JP2004267440A - Method for manufacturing biomaterial with controlled surface shape - Google Patents

Method for manufacturing biomaterial with controlled surface shape Download PDF

Info

Publication number
JP2004267440A
JP2004267440A JP2003061664A JP2003061664A JP2004267440A JP 2004267440 A JP2004267440 A JP 2004267440A JP 2003061664 A JP2003061664 A JP 2003061664A JP 2003061664 A JP2003061664 A JP 2003061664A JP 2004267440 A JP2004267440 A JP 2004267440A
Authority
JP
Japan
Prior art keywords
metal
materials
implant material
implant
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003061664A
Other languages
Japanese (ja)
Inventor
Norio Yamaguchi
典男 山口
Osamu Ohashi
修 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuho Ika Kogyo KK
Original Assignee
Mizuho Ika Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuho Ika Kogyo KK filed Critical Mizuho Ika Kogyo KK
Priority to JP2003061664A priority Critical patent/JP2004267440A/en
Publication of JP2004267440A publication Critical patent/JP2004267440A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an implant material having an optional pore shape on a metal surface. <P>SOLUTION: Materials to form a porous body such as metal powder or metal wires are arranged on the surface of a metallic member (titan or stainless steel, or the like) which serves as a base material, and electric power is supplied directly to the materials. When the materials to form the porous body are joined by utilizing local heat generated by this power supply, a porous material having optional pores on the surface is formed. Also, when metal foils having the holes of different sizes are stacked and joined by supplying power, the implant material 3 having the holes expanded in its inside is prepared. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、任意の気孔を表面に有する金属インプラント材料の作製方法に関するものである。
【0002】
【従来の技術】金属材料は、人工股関節のステムや人工歯根など種々の生体材料に利用されている。近年、水酸アパタイトなどセラミックス材料の発展は目覚ましいものがあるが、機械的特性に不安があり、金属の特徴を活かしたインプラント材の開発・改善はますます重要となっている。
【0003】
金属材料をインプラント材料として利用する場合、生体骨に固定する必要がある。このとき、骨セメントと呼ばれるポリメチルメタアクリレートを用い固定するが、長期間使用するとインプラント材と生体骨との間にゆるみを生じてくる。
また、骨セメントが硬化する際の重合反応による発熱や、残留モノマーによる周囲組織への影響など、金属インプラントを用いる場合には種々の問題が発生する。そこで、金属インプラント材と生体骨との結合を改善するために、インプラント材全体もしくは表面の多孔質化が考えられる。材料を多孔質化することにより、細孔中に新生骨が侵入し、多孔質化した金属インプラントと骨との間に機械的なインターロッキングが起き、材料と骨とをつなぐことが出来る。
【0004】
多孔質生体セラミックスでは、約100μm以上の気孔が空いていると、隣接する生体骨から成長してくる骨が細孔に入り込み、機械的インターロッキングが生じて接着状態となることができることが確認されており、多孔質生体材料に対する認識は高まっている。
【0005】
【発明が解決しようとする課題】しかしながら、大気孔(約100μm以上)を有するセラミックス多孔質材料は、機械的強度の低下が著しく、荷重のかからない部位に使用が制限されるといった欠点がある。近年、チタン(Ti)やTi合金の粉末を焼結することによる多孔質化や、Ti母材上に水素Tiの粉末をキャリアガスといっしょにプラズマスプレーすることにより多孔質化などが行われている。これらの方法では、任意形状の気孔を有する多孔体を作製することが難しい。
【0006】
なお本発明に関連ある公知例としては特開2002−143290号、特開2002−097531号なるものがあるが、本願と狙い、目的が異なるものである。
【0007】
【課題を解決するための手段】本発明は、目的の形状が得られるように、あらかじめ気孔となる箇所を金属粉末や線、あるいはフォトエッチング等で取り除いた箔を積層して、表面形状制御材料を組み立てた後、この積層物を電極間にはさんで加圧しながら、一定時間通電して、接合箇所を加熱して接合することを特徴とする。チタンやステンレス鋼は、電気抵抗が高く、接触抵抗に起因する大きなジュール熱によって、数少ない接合部を効率的に加熱し、少ない変形で接合できることを特徴としている。
【0008】
【発明の実施の形態】図1はポーラス材として、金属粉や線を配したインプラント材を作成する方法を示す図である。金属材料をインプラント材として使用する際には、図1に示したようにインプラント材▲3▼の一部を金属粉末あるいは金属線▲4▼を配して、ポーラス状にすることが必要となる。また、インプラント材として使用される金属は、チタン、ステンレス鋼が多い。このような形状をもつインプラント材を少ない形状変化で、汚染なく、点接触部のみを効率的に接合する必要がある。
【0009】
粉末金属の焼結、金属材料の間に粉末や金属線を挟んで、通電接合する研究を進め本発明を完成した。たとえば、図1に示したように、インプラント材▲3▼の表面に金属粉末あるいは金属線▲4▼を配して電極▲1▼と電極▲2▼ではさんで、パルス的あるいは直流の電流を通電すると、接触部に電流が流れる。その結果、電流によるジュール熱は接触部に集中的に発生する。このような局部的な熱は、接触部で発生し、接触部が集中的に加熱される。また、熱伝導が悪い材料ほど、接触点が効率的に加熱される。従って、チタン、ステンレス鋼のような熱伝導が悪い材料では、短時間で容易に1000℃程度に到達し、接触部が接合点に変化し、積層部材の形状変化を少なくして、積層組立接合が可能となる。一方、丸棒同士を突き合わせて、その突き合わせた全面を接合する場合には、その面のみを効率的に加熱することはできない。
