JP2004267862A - Hydrogen producing catalyst and hydrogen producing method - Google Patents

Hydrogen producing catalyst and hydrogen producing method Download PDF

Info

Publication number
JP2004267862A
JP2004267862A JP2003059896A JP2003059896A JP2004267862A JP 2004267862 A JP2004267862 A JP 2004267862A JP 2003059896 A JP2003059896 A JP 2003059896A JP 2003059896 A JP2003059896 A JP 2003059896A JP 2004267862 A JP2004267862 A JP 2004267862A
Authority
JP
Japan
Prior art keywords
catalyst
dimethyl ether
hydrogen
carrier
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059896A
Other languages
Japanese (ja)
Other versions
JP4378976B2 (en
Inventor
Hitoshi Saima
等 齋間
Yasuhiro Mogi
康弘 茂木
Tsutomu Shikada
勉 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Holdings Inc
Original Assignee
JFE Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Holdings Inc filed Critical JFE Holdings Inc
Priority to JP2003059896A priority Critical patent/JP4378976B2/en
Publication of JP2004267862A publication Critical patent/JP2004267862A/en
Application granted granted Critical
Publication of JP4378976B2 publication Critical patent/JP4378976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain hydrogen in a high yield while suppressing the production of carbon monoxide. <P>SOLUTION: The hydrogen producing catalyst has a function for producing hydrogen from dimethyl ether and steam and comprises a mixture of a copper-containing catalyst and a catalyst obtained by supporting a base on a carrier. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ジメチルエーテルと水蒸気から水素を生成させる触媒およびそれを用いたジメチルエーテルの改質による水素の製造方法に関するものである。
【0002】
【従来の技術】
水素はクリーンなエネルギーとして期待されている。しかしその沸点が−253℃と低いため、気体として使用せざるを得ない。また、水素をエネルギーとして貯蔵する時には数十MPaという高圧のタンクを使用しなければならない。
【0003】
これに対し、液状または容易に液状になる水素含有物質を改質することにより、水素を得る方法が知られている。例えば、メタノールを下記式(1)により改質し、水素を得る方法である。
【0004】
CHOH+HO→CO+3H −−−(1)
【0005】
しかしながら、上記の方法では、メタノールは毒性があるため、大量に使用するには問題がある。
【0006】
その他に、下記式(2)に基づき、例えば、20%以上の銅を含む触媒を用いシメチルエーテルを改質して水素を製造する方法がある(例えば、特許文献1)。
【0007】
(CHO+3HO→2CO+6H −−−(2)
【0008】
【特許文献1】
特許第3124035号公報
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1の方法では、生成ガス中に水素以外に多量の一酸化炭素を生成してしまう。一酸化炭素は例えば水素燃料電池の電極に強く吸収し、燃料電池を劣化させる等の問題があり、一酸化炭素はできるだけ低く抑えることが必要である。
【0010】
この発明は、上記問題点を解決するためになされたもので、一酸化炭素の生成を低く抑えつつ高い収率で水素を得ることができる触媒およびそれを用いた水素の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明者らが上記課題を解決すべく鋭意研究した結果、ジメチルエーテルと水蒸気から水素を生成させる触媒として、銅を含有する触媒と塩基を担体に担持した触媒の混合物が極めて有効であり、前記触媒を用いてジメチルエーテルを水蒸気により改質することにより、一酸化炭素の生成を低く抑えつつ高い収率で水素を得ることができることを見出した。
【0012】
この発明は、上記のような知見に基づいてなされたものであり、下記を特徴とする。
【0013】
請求項1に記載の発明は、銅を含有する触媒と塩基を担体に担持した触媒の混合物とからなることに特徴を有するものである。
【0014】
請求項2に記載の発明は、請求項1に記載の発明において、塩基を担体に担持した触媒がアルカリ金属塩を担体に担持した触媒であることに特徴を有するものである。
【0015】
請求項3に記載の発明は、請求項1または2に記載の発明において、銅を含有する触媒がメタノール合成触媒であることに特徴を有するものである。
【0016】
請求項4に記載の発明は、ジメチルエーテルを水蒸気により改質し水素を製造する方法において、銅を含有する触媒と塩基を担体に担持した触媒の混合物とからなる触媒を用いることに特徴を有するものである。
【0017】
請求項5に記載の発明は、請求項4に記載の発明において、塩基を担体に担持した触媒がアルカリ金属塩を担体に担持した触媒であることに特徴を有するものである。
【0018】
請求項6に記載の発明は、請求項4または5に記載の発明において、銅を含有する物質がメタノール合成触媒であることに特徴を有するものである。
【0019】
【発明の実施の形態】
この発明の触媒およびそれを用いた水素の製造方法について、以下に詳細に説明する。
【0020】
まず、この発明においては、下記式(3)に基づいてジメチルエーテルの改質反応が行われる。
【0021】
(CHO+HO→2CHOH
2CHOH→2CO+2H
2CO+2HO→2CO+2H −−−(3)
【0022】
そして、上記式(3)のジメチルエーテルの改質反応において用いられるこの発明の触媒は、銅を含有する触媒と塩基を担体に担持した触媒の混合物からなる物である。
【0023】
銅を含有する触媒としては、上記式(3)における(CHO+HO→2CHOH(水和反応)で生成したメタノールを一酸化炭素と水素の混合物への分解する反応(2CHOH→2CO+2H)および生成した一酸化炭素と水素による水性ガスシフト反応(2CO+2HO→2CO+2H)に活性な触媒であり、かつ銅を含むものとする。
【0024】
このような触媒として、メタノール合成触媒が挙げられる。メタノール合成触媒は、その逆であるメタノール分解反応および水性ガスシフト反応に対しても活性があることが知られており、例えば、銅−亜鉛−アルミナ触媒、銅−クロム−アルミナ触媒、銅−アルミナ触媒等が挙げられる。触媒中の銅を含有する物質の含有率は0.1〜50wt%が好ましく、さらに好ましくは1〜10wt%である。銅を含有する物質の含有率が0.1wt%未満では水素の収率が低下してしまう。一方、銅を含有する物質の含有率が50wt%超えでは、銅の重量当りの比表面積が大きく低下し、経済的に好ましくない。
