JP2004267881A - Sewage treatment method - Google Patents

Sewage treatment method Download PDF

Info

Publication number
JP2004267881A
JP2004267881A JP2003060838A JP2003060838A JP2004267881A JP 2004267881 A JP2004267881 A JP 2004267881A JP 2003060838 A JP2003060838 A JP 2003060838A JP 2003060838 A JP2003060838 A JP 2003060838A JP 2004267881 A JP2004267881 A JP 2004267881A
Authority
JP
Japan
Prior art keywords
sludge
activated sludge
amount
days
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003060838A
Other languages
Japanese (ja)
Inventor
Takao Murakami
孝雄 村上
Hideji Ota
秀司 太田
Hideaki Hamada
英明 浜田
Teruhisa Yoshida
輝久 吉田
Tomoya Okamura
知也 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Japan Sewage Works Agency
Original Assignee
Hitachi Kiden Kogyo Ltd
Japan Sewage Works Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd, Japan Sewage Works Agency filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP2003060838A priority Critical patent/JP2004267881A/en
Publication of JP2004267881A publication Critical patent/JP2004267881A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage treatment method constituted so as to increase the self-digestion amount of activated sludge while reducing the occurring amount of excess sludge. <P>SOLUTION: In an activated sludge method, organic sewage is treated in a biological reaction tank using microbial action before subjected to solid-liquid separation. The number of dwelling days of the sludge in a biological treatment system is set to 100 days or above. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、汚水の処理方法に関し、特に、浮遊性の微生物を用いて処理を行う活性汚泥法において、活性汚泥の自己消化量を多くすることにより、余剰汚泥の発生量が少なくなるようにした汚水の処理方法に関するものである。
【0002】
【従来の技術】
従来、下水などの有機性汚水の処理は、活性汚泥法と呼ばれる生物処理が主流である。
生物処理では、汚水中に含まれる溶解性の有機物はそのまま活性汚泥微生物に資化されて分解され、また厨芥などの固形性の有機物についても、微生物が代謝する酵素などの作用により溶解化した後に分解される。
活性汚泥法の代表的なものとしては、標準活性汚泥法、オキシデーションディッチ(OD)法、膜分離活性汚泥法等がある。
これらの活性汚泥法は、後段の工程で、活性汚泥と溶液とを物理的な方法で固液分離して清澄な処理水を得ることを目的としている。
この固液分離の方法としては、重力沈澱や膜分離による方法が一般的に普及している。
一方、活性汚泥微生物は有機物を資化した結果、増殖して活性汚泥量を増加させるが、一部の活性汚泥は再度、汚水処理に供されるものの、その他は余剰汚泥として系外に排出して、別途、処理を行うようにしている。
【0003】
【発明が解決しようとする課題】
ところで、上記従来の汚水の処理方法における活性汚泥法は、安定した処理水が得られることから、一般的な処理方法として広く普及しているが、多量の余剰汚泥が発生することが問題となっている。