【0010】
このように直接通電して接触部を効率的に加熱し、接合する通電加熱接合法では、粉末や線を積層したポーラス材の組立接合、特に積層部材の少ない形状変化で組み立て接合する方法として適している。またこの方法は表面形状を任意の形状に制御することにも適した方法である。
【0011】
インプラント材▲3▼の表面形状を任意に制御する方法として、図2に示したように、フォトエッチング法等で金属箔に大きさの異なる孔を持つ金属箔▲5▼、▲6▼、▲7▼を順次積層する。図3は孔の大きさの異なる金属箔を配したインプラント材▲3▼を作成する方法を示す図である。図3のように電極▲1▼と▲2▼の間で、金属箔▲5▼、▲6▼、▲7▼とインプラント材▲3▼を積層して、通電接合すると、内部で膨らんだ孔を持つインプラント材▲3▼を作製する事ができる。一方、この金属箔の積層の仕方を上から箔▲7▼、▲6▼、▲5▼と逆方向に積層すると、すり鉢形状とする事ができる。つまり、積層する金属箔の孔の大きさ、形状を制御することで、インプラント材▲3▼の表面の任意の位置に、任意の形状のものを作製することができる。
【0012】
このように、積層する部材は、粉末、線、箔を用いることができる。金属箔に任意の形状を作製する際には、フォトエッチングの他、塑性加工法、打ち抜き法と方法を問わない。対象とする材料は、熱伝導が優れる金、銅、銀、アルミニウム以外であれば接合加工が可能となる。通電する電流は、直流、交流どちらでも良い。また、パルスアーク溶接時に使用されるパルス的電源でも良い。このように溶融しないで接合する方法、つまり固相接合法では、接合した後接合物を熱処理して接合部の接合性の改善がよく図られる。必要があれば、後で熱処理して接合部の完全化もはかれる。
【0013】
【実施例】
(実施例1) 図1に示すように、純チタン製のインプラント材▲3▼の窪みに、直径1mmのチタン製線▲4▼を積層して、これを真空容器内での電極▲1▼と電極▲2▼の間にはさんで配置した。真空に排気後、接合荷重500Nで加圧して、直流電流500Aで1min 通電した。接合後、線▲4▼を引っ張り試験器で破壊し、その破面を観察した結果、その接合部の破面には、ディンプルの形成が確認でき、接触部は十分接合していた。
【0014】
(実施例2) 図3に示すように、孔の形状が異なるステンレス鋼の箔▲5▼、▲6▼、▲7▼を積層して、ステンレス鋼のインプラント材▲3▼の間に配して、真空容器内での電極▲1▼と▲2▼との間に設置した。真空に排気後、接合荷重500Nで加圧して、直流電流600Aで1min 通電した。接合後、接合部を切断してその断面を観察した結果、孔の変形はみられず、また接触箇所は良好に接合していた。
【0015】
【発明の効果】本発明による作製法を用いれば、表面に任意の気孔形状を作製でき、新生骨が侵入可能な気孔を有するインプラント材ができ、骨のインターロッキング効果による骨との結合が可能となる。
【0016】
【図面の簡単な説明】
【図1】ポーラス材として、金属粉や線を配したインプラント材を作成する方法を示す図。
【図2】孔の大きさの異なる金属箔を積層した状態を示す図。
【図3】孔の大きさの異なる金属箔を配したインプラント材を作成する方法を示す図。
【0017】
【符号の説明】
▲1▼ 電極
▲2▼ 電極
▲3▼ インプラント部材
▲4▼ 金属粉あるいは線
▲5▼ 孔のあいた箔
▲6▼ 孔径が異なる箔
▲7▼ 孔径が異なる箔
[0001]
[0001] The present invention relates to a method for producing a metal implant material having arbitrary pores on its surface.
[0002]
2. Description of the Related Art Metal materials are used for various biological materials such as stems of artificial hip joints and artificial dental roots. In recent years, the development of ceramic materials such as hydroxyapatite has been remarkable, but there are concerns about the mechanical properties, and the development and improvement of implant materials utilizing the characteristics of metals have become increasingly important.
[0003]
When using a metal material as an implant material, it is necessary to fix it to living bone. At this time, it is fixed using polymethyl methacrylate called bone cement, but if used for a long time, loosening occurs between the implant material and the living bone.
In addition, when a metal implant is used, various problems occur, such as heat generated by a polymerization reaction when the bone cement hardens, and influence on the surrounding tissue due to residual monomers. Then, in order to improve the bond between the metal implant material and the living bone, it is conceivable to make the entire implant material or the surface porous. By making the material porous, the new bone penetrates into the pores, mechanical interlocking occurs between the porous metal implant and the bone, and the material can be connected to the bone.
[0004]
In the case of porous bioceramics, it was confirmed that if pores of about 100 μm or more were vacant, bones growing from adjacent living bones could enter the pores and cause mechanical interlocking to form an adhesive state. And recognition of porous biomaterials is increasing.
[0005]
However, a porous ceramic material having air holes (about 100 μm or more) has a drawback that its mechanical strength is remarkably reduced and its use is limited to a portion where no load is applied. In recent years, porosity has been increased by sintering powder of titanium (Ti) or Ti alloy, and porosity has been increased by plasma spraying hydrogen Ti powder on a Ti base material together with a carrier gas. I have. In these methods, it is difficult to produce a porous body having pores of an arbitrary shape.