【0025】
また、銅を含有する物質は、一般的な調整方法で製造することができる。例えば含浸法や共沈法で製造する。
【0026】
塩基を担体に担持した触媒としては、上記式(3)において、主に(CHO+HO→2CHOH(水和反応)に対して活性な触媒であり水に対し安定な物質であればよい。その中でも廉価であるとの理由からアルカリ金属塩を担体に担持した触媒が好ましい。例えば、炭酸セシウム、硝酸セシウムをアルミナに担持した触媒が挙げられる。好ましい触媒担体としては、アルミナ、シリカゲル、シリカ・アルミナ、チタニア、ジルコニアなどの酸化物である。
【0027】
触媒中の塩基を担体に担持した触媒の含有率は2〜30wt%が好ましく、さらに好ましくは5〜20wt%である。塩基を担体に担持した触媒の含有率が2wt%未満および30wt%超えでは一酸化炭素が大量に生成してしまう。
【0028】
また、塩基を担体に担持した触媒は、一般的な調整方法で製造することができる。例えば含浸法や共沈法で製造する。
【0029】
そして、この発明では、銅を含有する触媒と塩基を担体に担持した触媒とを混合し、ジメチルエーテルと水蒸気から水素を生成させる触媒として用いる。この時、銅を含有する触媒と塩基を担体に担持した触媒との混合は物理的に混合すれば良く、均一に混合するのが好ましい。また、粒径を同程度にした後粒子状で混合しても良いし、粉砕して粉体として混合し成型しても良い。
【0030】
このようにして得られたこの発明の触媒を用いて、ジメチルエーテルを水蒸気により改質し水素を製造する。供給する水蒸気は、原料のジメチルエーテルに対して、量論(3モル倍)に対して必要とする反応率以上あればよく、2〜10モル倍、好ましくは3〜5モル倍である。水蒸気の供給が2モル倍より少ないと、高いジメチルエーテル転化率が得られず、また10モル倍より多いと、ガス体積が大きくなるため反応器容積も大きくなり経済的でない。
【0031】
原料ガスには、ジメチルエーテルと水蒸気以外の成分も含むことができる。その他の成分として反応に不活性なガス、例えば窒素、不活性ガス、CO、メタン等を含むことができる。また、反応の中間生成物や最終生成物、例えばCO,メタノール,H等を含むことができる。これらの含有量は30容量%以下が適当であり、これより多くなると反応物の触媒層への滞留時間が短くなり、反応率の低下が問題になる。一方、空気(酸素)はジメチルエーテルが燃焼してしまうのでなるべく排除したほうがよく、許容含有量は空気として1%以下である。
【0032】
反応温度は、150〜400℃、好ましくは200〜350℃である。反応温度が150℃より低いと高いジメチルエーテル転化率が得られず、また400℃より高いと副生するメタンおよび一酸化炭素の割合が増加するとともに、活性成分である銅の粒子成長が著しくなって、徐々に触媒が失活してくるので好ましくない。
【0033】
反応圧力は常圧〜1MPaが好ましい。反応圧力が1MPaより高いとジメチルエーテル転化率が低下する。
【0034】
空間速度(触媒1mあたりの標準状態における混合ガスの供給速度m/h)は、1000〜30000m/m・hが好ましい。空間速度が30000m/m・hより大きいとジメチルエーテル転化率が低くなり、また1000m/m・hより小さいと反応器が極端に大きくなって経済的でない。
【0035】
なお、この発明の方法においては、固定床、流動床のいずれの装置を用いてもよい。
【0036】
【実施例】
次に、この発明を実施例により比較例と共にさらに説明する。
【0037】
触媒の調整
アルミナに炭酸セシウムを含浸法で担持して、セシウムとして10%を含む触媒Aを調整した。共沈法により銅−アルミナ触媒Bを調整した。触媒Aと触媒Bを各々0.5〜1.0mmφに粉砕・分級した後、触媒A2重量部と触媒B1重量部を混合した。
【0038】
反応方法
固定床常圧流通反応装置を用い、上記により得られた触媒を反応器に充填し、ジメチルエーテルと水を所定量供給して、以下の条件で反応させた。
【0039】
ジメチルエーテルに対する水の添加量:3.1モル倍
W/F:15g・hr/mol(W/F:触媒量(g)をジメチルエーテルの反応器入口流量(mol/hr)で除した値)
反応温度:300℃
【0040】
以上の結果、ジメチルエーテルの転化率は50.7%、水素収率は50.5%、一酸化炭素生成率は0.6%であった。なお、この時、ジメチルエーテルの転化率は、反応で消失したジメチルエーテル量をジメチルエーテルの反応器入口流量で除した値である。また、水素収率は、反応で生成した水素量(mol/hr)をジメチルエーテルの反応器入口流量で除した値をさらに量論比である6で除した値である。さらに、一酸化炭素の生成率は反応器出口の一酸化炭素濃度とした。
【0041】
(比較例)
触媒の調整において、何も担持しないアルミナを触媒Aとした以外は、上記実施例と同様の条件で行った。
【0042】
以上の結果、ジメチルエーテルの転化率は69.1%、水素収率は62.9%、一酸化炭素生成率は1.1%であった。
【0043】
以上より、この発明例では、一酸化炭素の生成を低く抑えながら、高い収率で水素を得ることができる。一方、比較例では、ジメチルエーテルの転化率、水素収率は高いものの、一酸化炭素生成率も高い値となっていることがわかる。
【0044】
【発明の効果】
以上説明したように、この発明によれば、一酸化炭素の生成を低く抑えつつ高い収率で水素を得ることができる。また、クリーンでかつ毒性がなく取り扱いが容易なジメチルエーテルを原料として用いて水素を製造するので、家庭用や自動車用燃料電池のエネルギー源として有用である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for generating hydrogen from dimethyl ether and steam, and a method for producing hydrogen by reforming dimethyl ether using the catalyst.
[0002]
[Prior art]
Hydrogen is expected as clean energy. However, since its boiling point is as low as -253 ° C, it must be used as a gas. Also, when hydrogen is stored as energy, a high-pressure tank of several tens of MPa must be used.
[0003]
On the other hand, there is known a method for obtaining hydrogen by modifying a hydrogen-containing substance that is liquid or easily liquid. For example, there is a method in which methanol is reformed by the following formula (1) to obtain hydrogen.
[0004]
CH 3 OH + H 2 O → CO 2 + 3H 2 --- (1)
[0005]
However, in the above method, methanol is toxic, so there is a problem in using it in large quantities.
[0006]
In addition, there is a method for producing hydrogen by reforming, for example, cimethyl ether using a catalyst containing 20% or more of copper based on the following formula (2) (for example, Patent Document 1).
[0007]
(CH 3 ) 2 O + 3H 2 O → 2CO 2 + 6H 2- (2)
[0008]
[Patent Document 1]
Japanese Patent No. 3124035
[Problems to be solved by the invention]