この余剰汚泥の発生量は濃縮汚泥ベースの重量換算で、全産業廃棄物の20%近くを占めて最も多く、この余剰汚泥の処理コストや最終処分地などをめぐり、社会問題にさえ発展するという問題があった。
【0004】
本発明は、上記従来の汚水の処理方法の有する問題点を解決し、活性汚泥の自己消化量を多くし、余剰汚泥の発生量が少なくなるようにした汚水の処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の汚水の処理方法は、生物反応槽において有機性汚水を微生物の作用により処理した後、固液分離を行う活性汚泥法において、生物処理系に保持される汚泥滞留日数を100日以上としたことを特徴とする。
【0006】
本発明の汚水の処理方法は、生物処理系に保持される汚泥滞留日数を100日以上と、長期間保持させることにより、一定の有機物量に対し、処理系内の活性汚泥微生物量が多くなって自己消化し易い環境が整い、余剰汚泥の発生を抑制することができる。
【0007】
この場合において、汚泥滞留期間の生物化学的酸素要求量/浮遊物質(BOD/SS)比を0.02以下とすることができる。
【0008】
これにより、生物化学的酸素要求量/浮遊物質(BOD/SS)比を0.02以下の低負荷の状態とすることにより、自己消化が促進され、余剰汚泥の発生を抑制することができる。また、低負荷運転のため、維持監理が容易で安定した処理水質が得られる。
【0009】
また、固液分離に膜分離装置を用いることができる。
【0010】
これにより、汚泥滞留日数が長くなり、生物反応(曝気)槽内の活性汚泥微生物の濃度が上昇して固液分離性能が悪化しても、精密ろ過膜等を用いた膜分離装置を使用することにより、高濃度の汚泥に対しても固液分離を簡易に行うことができる。
【0011】
また、活性汚泥に凝集剤を添加することができる。
【0012】
これにより、活性汚泥に凝集剤を添加することで、活性汚泥塊を大きくすることができ、かつ沈降性を高めることができるので、汚泥滞留日数100日以上の長期間の運転が可能となる。
【0013】
さらに、生物反応槽を複数設置し、各々の生物反応槽に有機性汚水を間欠的かつ交互に流入せしめ、一時的に低負荷状態で運転することができる。
【0014】
これにより、一時的に生物化学的酸素要求量/浮遊物質(BOD/SS)比をゼロの無負荷状態とすることができるため、汚泥の自己消化を促進することができる。
【0015】
【発明の実施の形態】
以下、本発明の汚水の処理方法の実施の形態を図面に基づいて説明する。
一般に、活性汚泥法における余剰汚泥の発生は、活性汚泥微生物が汚水中に含まれる有機物を資化して、増殖した結果によるものであり、実際的には増殖と同時に活性汚泥微生物の死滅・分解(自己消化)が進行しており、自己消化量より増殖量が大きい場合に余剰汚泥が発生することになる。
したがって、余剰汚泥の発生量を少なくするには、増殖量を少なくするか、自己消化量を大きくすることで達成できる。
増殖量を少なくする場合の制御因子としては、温度、溶存酸素、流入有機物量などが考えられるが、温度や溶存酸素を制限して、増殖量を抑制すると汚水が適正に処理されなくなるし、処理場に流入する有機物量を制御することは困難であることから、一定量の汚水を処理する場合には、一定量の活性汚泥微生物が増殖するので、その増加量を減少させることはできない。
【0016】
一方、自己消化量については、その制御が可能である。活性汚泥に限らず、微生物は低負荷の状態が長時間続くと自己消化量が多くなる。換言すると、一定の有機物量に対して、処理系内の活性汚泥微生物量を多く保持すれば、微生物1個体当りが資化できる有機物量が少なくなって自己消化し易い環境が整い、その状況を長く続けると自己消化を促進することができる。
汚水処理において、自己消化が進行し易い環境を整えるためには、処理系内に汚泥が滞留する日数(SRT)を長くすることにより実現が可能である。
汚泥滞留日数が長くなると処理系内で活性汚泥量が増加して低負荷の状態、つまり、生物化学的酸素要求量/浮遊物質量(BOD/SS)比が小さくなり、かつ自己消化のための時間を長くすることができる。
本発明は、この点に着眼し、活性汚泥の自己消化量を多くして、余剰汚泥の発生量を少なくするようにしたものである。
【0017】
図1は、活性汚泥法における汚水の処理方法を示す原理図で、分流下水1m(BOD130mg/L、SS150mg/L)を活性汚泥で処理した場合に発生する余剰汚泥量と各操作因子との関係を示している。
【0018】
従来の処理方式において、代表的な低負荷運転としてOD法があるが、図1の右半に示すように、該処理方法における汚泥滞留日数(SRT)は15日乃至50日、BOD/SS比は、0.03乃至0.07であり、下水1mを処理した場合に、約90g以上の余剰汚泥が発生することになる。その他、従来の膜分離活性汚泥法についてもOD法と同等の操作領域であり、余剰汚泥の発生量はOD法と変わらない。標準活性汚泥法にいたっては、図1のさらに右側領域にあり、余剰汚泥の発生量がさらに多くなる。
