building materials, furniture, clothing, cosmetics and the like are mentioned. There is also a market need for reduction of various odorous substances.
[0004]
Conventionally, in order to remove molecular contaminants in a clean room, gaseous trace chemical substances and odorous substances in a closed living space, a filter medium supporting powdered activated carbon (for example, Patent Document 1), an ion exchange resin and activated carbon Adsorption such as a filter medium (for example, Patent Literature 2) supporting a powdery or granular material, and a paper (for example, Patent Literature 3) having a titanium oxide layer having photocatalytic resolution supported on at least one surface of a paper support. Materials, sheets using photocatalysts, filter materials, and air filters are widely used.
[0005]
Since these adsorbents and photocatalysts adsorb or decompose various gas molecules existing in the air, it is very difficult to mainly remove only the target gas molecules. Therefore, depending on the use environment, the adsorbent adsorbs only gas molecules other than the intended ones, and the adsorbent may have a long life without fully exhibiting the expected performance. Further, the titanium oxide photocatalyst changes into a toxic component after being decomposed depending on a gas component, which may cause a new problem.
[0006]
Furthermore, these adsorbents and photocatalysts are often in the form of powder, and are bonded and supported on a sheet substrate or on a substrate with a binder to prevent them from falling off or scattering from the sheet during processing or use. It is often done. However, a considerable amount of binder is required to ensure the necessary adhesive strength. However, if the amount of binder is increased, the binder is covered with the adsorbent and the photocatalyst, and there is a serious problem that the adsorption / decomposition performance is reduced.
[0007]
When used as an air filter, the powdered adsorbent itself does not have the ability to remove particulate airborne dust, so it is necessary to use an air filter that removes airborne dust separately from a chemical filter using these. is there. Therefore, for the purpose of providing the chemical filter with a particle removing function, a filter medium using a fibrous adsorbent such as activated carbon fiber or ion exchange fiber (for example, Patent Documents 4 and 5) has been proposed. If the amount of the adsorbent is increased, sufficient dust removal performance cannot be obtained. Also, even if it is possible to have sufficient dust removal performance, it is important to remove specific molecules using these fibrous adsorbents as in the case of the powder adsorbents described above. extremely difficult.
[0008]
In recent years, as a material for selectively capturing a specific molecule, a polymer using a molecular imprinting method has attracted attention, and in particular, many examples of selective molecule capture in a liquid phase have been proposed (for example, see Patent Documents). 6). However, there is almost no use of this for capturing gas molecules in the gas phase, and only a polymer that retains an aromatic substance and captures an odorous substance has been proposed (Patent Document 7). However, this is a powdery polymer, and the same problem of falling off and scattering as described above has been encountered in expanding it to various uses such as an adsorption material and an air filter.
[0009]
On the other hand, it is very convenient that the material for gas molecule adsorption, which has a wide variety of uses, is in the form of a sheet, and the veneer sheet can be used for gap adsorbents such as closets, wallpaper, curtains, etc. In some cases, the sheet is pleated to be folded into bellows before use. Further, the sheet may be used by being formed into a honeycomb shape (honeycomb shape) by corrugating or the like.
[0010]
However, there is no sheet-shaped gas molecule adsorbing material that selectively removes target gas molecules, has no adsorbent falling off and scatters, and such a material is required.
[0011]
[Patent Document 1] JP-A-2001-317000
[Patent Document 2] Japanese Patent Application Laid-Open No. 2002-248308
[Patent Document 3] JP-A-8-120594
[Patent Document 4] JP-A-11-47552
[Patent Document 5] JP-A-2001-300218
[Patent Document 6] JP-A-2000-342943
[Patent Document 7] Japanese Patent Application Laid-Open No. 11-240916
[Patent Document 8] JP-A-11-315150
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a sheet having a gas adsorption function that selectively removes specific gas molecules, has no adsorbent falling off and scatters, and has excellent post-processability and usability. To provide.