However, in the method of Patent Document 1, a large amount of carbon monoxide other than hydrogen is generated in the generated gas. For example, carbon monoxide is strongly absorbed by an electrode of a hydrogen fuel cell, and has a problem of deteriorating the fuel cell. Therefore, it is necessary to keep carbon monoxide as low as possible.
[0010]
The present invention has been made to solve the above problems, and provides a catalyst capable of obtaining hydrogen at a high yield while suppressing the production of carbon monoxide, and a method for producing hydrogen using the same. With the goal.
[0011]
[Means for Solving the Problems]
As a result of intensive studies conducted by the present inventors to solve the above problems, as a catalyst for generating hydrogen from dimethyl ether and water vapor, a mixture of a catalyst containing copper and a catalyst having a base supported on a carrier is extremely effective. It has been found that by reforming dimethyl ether with steam using, hydrogen can be obtained in a high yield while suppressing the production of carbon monoxide.
[0012]
The present invention has been made based on the above findings, and has the following features.
[0013]
The invention according to claim 1 is characterized by comprising a mixture of a catalyst containing copper and a catalyst having a base supported on a carrier.
[0014]
The invention described in claim 2 is characterized in that, in the invention described in claim 1, the catalyst in which a base is supported on a carrier is a catalyst in which an alkali metal salt is supported on a carrier.
[0015]
The invention described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the catalyst containing copper is a methanol synthesis catalyst.
[0016]
The invention according to claim 4 is a method for producing hydrogen by reforming dimethyl ether with steam, characterized in that a catalyst comprising a mixture of a catalyst containing copper and a catalyst having a base supported on a carrier is used. It is.
[0017]
The invention according to claim 5 is characterized in that, in the invention according to claim 4, the catalyst in which a base is supported on a carrier is a catalyst in which an alkali metal salt is supported on a carrier.
[0018]
The invention described in claim 6 is characterized in that, in the invention described in claim 4 or 5, the substance containing copper is a methanol synthesis catalyst.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst of the present invention and a method for producing hydrogen using the same will be described in detail below.
[0020]
First, in the present invention, a dimethyl ether reforming reaction is performed based on the following formula (3).
[0021]
(CH 3 ) 2 O + H 2 O → 2CH 3 OH
2CH 3 OH → 2CO + 2H 2
2CO + 2H 2 O → 2CO 2 + 2H 2 --- (3)
[0022]
The catalyst of the present invention used in the dimethyl ether reforming reaction of the above formula (3) is a mixture of a catalyst containing copper and a catalyst having a base supported on a carrier.
[0023]
As a catalyst containing copper, a reaction (2CH) for decomposing methanol generated by (CH 3 ) 2 O + H 2 O → 2CH 3 OH (hydration reaction) in the above formula (3) into a mixture of carbon monoxide and hydrogen is used. 3 OH → 2CO 2 + 2H 2 ) and produced water gas shift reaction with carbon monoxide and hydrogen was (2CO + 2H 2 O → 2CO 2 + 2H 2) to an active catalyst, and is intended to include copper.
[0024]