[0006]
In addition, as a well-known example relevant to the present invention, there are JP-A-2002-143290 and JP-A-2002-097531, but the purpose is different from that of the present application.
[0007]
According to the present invention, a surface shape control material is formed by laminating a metal powder, a wire, or a foil in which pores have been removed in advance by photoetching or the like so that a desired shape can be obtained. After assembling, the laminate is heated for joining for a certain period of time while pressurizing the laminate between the electrodes, and the joint is heated and joined. Titanium and stainless steel are characterized by high electrical resistance and the ability to efficiently heat a small number of joints with large Joule heat due to contact resistance and to join with little deformation.
[0008]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a method for producing an implant material provided with metal powder and wires as a porous material. When a metal material is used as an implant material, it is necessary to arrange a part of the implant material (3) with a metal powder or a metal wire (4) to make it porous as shown in FIG. . Metals used as implant materials are often titanium and stainless steel. It is necessary to efficiently join only the point contact portions of the implant material having such a shape with little change in shape and without contamination.
[0009]
Research on sintering of powdered metal, current bonding with a powder or metal wire sandwiched between metal materials has been made, and the present invention has been completed. For example, as shown in FIG. 1, a metal powder or a metal wire (4) is arranged on the surface of an implant material (3), and a pulse or DC current is sandwiched between the electrodes (1) and (2). When energized, current flows through the contact. As a result, Joule heat due to the current is intensively generated at the contact portion. Such local heat is generated at the contact portion, and the contact portion is intensively heated. Also, the material with poorer heat conduction heats the contact point more efficiently. Therefore, in the case of materials having poor heat conduction, such as titanium and stainless steel, the temperature easily reaches about 1000 ° C. in a short time, the contact portion changes to a joining point, the shape change of the laminated member is reduced, and the laminated assembly bonding is performed. Becomes possible. On the other hand, when the round bars are butted together and the butted entire surfaces are joined, it is not possible to efficiently heat only that surface.
[0010]
In this way, the current heating and joining method, in which the contact portion is efficiently heated by direct energization and joined, is suitable as a method of assembling and joining a porous material in which powders and wires are stacked, particularly assembling and joining with a small change in the shape of a stacked member. ing. This method is also suitable for controlling the surface shape to an arbitrary shape.
[0011]