[0020]
[Means for Solving the Problems]
The present inventor has solved this problem by using a sheet having a gas molecule adsorption function, characterized in that a polymer in which a recognition site of a template molecule is formed is supported on a sheet surface by using a molecular imprint method. We found that we could solve it. Here, the term “support” refers to a state in which the polymer is firmly attached to the sheet surface without falling off or scattering.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
In a preferred embodiment of the present invention, the sheet is a fibrous structure such as paper, nonwoven fabric, woven fabric, etc., in particular, a fibrous structure in which the main fibers are ultrafine glass fibers or an organic film.
[0022]
The present invention is described in more detail below.
[0023]
The molecular imprinting method in the present invention is a method that utilizes the organization of a polymer. First, a template resin is mixed with a polymer resin solution having a functional group capable of binding to the template molecule. Next, a polymer film is formed by removing the solvent from this solution. At this stage, the template molecule is present in the polymer film in a form bonded to a functional group in the polymer. By removing the template molecules from the polymer film thus obtained, a recognition site of the template molecules is formed in the polymer film. Thus, an imprinted polymer film capable of selectively adsorbing and removing template molecules can be obtained.
[0024]
Further, it is also possible to form an imprinted polymer film from a monomer material of the polymer film. That is, a monomer and a template molecule are mixed and polymerized to obtain a polymer film. The step of removing the template molecule is the same as described above.
[0025]
The present invention provides an imprinted polymer film having a selective adsorption capability for gas molecules, simultaneously having a binder function, and supporting the imprinted polymer film in a predetermined sheet substrate or on a substrate. . Conventional adsorbents do not themselves have a binder function and fall off and scatter from the sheet base material, so that a separate binder is required, which is a cause of a decrease in adsorption performance. The imprinted polymer film of the present invention does not have such a problem and is completely new.
[0026]
The polymer resin used in the present invention is selected from those having a function of bonding to a substrate as a binder. Further, it is necessary to have a functional group capable of binding to a template molecule by an interaction such as a hydrogen bond or an ionic bond as a main chain or a side chain of the polymer while functioning as a binder. These functional groups include a hydroxyl group, a carboxyl group, a carbonyl group, an amino group and the like. Examples of the type of the polymer resin include an acrylic resin, a nylon resin, a urethane resin, and a polyester resin. When a monomer is used as a raw material, a selected monomer is used for polymerization to form a target polymer film.
[0027]
The template molecules to be captured include phthalate esters, phosphate esters, and phenolic compounds that are clean room pollutants, and other formaldehyde, toluene, and xylene that are present in residential environments and are considered to cause sick house syndrome. And so on, depending on the purpose of capture.
[0028]
The predetermined sheet substrate can be freely selected as long as it can be bonded to the polymer resin, such as paper, woven fabric (woven fabric), nonwoven fabric, and film. Selected from the viewpoint of the purpose and shape of In the case of a film, the polymer resin forms a polymer film layer on the surface of the substrate. In the prior art, there is an example in which an imprint polymer is formed into a film by a casting method (Patent Document 8; Japanese Patent Application Laid-Open No. H11-315150). Therefore, they are not always suitable for post-processing and usability, and have poor applicability and versatility. In the case of the film of the present invention, a film substrate suitable for post-processability and usability may be selected, and applicability and versatility can be increased. The material of the film can be selected from any material that can be fixed to the polymer resin of the present invention, such as polyester, polyvinyl chloride, polyvinyl chloride, polyethylene, and polypropylene.
[0029]
In the case of paper, woven fabric, or nonwoven fabric, the imprinted polymer film layer of the present invention is formed only on the surface layer of the substrate as in the case of the film, or the polymer resin is impregnated into the substrate and imprinted on the entire substrate. In some cases, a polymer film is formed. In the latter case, it is possible to use the imprinted polymer film as a binder for bonding the main fibers of the sheet substrate. That is, paper, the main fibers of nonwoven fabrics, for example, organic synthetic fibers and inorganic fibers, such as pulp, often do not have a self-adhesive function itself, and in many cases, require a binder to bond between fibers. Since the imprinted polymer film of the present invention has a binder function, it is possible not to use another binder together. This is effective for a fibrous air filter medium, and it is possible to create a filter medium that not only removes floating dust in the original fiber part of the filter medium but also removes target gas molecules in the binder film part. .