【0019】
一方、本発明の操作領域は、図1の左半に示すように、汚泥滞留日数が100日以上、BOD/SS比が0.02以下であり、各操作因子とも従来の処理方式と比べて異なっており、余剰汚泥の発生量を凡そ2/3以下にできる。
本発明においては、汚泥滞留日数を長くする必要があるが、汚泥滞留日数を長くすると生物反応(曝気)槽内の活性汚泥微生物の濃度が上昇して、後段の固液分離性能が悪化するため、通常の重力沈澱分離では行えない。このため、本発明では固液分離を、精密ろ過膜等を用いた膜分離装置を使用することにより、汚泥滞留日数が900日近くまで、またBOD/SS比が、0.01以下まで運転できるようになり、この操作領域までは実用化が可能である。ただし現実的には、膜分離装置のろ過面積や維持管理上の問題から、汚泥滞留日数は100乃至500日の範囲内にて、望ましくは300乃至500日にて、またBOD/SS比を0.02以下、望ましくは0.012前後で運転することが好ましい。
この条件で運転することにより、従来の処理方式と比べて、余剰汚泥の発生量を凡そ1/3と、少なくすることができる。
【0020】
なお、近年、膜分離装置の性能向上には目覚しいものがあり、今後、さらなる低負荷運転が見込まれ、余剰汚泥の発生量を格段に少なくできるものと期待される。
一方、従来の最終沈澱池を用いた固液分離方法においても、凝集剤を添加して活性汚泥塊を大きくして沈降性を高めることにより汚泥滞留日数100日以上の運転が可能である。この場合、装置や水槽などについて、最少限度の追加や改造で実施することができ、既設の処理場へ適用し易い利点がある。
また、余剰汚泥の発生量が少なくする本発明の水処理方式は、上流側の処理工程に位置するため、下流側の処理が簡易化することができる利点もある。
【0021】
表1に、各々の処理方式(連続流入は従来の方式であり、間欠流入は本発明の方式である。)で生物処理を行った時に発生する余剰汚泥の発生率を示す。
ここで、余剰汚泥の発生率は、流入する有機性汚水中に含まれる浮遊物質(SS)に対する割合で算出している。
【0022】
【表1】

Figure 2004267881
【0023】
表1に示すとおり、有機性汚水を連続流入させた場合の余剰汚泥発生率を100%とすると、間欠流入は80%であった。これは、低負荷(無負荷)が一時的なものであっても、繰返して運転することにより、余剰汚泥を減量化することが可能であることを示すものであり、間欠流入は連続流入に比べ、相対的に余剰汚泥を20%程度減容化できることを示している。
【0024】
【発明の効果】
本発明の汚水の処理方法によれば、生物処理系に保持される汚泥滞留日数を100日以上と、長期間保持させることにより、一定の有機物量に対し、処理系内の活性汚泥微生物量が多くなって自己消化し易い環境が整い、余剰汚泥の発生を抑制し、従来法に比べその発生量を1/3程度までとすることができる。
【0025】
また、生物化学的酸素要求量/浮遊物質(BOD/SS)比を0.02以下の低負荷の状態とすることにより、自己消化が促進され、余剰汚泥の発生を抑制することができる。
また、低負荷運転のため、維持監理が容易で安定した処理水質が得られる。
【0026】
また、汚泥滞留日数が長くなり、生物反応(曝気)槽内の活性汚泥微生物の濃度が上昇して固液分離性能が悪化しても、精密ろ過膜等を用いた膜分離装置を使用することにより、高濃度の汚泥に対しても固液分離を簡易に行うことができる。
【0027】
また、活性汚泥に凝集剤を添加することで、活性汚泥塊を大きくすることができ、かつ沈降性を高めることができるので、汚泥滞留日数100日以上の長期間の運転が可能となる。
【0028】
さらに、生物反応槽を複数設置し、各々の生物反応槽に有機性汚水を間欠的かつ交互に流入せしめ、一時的に低負荷状態で運転することにより、一時的に生物化学的酸素要求量/浮遊物質(BOD/SS)比をゼロの無負荷状態とすることができるため、汚泥の自己消化を促進することができる。
【図面の簡単な説明】
【図1】図1は、活性汚泥法による汚水処理の原理を説明する図で、左半は本発明を右半は従来の方法をそれぞれ示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating wastewater, in particular, in an activated sludge method in which treatment is performed using floating microorganisms, by increasing the amount of self-digestion of activated sludge, the amount of generated excess sludge is reduced. The present invention relates to a method for treating sewage.