As a method of arbitrarily controlling the surface shape of the implant material (3), as shown in FIG. 2, metal foils (5), (6), and (6) having holes of different sizes in the metal foil by a photoetching method or the like. 7) are sequentially laminated. FIG. 3 is a diagram showing a method of preparing an implant material (3) in which metal foils having different hole sizes are arranged. As shown in FIG. 3, the metal foils (5), (6), (7) and the implant material (3) are laminated between the electrodes (1) and (2), and when they are electrically connected to each other, the holes swelled inside. The implant material (3) having the above can be manufactured. On the other hand, when the metal foil is laminated in the opposite direction to the foils (7), (6), and (5) from above, a mortar shape can be obtained. That is, by controlling the size and shape of the holes of the metal foil to be laminated, it is possible to produce an implant material of any shape at any position on the surface of the implant material.
[0012]
As described above, as a member to be laminated, powder, wire, or foil can be used. When an arbitrary shape is formed on the metal foil, a plastic working method or a punching method may be used in addition to the photo etching. If the target material is other than gold, copper, silver, and aluminum having excellent heat conductivity, bonding can be performed. The current to be applied may be either DC or AC. Further, a pulse power supply used at the time of pulse arc welding may be used. In the method of joining without melting in this way, that is, in the solid-phase joining method, after joining, the joint is heat-treated to improve the joining property of the joint. If necessary, heat treatment is performed later to complete the joint.
[0013]
【Example】
(Example 1) As shown in FIG. 1, a titanium wire (4) having a diameter of 1 mm was laminated on a depression of an implant material (3) made of pure titanium, and this was used as an electrode (1) in a vacuum vessel. And electrode (2). After evacuation, pressure was applied at a joining load of 500 N, and current was supplied at a DC current of 500 A for 1 minute. After joining, the wire (4) was broken with a tensile tester, and the fracture surface was observed. As a result, dimple formation was confirmed on the fracture surface of the joint, and the contact portion was sufficiently joined.
[0014]
(Example 2) As shown in FIG. 3, stainless steel foils (5), (6), and (7) having different hole shapes were laminated and placed between stainless steel implant materials (3). Then, it was installed between the electrodes (1) and (2) in the vacuum vessel. After evacuation, it was pressurized with a bonding load of 500 N and energized with a direct current of 600 A for 1 min. After joining, the joint was cut and the cross section was observed. As a result, no deformation of the hole was observed, and the contact portion was joined well.
[0015]
According to the production method of the present invention, an arbitrary pore shape can be produced on the surface, an implant material having pores into which new bone can penetrate can be produced, and the bone can be connected to the bone by an interlocking effect of the bone. It becomes.
[0016]
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for producing an implant material provided with metal powder and wires as a porous material.
FIG. 2 is a diagram showing a state in which metal foils having different hole sizes are stacked.
FIG. 3 is a diagram showing a method for producing an implant material in which metal foils having different hole sizes are arranged.
[0017]
[Explanation of symbols]
(1) Electrode (2) Electrode (3) Implant member (4) Metal powder or wire (5) Foil with hole (6) Foil with different hole diameter (7) Foil with different hole diameter