[0030]
From the viewpoint of the adsorption characteristics, in the case of the fibrous structure, unlike the film, the specific surface area of the base material is increased by the total surface area of each fiber, so that the imprint polymer film is formed on the entire base material. If this is the case, a film layer can be formed on each fiber, and as a result, the total surface area of the film layer can be increased and the amount of gas molecule adsorbed can be increased.
[0031]
The main fibers of the fiber structure such as paper, woven fabric, and nonwoven fabric can be freely selected from inorganic fibers, natural fibers, organic synthetic fibers, and the like.Especially, ultrafine glass fibers have a very small fiber diameter and specific surface area. Is large, it is more effective to use it as the main fiber of the nonwoven fabric. Further, since the sheet has low air permeability and low filtration resistance, it is more preferable as a raw material of a filter medium for an air filter.
[0032]
A sheet production method of the present invention include, but are not particularly limited, for example, a mixed solution of template molecule and the polymer resin in the sheet substrate (hereinafter, referred to as the binder solution) the roll coating process, or dipping, spraying, etc. In the case of forming a sheet of paper or nonwoven fabric by wet impregnation or a wet papermaking method, a method of adding a binder liquid to a slurry obtained by disintegrating main fibers to form a sheet (internal addition method) may be mentioned. These can be manufactured sufficiently with existing equipment. When starting from a mixture of a monomer and a template molecule, the coating and impregnating methods are the same as described above, but a polymerization step is required thereafter. As a method of forming a polymer film in the next step, a method of forming a dry film by volatilizing a solvent under conditions in which template molecules do not volatilize, a method of forming a film by immersing in a solvent having a low solubility of a polymer resin and causing a phase transition. And the like. Examples of the method for removing the template molecules in the polymer film include a method for removing by washing with a solvent, a method for removing by volatilization under reduced pressure and heating, and the like. The amount of the imprinted polymer film adhered to the sheet substrate is designed according to the adsorption characteristics of the film.
[0033]
As described above, the sheet for adsorbing gas molecules of the present invention has good workability and ease of use because it has a sheet shape, and a single sheet is an adsorbent for a gap such as a closet, a wallpaper having adsorption performance, a curtain or the like. The sheet can be pleated or formed into a honeycomb shape and used for an air filter.
[0034]
【Example】
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0035]
Example 1
60% by weight of ultrafine glass fiber having an average fiber diameter of 0.65 μm, 35% by weight of ultrafine glass fiber having an average fiber diameter of 2.70 μm, 5% by weight of chopped glass fiber having an average fiber diameter of 6 μm, a concentration of 0.5%, and a sulfuric acid pH of 2 Disintegrated with a pulper at 0.5. Next, papermaking was performed using a hand papermaking apparatus to obtain wet paper. Next, an aqueous urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink and Chemicals, Inc.) and dimethyl phthalate as a template molecule (first-class reagent, manufacturer: Wako Pure Chemical Industries, Ltd.) DMP) was applied to wet paper so that the active ingredient weight ratio was 100/5, and then dried with a dryer at 50 ° C. for 30 minutes. Next, this filter medium was washed with ethanol to remove DMP. Thus, a filter medium having a basis weight of 70 g / m 2 and a binder adhesion amount of 5.5% by weight was obtained.