[0002]
[Prior art]
BACKGROUND ART Conventionally, treatment of organic wastewater such as sewage is mainly performed by biological treatment called an activated sludge method.
In biological treatment, soluble organic matter contained in sewage is directly utilized by activated sludge microorganisms and decomposed, and solid organic matter such as kitchen garbage is also dissolved by the action of enzymes metabolized by microorganisms. Decomposed.
Typical examples of the activated sludge method include a standard activated sludge method, an oxidation ditch (OD) method, and a membrane separation activated sludge method.
The purpose of these activated sludge methods is to obtain a clear treated water by solid-liquid separation of the activated sludge and the solution by a physical method in a later step.
As a method of the solid-liquid separation, a method by gravity precipitation or membrane separation is generally used.
On the other hand, activated sludge microorganisms assimilate organic matter and, as a result, multiply and increase the amount of activated sludge, but some activated sludge is again subjected to sewage treatment, while others are discharged outside the system as surplus sludge. Therefore, the processing is performed separately.
[0003]
[Problems to be solved by the invention]
By the way, the activated sludge method in the above-mentioned conventional wastewater treatment method is widely used as a general treatment method because stable treated water can be obtained, but the problem is that a large amount of excess sludge is generated. ing.
This excess sludge is the largest in terms of concentrated sludge, accounting for nearly 20% of the total industrial waste, and it is said that this excess sludge can be a social problem, even over its disposal costs and final disposal sites. There was a problem.
[0004]
An object of the present invention is to solve the problems of the above-mentioned conventional method for treating wastewater and to provide a method for treating wastewater in which the amount of activated sludge is increased and the amount of excess sludge is reduced. And
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method for treating sewage of the present invention comprises treating an organic sewage in a biological reaction tank by the action of microorganisms, and then performing a solid-liquid separation in the activated sludge method. It is characterized in that the number of stay days is set to 100 days or more.
[0006]
In the method for treating wastewater of the present invention, the amount of activated sludge microorganisms in the treatment system is increased with respect to a certain amount of organic matter by keeping the sludge retention time in the biological treatment system for 100 days or more and maintaining the sludge for a long period of time. An environment that is easy to self-digest is prepared, and the generation of excess sludge can be suppressed.
[0007]
In this case, the ratio of biochemical oxygen demand / suspended matter (BOD 5 / SS) during the sludge retention period can be 0.02 or less.
[0008]
Thereby, by setting the ratio of biochemical oxygen demand / suspended matter (BOD 5 / SS) to a low load of 0.02 or less, self-digestion is promoted and the generation of excess sludge can be suppressed. . In addition, because of low load operation, maintenance and supervision is easy and stable treated water quality can be obtained.
[0009]
Further, a membrane separation device can be used for solid-liquid separation.
[0010]
As a result, even if the sludge residence time is prolonged and the concentration of activated sludge microorganisms in the biological reaction (aeration) tank rises and solid-liquid separation performance deteriorates, a membrane separation device using a microfiltration membrane or the like is used. Thereby, solid-liquid separation can be easily performed even for high-concentration sludge.
[0011]
Further, a flocculant can be added to the activated sludge.
[0012]
By adding a flocculant to the activated sludge, the activated sludge mass can be increased and the sedimentation property can be increased, so that long-term operation with sludge staying several hundred days or more is possible.
[0013]
Furthermore, a plurality of biological reaction tanks can be installed, and organic wastewater can be intermittently and alternately flowed into each of the biological reaction tanks, and can be temporarily operated under a low load state.