Claims (1)

金属粉末や線、あるいはフォトエッチング等で穴を作った箔を積層したものを、母材となる金属表面の気孔の必要箇所に配した後、この積層物を電極間にはさんで加圧しながら、一定時間通電して、接合箇所を加熱して接合することを特徴とする表面形状を制御した生体材料の作成方法。After laminating a metal powder or wire, or a laminate of foils with holes formed by photoetching, etc., at the required location of the pores on the metal surface serving as the base material, press this laminate between the electrodes while pressing A method for producing a biomaterial with a controlled surface shape, characterized in that a current is supplied for a certain period of time to heat and join a joint.
JP2003061664A 2003-03-07 2003-03-07 Method for manufacturing biomaterial with controlled surface shape Pending JP2004267440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061664A JP2004267440A (en) 2003-03-07 2003-03-07 Method for manufacturing biomaterial with controlled surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061664A JP2004267440A (en) 2003-03-07 2003-03-07 Method for manufacturing biomaterial with controlled surface shape

Publications (1)

Publication Number Publication Date
JP2004267440A true JP2004267440A (en) 2004-09-30

Family

ID=33123825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061664A Pending JP2004267440A (en) 2003-03-07 2003-03-07 Method for manufacturing biomaterial with controlled surface shape

Country Status (1)

Country Link
JP (1) JP2004267440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021135931A1 (en) * 2019-12-30 2021-07-08 骄英医疗器械(上海)有限公司 Method for preparing connection structure of porous surface structure and substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021135931A1 (en) * 2019-12-30 2021-07-08 骄英医疗器械(上海)有限公司 Method for preparing connection structure of porous surface structure and substrate

Similar Documents

Publication Publication Date Title
EP1543951B1 (en) Ceramic joined to noble metal by ti/ni-braze and method of manufacture
Liu et al. Joint strength of laser-welded titanium
US20020192481A1 (en) Application and manufacturing method for a ceramic to metal seal
US20060000874A1 (en) Manufacturing method for a ceramic to metal seal
TWI587953B (en) Method for joining two or more segments of a surgical implant,a surgical implant and a kit for bone fixation
JP2008194463A (en) Direct pressurization for joining porous coating to substrate material used in orthopedic implant
JP2004041726A (en) Method for attaching porous metal layer to metal substrate
JP2012025654A (en) Process for joining carbon steel and zirconia ceramic and composite article made by the same
JP2004267440A (en) Method for manufacturing biomaterial with controlled surface shape
US7022415B2 (en) Layered sphere braze material
KR102115225B1 (en) One-step manufacturing method of laminated molding porous component
JP5138295B2 (en) Knee prosthesis and hip prosthesis
JP4083275B2 (en) Method of joining ceramics and metal
JP4497473B2 (en) Metal fiber three-dimensional structure and manufacturing method thereof.
JP2005226140A (en) Titanium-hydroxyapatite composite
JP4349722B2 (en) Bioimplant material and manufacturing method thereof
US20050277989A1 (en) Layered deposition braze material
CN209886894U (en) Resistance-ultrasonic wave vibration material disk system of degradable magnesium-iron composite material
JPH11222637A (en) Production of composite body of calcium phosphate series ceramic and metal and composite body
TW201206861A (en) Process for bonding bronze and alumina ceramic and articles made by the same
EP1570943B1 (en) Layered deposition braze material
US20050196631A1 (en) Layered deposition braze material
JPH02237559A (en) Implant member for living body and preparation thereof
JP2005279219A (en) Biometal/hydroxyapatite composite material
JPH01120718A (en) Electrode and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080411