Examples of such a catalyst include a methanol synthesis catalyst. Methanol synthesis catalysts are also known to be active against methanol decomposition reaction and water gas shift reaction, which are the opposite. For example, copper-zinc-alumina catalyst, copper-chromium-alumina catalyst, copper-alumina catalyst And the like. The content of the copper-containing substance in the catalyst is preferably 0.1 to 50 wt%, more preferably 1 to 10 wt%. If the content of the copper-containing substance is less than 0.1% by weight, the yield of hydrogen decreases. On the other hand, when the content of the substance containing copper exceeds 50 wt%, the specific surface area per weight of copper is greatly reduced, which is not economically preferable.
[0025]
Further, the substance containing copper can be manufactured by a general adjustment method. For example, it is manufactured by an impregnation method or a coprecipitation method.
[0026]
In the above formula (3), the catalyst having a base supported on a carrier is a catalyst which is mainly active against (CH 3 ) 2 O + H 2 O → 2 CH 3 OH (hydration reaction) and is stable against water. Should be fine. Among them, a catalyst in which an alkali metal salt is supported on a carrier is preferable because it is inexpensive. For example, a catalyst in which cesium carbonate and cesium nitrate are supported on alumina can be used. Preferred catalyst carriers are oxides such as alumina, silica gel, silica-alumina, titania, and zirconia.
[0027]
The content of the catalyst in which the base is supported on the carrier in the catalyst is preferably 2 to 30% by weight, more preferably 5 to 20% by weight. If the content of the catalyst supporting the base on the carrier is less than 2 wt% or more than 30 wt%, a large amount of carbon monoxide is generated.
[0028]
Further, a catalyst in which a base is supported on a carrier can be produced by a general preparation method. For example, it is manufactured by an impregnation method or a coprecipitation method.
[0029]
In the present invention, a catalyst containing copper and a catalyst having a base supported on a carrier are mixed and used as a catalyst for generating hydrogen from dimethyl ether and steam. At this time, the mixing of the catalyst containing copper and the catalyst in which the base is supported on the carrier may be performed by physically mixing, and preferably, the mixing is uniform. Further, the particles may be mixed in the form of particles after having the same particle size, or may be pulverized, mixed as a powder, and molded.
[0030]
Using the catalyst of the present invention thus obtained, dimethyl ether is reformed with steam to produce hydrogen. The supplied steam only needs to be at least the required reaction rate based on the stoichiometry (3 mole times) with respect to dimethyl ether as the raw material, and is 2 to 10 mole times, preferably 3 to 5 mole times. If the supply of steam is less than 2 mole times, a high conversion of dimethyl ether cannot be obtained, and if it is more than 10 mole times, the gas volume becomes large and the reactor volume becomes large, which is not economical.
[0031]
The raw material gas may contain components other than dimethyl ether and steam. Other components may include gases inert to the reaction, for example, nitrogen, inert gases, CO 2 , methane, and the like. Further, it may contain an intermediate product or a final product of the reaction, for example, CO, methanol, H 2 or the like. The content of these is suitably not more than 30% by volume. If the content is more than 30% by volume, the residence time of the reactants in the catalyst layer is shortened, and a reduction in the reaction rate becomes a problem. On the other hand, air (oxygen) burns dimethyl ether, so it is better to exclude it as much as possible, and the allowable content is 1% or less as air.