[0014]
Thereby, the ratio of biochemical oxygen demand / suspended matter (BOD 5 / SS) ratio can be temporarily set to zero and no load is applied, so that self-digestion of sludge can be promoted.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a sewage treatment method of the present invention will be described with reference to the drawings.
In general, the generation of surplus sludge in the activated sludge method is a result of activated sludge microorganisms assimilating organic substances contained in sewage and multiplying them. (Self-digestion) is progressing, and when the amount of proliferation is larger than the amount of self-digestion, excess sludge will be generated.
Therefore, the amount of surplus sludge can be reduced by reducing the amount of proliferation or increasing the amount of self-digestion.
Control factors for reducing the growth amount include temperature, dissolved oxygen, and the amount of inflowing organic matter.However, if the temperature and dissolved oxygen are restricted and the growth amount is suppressed, the wastewater will not be properly treated, and Since it is difficult to control the amount of organic matter flowing into the plant, when treating a certain amount of sewage, a certain amount of activated sludge microorganisms proliferate and the increase cannot be reduced.
[0016]
On the other hand, the amount of self-digestion can be controlled. Not only activated sludge, but also microorganisms increase their self-digestion amount when the load is low for a long time. In other words, if a large amount of activated sludge microorganisms in the treatment system is maintained for a certain amount of organic matter, the amount of organic matter that can be assimilated per individual microorganism is reduced, and an environment that facilitates self-digestion is established. Long-lasting can promote self-digestion.
In sewage treatment, it is possible to prepare an environment in which self-digestion easily proceeds by increasing the number of days (SRT) in which sludge stays in the treatment system.
As the sludge retention time becomes longer, the amount of activated sludge increases in the treatment system and the load is low, that is, the ratio of biochemical oxygen demand / suspended matter (BOD 5 / SS) becomes smaller and self-digestion occurs. Time can be lengthened.
The present invention focuses on this point, and increases the amount of self-digestion of activated sludge to reduce the amount of excess sludge generated.
[0017]
FIG. 1 is a principle diagram showing a method for treating wastewater in the activated sludge method. The amount of excess sludge generated when 1 m 3 (BOD 5 130 mg / L, 150 mg / L SS) is treated with activated sludge and various operating factors. The relationship is shown.
[0018]
In the conventional treatment method, there is an OD method as a typical low-load operation. As shown in the right half of FIG. 1, the sludge retention time (SRT) in the treatment method is 15 to 50 days, and BOD 5 / SS ratio is 0.03 to 0.07, when treated sewage 1 m 3, excess sludge will occur over about 90 g. In addition, the operation range of the conventional membrane separation activated sludge method is the same as that of the OD method, and the amount of excess sludge generated is not different from that of the OD method. The standard activated sludge method is located on the further right side of FIG. 1, and the amount of excess sludge generated is further increased.
[0019]
On the other hand, as shown in the left half of FIG. 1, the operation area of the present invention has a sludge retention time of 100 days or more and a BOD 5 / SS ratio of 0.02 or less. And the amount of surplus sludge can be reduced to about 2/3 or less.
In the present invention, it is necessary to increase the sludge retention time, but if the sludge retention time is increased, the concentration of the activated sludge microorganisms in the biological reaction (aeration) tank increases, and the solid-liquid separation performance in the subsequent stage deteriorates. Cannot be performed by ordinary gravity sedimentation separation. For this reason, in the present invention, the solid-liquid separation is performed by using a membrane separation device using a microfiltration membrane or the like so that the number of days of sludge retention is close to 900 days and the BOD 5 / SS ratio is 0.01 or less. It is possible to put this operation area into practical use. However, in reality, the sludge retention time should be within the range of 100 to 500 days, desirably 300 to 500 days, and the BOD 5 / SS ratio should be reduced due to problems in the filtration area and maintenance of the membrane separation device. It is preferable to operate at 0.02 or less, preferably around 0.012.
By operating under these conditions, the amount of excess sludge generated can be reduced to about 1/3 as compared with the conventional treatment method.
[0020]
In recent years, there has been a remarkable improvement in the performance of the membrane separation device, and further low-load operation is expected in the future, and it is expected that the amount of generated excess sludge can be significantly reduced.