[0036]
Comparative Example 1:
Papermaking was performed in the same manner as in Example 1 by using 60% by weight of ultrafine glass fibers having an average fiber diameter of 0.65 μm, 35% by weight of ultrafine glass fibers having an average fiber diameter of 2.70 μm, and 5% by weight of chopped glass fibers having an average fiber diameter of 6 μm. To the obtained wet paper, only an aqueous urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink and Chemicals, Inc.) was applied as a binder liquid, and dried with a dryer at 50 ° C. for 30 minutes. Thereafter, in order to make the conditions the same, the same ethanol washing as in Example 1 was performed to obtain a filter medium having a basis weight of 70 g / m 2 and a binder adhesion amount of 5.5% by weight.
[0037]
The pressure loss and the collection efficiency of the obtained filter medium were evaluated by the following methods.
[0038]
The pressure loss was measured using a fine differential pressure gauge when a filter medium having an effective area of 100 cm 2 was passed at a surface wind velocity of 5.3 cm / sec.
[0039]
The DOP collection efficiency was determined by measuring the DOP collection efficiency when air containing polydisperse DOP particles generated by a Ruskin nozzle was passed through a filter medium having an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec using a laser particle counter. It measured using. The target particle size was 0.3 to 0.4 μm.
[0040]
For the evaluation of the adsorption performance, first, the filter medium and DMP were allowed to coexist in a sealed desiccator, and allowed to stand at 23 ° C. for 2 hours to adsorb DMP in the gas phase. Next, the filter medium was heated at 100 ° C. and 200 ° C. in a He gas stream to desorb DMP from the filter medium, which was collected and concentrated, introduced into a gas chromatograph mass spectrometer, and the amount of DMP desorbed was measured. The amount of DMP desorbed per 1 g of the filter medium was compared.
[0041]
Table 1 shows the evaluation results of Example 1 and Comparative Example 1.
[0042]
[Table 1]
Figure 2004268283
In Example 1 in which the binder polymer was imprinted, the DOP collection efficiency was as high as in Comparative Example 1 in which the imprinting was not performed, and was at a level sufficient for a filter medium for an air filter.
[0043]
Comparing the DMP desorption amounts, there is almost no difference between Example 1 and Comparative Example 1 at 100 ° C. heating. On the other hand, in the case of heating at 200 ° C., Example 1 has a larger desorption amount. In this case, the desorption amount at 100 ° C. heating is the amount of DMP weakly adsorbed on the filter medium surface, and the desorption amount at 200 ° C. heating is the amount of DMP weakly adsorbed on the filter medium surface, and It can be considered as the total amount of DMP strongly adsorbed to the formed DMP recognition site. That is, the difference of 2.4 mg / g between the amount of desorption at 100 ° C. and the temperature at 200 ° C. in Example 1 indicates the amount of DMP that was strongly adsorbed and taken in the DMP recognition site. Indicates that a DMP recognition site has been formed.
[0044]
Example 2:
Aqueous urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink and Chemicals, Inc.) and dimethyl phthalate as a template molecule (first-class reagent, manufacturer: Wako Pure Chemical Industries, Ltd.) are active ingredient weights. The liquid mixed at a ratio of 100/5 was applied to a PET resin film (trade name: Lumirror T, manufacturer: Toray Industries, Inc., thickness: 75 μm) so as to have a coating amount of 5 g / m 2. Then, the resultant was dried with a dryer at 50 ° C. for 30 minutes. Next, this film was washed with ethanol to remove DMP and obtain a coated PET film.
[0045]
Comparative Example 2:
In the same manner as in Example 1, only an aqueous urethane resin (trade name: Hydran AP-40F, manufacturer: Dainippon Ink and Chemicals, Inc.) was used as a PET resin film (trade name: Lumirror T, manufacturer: Toray Industries, Inc.) (Thickness: 75 μm) so as to have a coating amount of 5 g / m 2, and dried by a dryer at 50 ° C. for 30 minutes. Thereafter, in order to make the conditions the same, washing was performed with the same ethanol as in Example 2 to obtain a coated PET film.
[0046]
The obtained coated PET film, evaluates the adsorption performance in the same manner as was performed in Example 1, was compared DMP desorption amount per film 1 m 2.