[0032]
The reaction temperature is 150 to 400 ° C, preferably 200 to 350 ° C. If the reaction temperature is lower than 150 ° C., a high conversion of dimethyl ether cannot be obtained. This is not preferable because the catalyst gradually deactivates.
[0033]
The reaction pressure is preferably from normal pressure to 1 MPa. If the reaction pressure is higher than 1 MPa, the conversion of dimethyl ether decreases.
[0034]
The space velocity (feed rate m 3 / h of the mixed gas at standard conditions per catalyst 1 m 3) is, 1000~30000m 3 / m 3 · h are preferred. When the space velocity is more than 30,000 m 3 / m 3 · h, the conversion of dimethyl ether is low, and when the space velocity is less than 1000 m 3 / m 3 · h, the reactor becomes extremely large and is not economical.
[0035]
In the method of the present invention, either a fixed bed or a fluidized bed may be used.
[0036]
【Example】
Next, the present invention will be further described with reference to examples and comparative examples.
[0037]
Preparation of Catalyst Cesium carbonate was supported on alumina by an impregnation method to prepare Catalyst A containing 10% as cesium. A copper-alumina catalyst B was prepared by a coprecipitation method. After crushing and classifying each of the catalyst A and the catalyst B to 0.5 to 1.0 mmφ, 2 parts by weight of the catalyst A and 1 part by weight of the catalyst B were mixed.
[0038]
Reaction Method Using a fixed bed normal pressure flow reactor, the catalyst obtained as described above was charged into a reactor, dimethyl ether and water were supplied in predetermined amounts, and reacted under the following conditions.
[0039]
Amount of water added to dimethyl ether: 3.1 mole times W / F: 15 g · hr / mol (W / F: value obtained by dividing catalyst amount (g) by reactor inlet flow rate of dimethyl ether (mol / hr))
Reaction temperature: 300 ° C
[0040]
As a result, the conversion of dimethyl ether was 50.7%, the hydrogen yield was 50.5%, and the carbon monoxide generation rate was 0.6%. At this time, the conversion of dimethyl ether is a value obtained by dividing the amount of dimethyl ether lost in the reaction by the flow rate of dimethyl ether at the inlet of the reactor. The hydrogen yield is a value obtained by dividing the value of the amount of hydrogen (mol / hr) generated by the reaction by the flow rate of dimethyl ether at the inlet of the reactor, and further dividing the value by 6 which is a stoichiometric ratio. Further, the production rate of carbon monoxide was defined as the concentration of carbon monoxide at the outlet of the reactor.
[0041]
(Comparative example)
The preparation of the catalyst was carried out under the same conditions as in the above example, except that alumina carrying nothing was used as catalyst A.
[0042]
As a result, the conversion of dimethyl ether was 69.1%, the hydrogen yield was 62.9%, and the carbon monoxide generation rate was 1.1%.
[0043]
As described above, in the present invention example, hydrogen can be obtained with a high yield while suppressing the production of carbon monoxide. On the other hand, in the comparative example, although the conversion rate of dimethyl ether and the hydrogen yield are high, the carbon monoxide generation rate is also high.
[0044]
【The invention's effect】
As described above, according to the present invention, hydrogen can be obtained with a high yield while suppressing the production of carbon monoxide. In addition, since hydrogen is produced using dimethyl ether, which is clean and nontoxic and easy to handle, as a raw material, it is useful as an energy source for fuel cells for homes and automobiles.