On the other hand, in a conventional solid-liquid separation method using a final sedimentation basin, it is possible to operate the sludge for several hundred days or more by adding a flocculant to increase the activated sludge mass and enhance sedimentation. In this case, the apparatus and the water tank can be implemented with minimum addition or modification, and there is an advantage that it can be easily applied to an existing treatment plant.
In addition, since the water treatment method of the present invention, in which the amount of excess sludge generated is reduced, is located in the upstream treatment step, there is also an advantage that the downstream treatment can be simplified.
[0021]
Table 1 shows the rate of excess sludge generated when biological treatment is performed in each treatment method (continuous inflow is a conventional method, and intermittent inflow is the method of the present invention).
Here, the generation rate of the excess sludge is calculated by a ratio to the suspended solids (SS) contained in the inflowing organic wastewater.
[0022]
[Table 1]
Figure 2004267881
[0023]
As shown in Table 1, the intermittent inflow was 80%, assuming that the excess sludge generation rate when organic wastewater was continuously introduced was 100%. This indicates that even if the low load (no load) is temporary, it is possible to reduce the amount of excess sludge by operating repeatedly, and the intermittent inflow becomes a continuous inflow. This indicates that the excess sludge can be relatively reduced in volume by about 20%.
[0024]
【The invention's effect】
According to the method for treating sewage of the present invention, the amount of activated sludge microorganisms in the treatment system is maintained for a certain amount of organic matter by keeping the sludge retention period in the biological treatment system at 100 days or more and maintaining it for a long period of time. An environment that facilitates self-digestion is increased, and the generation of excess sludge can be suppressed, and the generation amount can be reduced to about 1/3 as compared with the conventional method.
[0025]
In addition, by setting the ratio of biochemical oxygen demand / suspended matter (BOD 5 / SS) to a low load of 0.02 or less, self-digestion is promoted and the generation of excess sludge can be suppressed.
In addition, because of low load operation, maintenance and supervision is easy and stable treated water quality can be obtained.
[0026]
In addition, even if the number of days of sludge retention becomes longer and the concentration of activated sludge microorganisms in the biological reaction (aeration) tank rises and solid-liquid separation performance deteriorates, use a membrane separation device using a microfiltration membrane. Accordingly, solid-liquid separation can be easily performed even for high-concentration sludge.
[0027]
Further, by adding a flocculant to the activated sludge, the activated sludge mass can be enlarged and the sedimentation property can be enhanced, so that a long-term operation with sludge staying several hundred days or more is possible.
[0028]
Furthermore, a plurality of biological reaction tanks are installed, and organic wastewater is intermittently and alternately flown into each of the biological reaction tanks, and is temporarily operated under a low load state. Since the suspended substance (BOD 5 / SS) ratio can be set to zero and no load, the self-digestion of sludge can be promoted.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the principle of sewage treatment by the activated sludge method. The left half shows the present invention and the right half shows a conventional method.

Claims (5)

生物反応槽において有機性汚水を微生物の作用により処理した後、固液分離を行う活性汚泥法において、生物処理系に保持される汚泥滞留日数を100日以上としたことを特徴とする汚水の処理方法。In the activated sludge method of performing solid-liquid separation after treating organic sewage by the action of microorganisms in a biological reaction tank, the sludge retention time retained in the biological treatment system is set to 100 days or more. Method. 汚泥滞留期間の生物化学的酸素要求量/浮遊物質(BOD/SS)比を0.02以下としたことを特徴とする請求項1記載の汚水の処理方法。Biochemical oxygen demand / suspended solids (BOD 5 / SS) method of processing sewage according to claim 1, characterized in that a 0.02 to ratio of sludge dwell period. 固液分離に膜分離装置を用いたことを特徴とする請求項1又は2記載の汚水の処理方法。3. The method for treating sewage according to claim 1, wherein a membrane separation device is used for the solid-liquid separation. 活性汚泥に凝集剤を添加することを特徴とする請求項1、2又は3記載の汚水の処理方法。4. The method for treating sewage according to claim 1, wherein a flocculant is added to the activated sludge. 生物反応槽を複数設置し、各々の生物反応槽に有機性汚水を間欠的かつ交互に流入せしめ、一時的に低負荷状態で運転することを特徴とする請求項1、2、3又は4記載の汚水の処理方法。5. The method according to claim 1, wherein a plurality of biological reaction tanks are installed, and organic wastewater is intermittently and alternately flowed into each of the biological reaction tanks, and temporarily operated under a low load state. Wastewater treatment method.