[0047]
Table 2 shows the evaluation results of Example 2 and Comparative Example 2.
[0048]
[Table 2]
Figure 2004268283
In Example 2, similarly to Example 1, a difference in the amount of desorption between when heated at 200 ° C. and when heated at 100 ° C., indicating that the DMP recognition site was formed, was confirmed.
[0049]
【The invention's effect】
As described above, according to the sheet of the present invention, the specific molecular gas is selectively removed, and the adsorbent does not fall off or scatter at all. In the case where the sheet having the above structure is developed in an air filter, it is possible to provide an air filter medium having a dust removing function and a gas molecule absorbing function.

Claims (5)

分子インプリント法を利用して鋳型分子の認識部位が形成されているポリマーをシート面上に担持していることを特徴とする、気体分子吸着機能を有するシート。A sheet having a gas molecule adsorbing function, wherein a polymer having a template molecule recognition site formed thereon is supported on a sheet surface by using a molecular imprint method. シートが紙、不織布、織布などの繊維状構造物であることを特徴とする、請求項1に記載のシート。The sheet according to claim 1, wherein the sheet is a fibrous structure such as paper, nonwoven fabric, or woven fabric. 繊維状構造物の主体繊維が極細ガラス繊維であることを特徴とする、請求項2記載のシート。The sheet according to claim 2, wherein the main fibers of the fibrous structure are ultrafine glass fibers. シートが有機質フィルムであることを特徴とする、請求項1記載のシート。The sheet according to claim 1, wherein the sheet is an organic film. 鋳型分子と結合可能な官能基を有するポリマー溶液と鋳型分子を混合して得られる混合溶液をシートに付着させた後、ポリマー皮膜を形成させ、次いで鋳型分子を除去し、ポリマー皮膜上に鋳型分子の認識部位を形成させたことを特徴とする、請求項1〜4のいずれか一つに記載のシート。After a mixed solution obtained by mixing a template solution with a polymer solution having a functional group capable of binding to the template molecule is attached to a sheet, a polymer film is formed, and then the template molecule is removed. The sheet according to any one of claims 1 to 4, wherein a recognition portion is formed.
JP2003058359A 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules Expired - Lifetime JP4717328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058359A JP4717328B2 (en) 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058359A JP4717328B2 (en) 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules

Publications (2)

Publication Number Publication Date
JP2004268283A true JP2004268283A (en) 2004-09-30
JP4717328B2 JP4717328B2 (en) 2011-07-06

Family

ID=33121485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058359A Expired - Lifetime JP4717328B2 (en) 2003-03-05 2003-03-05 A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules

Country Status (1)

Country Link
JP (1) JP4717328B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264013A (en) * 2004-03-19 2005-09-29 Japan Science & Technology Agency Polymer composition having a function of molecular recognition/capturing and manufacturing process of polymer molding using the composition
JP2006175407A (en) * 2004-12-24 2006-07-06 Hokuetsu Paper Mills Ltd Sheet or polymer solid material having molecule adsorption function and its production method
KR20210026390A (en) * 2019-08-30 2021-03-10 주식회사 아스플로 Multi-layer typed multi-functional filter and manufacturing method of the same
KR20220019992A (en) * 2020-08-11 2022-02-18 부산대학교 산학협력단 Polymer material-based sheet including molecular imprinted polymer material layer having perforated structure, method for manufacturing the same, and device using the polymer material-based sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037288A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Environment purifying material
JPH11240916A (en) * 1997-12-16 1999-09-07 Givaudan Roure Internatl Sa Polymer
JP2002039934A (en) * 2000-07-28 2002-02-06 Ehime Prefecture Measuring method for acetaldehyde
JP2003001747A (en) * 2001-04-17 2003-01-08 Dokai Chemical Industries Co Ltd Gas adsorbing sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037288A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Environment purifying material
JPH11240916A (en) * 1997-12-16 1999-09-07 Givaudan Roure Internatl Sa Polymer