Claims (6)

銅を含有する触媒と塩基を担体に担持した触媒の混合物からなることを特徴とする、ジメチルエーテルと水蒸気から水素を生成させる触媒。A catalyst for producing hydrogen from dimethyl ether and steam, comprising a mixture of a catalyst containing copper and a catalyst having a base supported on a carrier. 塩基を担体に担持した触媒がアルカリ金属塩を担体に担持した触媒であることを特徴とする、請求項1に記載の、ジメチルエーテルと水蒸気から水素を生成させる触媒。The catalyst for producing hydrogen from dimethyl ether and water vapor according to claim 1, wherein the catalyst having a base supported on a carrier is a catalyst having an alkali metal salt supported on a carrier. 銅を含有する触媒がメタノール合成触媒であることを特徴とする、請求項1または2に記載の、ジメチルエーテルと水蒸気から水素を生成させる触媒。The catalyst for producing hydrogen from dimethyl ether and water vapor according to claim 1 or 2, wherein the catalyst containing copper is a methanol synthesis catalyst. ジメチルエーテルを水蒸気により改質し水素を製造する方法において、銅を含有する触媒と塩基を担体に担持した触媒の混合物からなる触媒を用いることを特徴とする、水素の製造方法。A method for producing hydrogen by reforming dimethyl ether with steam using a catalyst comprising a mixture of a catalyst containing copper and a catalyst having a base supported on a carrier. 塩基を担体に担持した触媒がアルカリ金属塩を担体に担持した触媒であることを特徴とする、請求項4に記載の、水素の製造方法。The method for producing hydrogen according to claim 4, wherein the catalyst having a base supported on a carrier is a catalyst having an alkali metal salt supported on a carrier. 銅を含有する物質がメタノール合成触媒であることを特徴とする、請求項4または5に記載の、水素の製造方法。The method for producing hydrogen according to claim 4 or 5, wherein the copper-containing substance is a methanol synthesis catalyst.
JP2003059896A 2003-03-06 2003-03-06 Hydrogen production catalyst and hydrogen production method Expired - Fee Related JP4378976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059896A JP4378976B2 (en) 2003-03-06 2003-03-06 Hydrogen production catalyst and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059896A JP4378976B2 (en) 2003-03-06 2003-03-06 Hydrogen production catalyst and hydrogen production method