JP2003060838A 2003-03-07 2003-03-07 Sewage treatment method Pending JP2004267881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060838A JP2004267881A (en) 2003-03-07 2003-03-07 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060838A JP2004267881A (en) 2003-03-07 2003-03-07 Sewage treatment method

Publications (1)

Publication Number Publication Date
JP2004267881A true JP2004267881A (en) 2004-09-30

Family

ID=33123220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060838A Pending JP2004267881A (en) 2003-03-07 2003-03-07 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP2004267881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279509A (en) * 2008-05-21 2009-12-03 Nissin Electric Co Ltd Wastewater treatment method, instrumentation control system for wastewater treatment equipment, and wastewater treatment equipment
JP2013512098A (en) * 2009-12-01 2013-04-11 リ、ジンミン Wastewater pretreatment method and wastewater treatment method using this pretreatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279509A (en) * 2008-05-21 2009-12-03 Nissin Electric Co Ltd Wastewater treatment method, instrumentation control system for wastewater treatment equipment, and wastewater treatment equipment
JP2013512098A (en) * 2009-12-01 2013-04-11 リ、ジンミン Wastewater pretreatment method and wastewater treatment method using this pretreatment method
US9169143B2 (en) 2009-12-01 2015-10-27 Jinmin Li Wastewater pretreatment method and sewage treatment method using the pretreament method

Similar Documents

Publication Publication Date Title
CN103819049B (en) A kind of sewage water treatment method and system
CN104961306B (en) A kind of processing method of vaccary breeding wastewater
CN105502826B (en) A kind of high-efficient denitrification and dephosphorization sewage treatment process and its device
JP6081623B2 (en) Wastewater treatment system
CN102515446B (en) BCM (Biology Cilium Magnetic) biological sewage treatment system and BCM biological sewage treatment process
CN113845273B (en) Method for efficiently denitrifying and decarbonizing anaerobic effluent of pig wastewater
CN103739157A (en) Method for processing middle and late period of landfill leachate
CN105967435A (en) Double-circulation nitrogen and phosphorus removal wastewater treatment system and process
CN104211252B (en) Percolate short-cut nitrification and denitrification denitrification process
JP2016036777A (en) Wastewater treatment method and wastewater treatment equipment
CN116040862A (en) Municipal wastewater treatment system and method
CN107381802B (en) Efficient nitrogen and phosphorus removal sewage treatment method
CN105923763A (en) Permeable sulfur-autotrophic denitrification bio-wall enhanced wastewater denitrification process
CN102775003A (en) Device and technology for treating low-concentration VC pharmaceutical wastewater
Sandu et al. Efficacy of a pilot-scale wastewater treatment plant upon a commercial aquaculture effluent: I. Solids and carbonaceous compounds
CN106082564A (en) A kind of membrane bioreactor sludge reduction sewage disposal technology
CN106430861A (en) Efficient MBBR (moving bed biofilm reactor) sewage treatment device and sewage treatment process thereof
KR101027642B1 (en) Advanced method of treating waste water using membrane bioreator
JP2004267881A (en) Sewage treatment method
CN106673306A (en) Treatment method of high-concentration refractory ammonia-containing organic wastewater
CN105541025A (en) BESI technology-based deep treatment method for refining desulfurization wastewater
CN104860476A (en) Technology for efficient denitrification through unpowered backflow
CN111620440A (en) Method and equipment for treating low-carbon-nitrogen-ratio domestic sewage by using improved CASS-MBR process
CN110697991A (en) Garbage leachate biological treatment process and system
CN214327270U (en) SBR-MABR sewage treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104