JP2002039934A (en) * 2000-07-28 2002-02-06 Ehime Prefecture Measuring method for acetaldehyde
JP2003001747A (en) * 2001-04-17 2003-01-08 Dokai Chemical Industries Co Ltd Gas adsorbing sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264013A (en) * 2004-03-19 2005-09-29 Japan Science & Technology Agency Polymer composition having a function of molecular recognition/capturing and manufacturing process of polymer molding using the composition
JP2006175407A (en) * 2004-12-24 2006-07-06 Hokuetsu Paper Mills Ltd Sheet or polymer solid material having molecule adsorption function and its production method
JP4584703B2 (en) * 2004-12-24 2010-11-24 北越紀州製紙株式会社 Sheet or polymer solid having molecular adsorption function, and production method thereof
KR20210026390A (en) * 2019-08-30 2021-03-10 주식회사 아스플로 Multi-layer typed multi-functional filter and manufacturing method of the same
KR102303906B1 (en) * 2019-08-30 2021-09-23 주식회사 아스플로 Multi-layer typed multi-functional filter and manufacturing method of the same
KR20220019992A (en) * 2020-08-11 2022-02-18 부산대학교 산학협력단 Polymer material-based sheet including molecular imprinted polymer material layer having perforated structure, method for manufacturing the same, and device using the polymer material-based sheet
KR102450952B1 (en) 2020-08-11 2022-10-04 부산대학교 산학협력단 Polymer material-based sheet including molecular imprinted polymer material layer having perforated structure, method for manufacturing the same, and device using the polymer material-based sheet

Also Published As

Publication number Publication date
JP4717328B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP2022045928A (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
JP5470850B2 (en) Filter media and filter unit
JP5277534B2 (en) Fiber sheet, method for producing the same, and air filter
WO2009122975A1 (en) Deodorant fibrous structure and air filter
Bian et al. Effective removal of particles down to 15 nm using scalable metal-organic framework-based nanofiber filters
JP2003509246A (en) Chemically active filter material
KR101823915B1 (en) Method for preparing air purifying filter impregnated with cellulose and/or powdered activated-carbon
TW200948460A (en) Filtration media for the removal of basic molecular contaminants for use in a clean environment
JP6988477B2 (en) Filter media for air purification
JP2010253409A (en) Gas adsorbent, filter medium using the same and air filter
JP2021513429A (en) Multipurpose composite gas filter
JP2006281212A (en) Ozone decomposition type gas adsorbent, filter medium using this adsorbent, method for regenerating it, and recycled article
EP3045224A1 (en) Gas adsorbent, gas adsorbing sheet, and air filter
Kim et al. Performance of activated carbon-impregnated cellulose filters for indoor VOCs and dust control
KR20190012868A (en) Non-woven fabric filter for reducing particulate matter and Method for preparing the same
Zhang et al. Mitigating the relative humidity effects on the simultaneous removal of VOCs and PM2. 5 of a metal–organic framework coated electret filter
US20070017195A1 (en) Air filtration media comprising metal-doped precipitated silica materials
Tang et al. Polypropylene nonwoven loaded with cerium-doped manganese oxides submicron particles for ozone decomposition and air filtration
Lee et al. Multi-scale nanofiber membrane functionalized with metal-organic frameworks for efficient filtration of both PM2. 5 and CH3CHO with colorimetric NH3 detection
CN107903666A (en) A kind of filter material is with removing aldehyde mildew resistant paint and preparation method
JP4717328B2 (en) A filter medium for an air filter, which is a sheet-like fibrous structure having a function of adsorbing gas molecules
KR101061566B1 (en) Manufacturing method of porous deodorization filter
JP4541715B2 (en) Sheet with molecular adsorption function
US20070020166A1 (en) Air filtration media comprising metal-doped precipitated silica materials
CN105999854A (en) Novel filtering material based on flexible substrate material and application in PM2.5 filtering mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250