Publications (2)

Publication Number Publication Date
JP2004267862A true JP2004267862A (en) 2004-09-30
JP4378976B2 JP4378976B2 (en) 2009-12-09

Family

ID=33122594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059896A Expired - Fee Related JP4378976B2 (en) 2003-03-06 2003-03-06 Hydrogen production catalyst and hydrogen production method

Country Status (1)

Country Link
JP (1) JP4378976B2 (en)

Also Published As

Publication number Publication date
JP4378976B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
EP2371799B1 (en) Method for methanol synthesis using synthesis gas generated by combined reforming of natural gas with carbon dioxide
EP1481729B1 (en) Process for the autothermal reforming of a hydrocarbon feedstock
KR100732784B1 (en) Process for the production of dimethylether from hydrocarbon
WO1999017875A1 (en) Catalyst for producing hydrogen or synthesis gas and method of producing hydrogen or synthesis gas
KR20110039422A (en) Process for operating hts reactor
US7459000B2 (en) Low temperature reforming process for production of hydrogen from methanol
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
KR20060132293A (en) Manufacturing method for syngas using tri-reforming reaction
JP2003038957A (en) Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
JP4391521B2 (en) Method for producing a hydrogen-rich stream
KR20210054163A (en) Methane steam-carbon dioxide reforming over Ni-based catalysts and manufacturing of synthetic gas
KR101363384B1 (en) Perovskite-supported catalysts for combined steam and carbon dioxide reforming with natural gas
JP4378976B2 (en) Hydrogen production catalyst and hydrogen production method
JP3975271B2 (en) Biomass gasification method and catalyst used therefor
KR20100104934A (en) Method for preparing fischer-tropsch catalysts, the fischer-tropsch catalysts thereof, and method for preparing synthesis gas for liquefaction process with high yield using the same
JP4345325B2 (en) Hydrogen production catalyst and hydrogen production method
KR20150129566A (en) Ni-based catalysts for combined steam and carbon dioxide reforming with natural gas
JP4802505B2 (en) Method for carrying out the catalytic reaction
JP4189068B2 (en) Method for producing dimethyl ether from lower hydrocarbon gas
JP2005238007A (en) Catalyst and method for producing hydrogen
JP2006298782A (en) Method for producing dimethyl ether using synthesis gas by dimethyl ether synthesis catalyst
JPH03258738A (en) Production of methanol
KR100280261B1 (en) Method for preparing methanol from carbon dioxide using palladium / zinc oxide catalyst
JPH10182533A (en) Production of dimethyl ether
JP3741877B2 (en) Catalyst and chemical reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees