JP2004266915A - Method for controlling voltage of power transmission and distribution system - Google Patents

Method for controlling voltage of power transmission and distribution system Download PDF

Info

Publication number
JP2004266915A
JP2004266915A JP2003053532A JP2003053532A JP2004266915A JP 2004266915 A JP2004266915 A JP 2004266915A JP 2003053532 A JP2003053532 A JP 2003053532A JP 2003053532 A JP2003053532 A JP 2003053532A JP 2004266915 A JP2004266915 A JP 2004266915A
Authority
JP
Japan
Prior art keywords
voltage
control method
voltage control
distribution system
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003053532A
Other languages
Japanese (ja)
Other versions
JP3918056B2 (en
Inventor
Naoto Yorino
直人 餘利野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2003053532A priority Critical patent/JP3918056B2/en
Publication of JP2004266915A publication Critical patent/JP2004266915A/en
Application granted granted Critical
Publication of JP3918056B2 publication Critical patent/JP3918056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling the voltage of a power transmission and distribution system which can compensate for a voltage change while an SVR or an OLTC and an existing voltage constant control type SVC are cooperated merely by additionally installing a simple unit at the outside. <P>SOLUTION: The method for controlling the voltage of the power transmission and distribution system includes a step of compensating the voltage change of the power transmission and distribution system by installing the SVR or the OLTC and a voltage constant control type SVC in the power transmission and distribution system. The method further includes the steps of further installing a voltage signal detection processing unit for detecting and processing the voltage change of the power transmission and distribution system in the power transmission and distribution system, and operating the SVC based on the output signal of this voltage signal detecting and processing unit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、送配電系統の電圧制御方法に関し、特に、送配電系統に静止型無効電力補償装置(Static Var Compensator、以下SVCと略記する)のような高速機器を設置し、前記送配電系統の電圧変動を検出して瞬時に負荷変動量を打ち消す無効電力を供給して前記送配電系統の電圧を安定化させる電圧制御方法に関する。
【0002】
【従来の技術】
近年、高度情報化社会の進展により電力の品質向上に対するニーズが高まっているが、送配電系統に連係された風力発電設備や大容量電動機負荷等の影響により、従来のステップ式電力調整器(Step Voltage Regulator、以下SVRと略記する)や負荷時タップ切換装置(On−Load Tap−Changers、以下OLTCと略記する)では補償しきれない過渡的な電圧変動が発生するケースが増大している。そのため、電圧一定制御型SVCを送配電系に組み込み、その高速応答性を利用した電圧制御方法が実施されている。
【0003】
しかしながら、電圧一定型SVCとSVR(配電系用)あるいはOLTC(送電系用)が同一送配電系統中に設置されている場合、SVRあるいはOLTCで補償すべきゆっくりとした電圧変動も、SVCがその高速応答性のために先に補償してしまい、本来SVCが受け持つべき高速な電圧変動の補償容量を確保できないという問題が発生してしまう。図1は、このような問題を説明するSVCでの電圧補償の一例を示すグラフである。例えば図1aに示すようなゆっくりとした変動と高速な変動が重畳された電圧変動が発生した場合、SVCのみですべての電圧変動を補償するような動作となって図1bに示すような電圧補償が行われ、図1cに示すようにSVCの補償容量を超えた部分が補償不能分として残ってしまう。
【0004】
この問題を解決するため、従来から主としてSVCに改良を施した種々の方法が提案、実用化されている。例えば、古川、吉武による「SVR協調運転型SVCの開発」、電気学会全国大会、No.1593、平成10年3月、に記載されている技術がある。従来の慣例的な電圧一定制御型SVC本体の中に、SVC本来の電圧一定制御部に加えて、無効電力検出部と、無効電力出力目標範囲指令部と、演算部とを設け、SVCの電圧補償機能を制限することによって、SVCあるいはOLTCとの協調運転を可能にすることを狙っている。従来の電圧一定制御型SVCの電圧補償機能を制限することにより、SVCが補償できなかった電圧変化分は、それがSVRあるいはOLTCでの補償が可能な程度の速度のものであれば、SVRあるいはOLTCが受け持って補償することになり、SVCとの協調による送配電系の電圧制御が可能となる。しかしながらこの方法は、既存の電圧一定制御型SVCをそのまま利用することができず、改造されたSVCに置き換える必要があるといった欠点があった。
【0005】
SVC以外の高速機器、すなわち、秒単位あるいは10秒程度以下で応動する電圧制御機器、例えば、自励式SVCとも呼ばれるSVG(Static Var Generator)、UPFC(Unified Power Flow Controller)、フェーズシフタまたは静止型位相調整器とも呼ばれるPS(Phase Shifter)、静止型直列コンデンサとも呼ばれるTCSC(Thyristor Controlled Series Capacitor)などの、一般的にFACTS機器と呼ばれるパワーエレクトロニクスを応用した電力機器も、SVRあるいはOLTCと協調して電圧制御に用いることが考えられる。この場合も、上述したようなSVCと同様の問題が生じる。また、現在、電力自由化により電力事業者以外の分散型電源が増加しており、これらの電源に関しては電圧制御をどのように行うか決まっていないが、これらの分散型電源は能力的には高速な電圧制御が可能であり、SVRあるいはOLTCと協調して電圧制御に用いることができる。この場合も分散型電源の調整容量的に限界があるので、上述したようなSVCと同様の問題が生じる。さらに、既存の大容量発電所においても電圧制御を行うと電力(有効電力)の出力をその代償として制限しなければならないという問題がある。現在はこの問題に関して特に顕在化していないが、将来電力の自由化により調整容量を制限する可能性があり、この場合は上述したようなSVCと同様の問題が生じる。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上述したような従来の送配電系統電圧変動補償方法の問題を解決し、簡単な装置を外部に追加設置するだけでSVRあるいはOLTCと、既存の電圧一定制御方式の高速機器、特にSVCとの協調を図りつつ電圧変動の補償ができる配電系統の電圧制御方法および送電系統の電圧制御方法を提供することである。
【0007】
【課題を解決するための手段】
本発明による配電系統の電圧制御方法は、配電系統中にステップ式電圧調整器と電圧一定制御方式の静止型無効電力補償装置とを設置して前記配電系統の電圧変動を補償する配電系統の電圧制御方法において、前記配電系統中に該配電系統の電圧変動を検出および処理する電圧信号検出処理装置をさらに設置し、この電圧信号検出処理装置の出力信号に基づいて前記静止型無効電力補償装置を動作させることを特徴とする。このようにすれば、簡単な電圧信号検出処理装置の追加とその簡便な設定、調整によって、効率的なSVRとSVCとの協調運転による配電系の電圧変動補償制御が可能になる。
【0008】
本発明による配電系統の電圧制御方法の一実施形態は、前記電圧信号検出処理装置が、高域通過フィルタと、低域通過フィルタと、リミッタと、重ね合わせ回路とを具えることを特徴とする。このようにすれば、電圧信号検出処理装置を簡単に実現することができる。
【0009】
本発明による配電系統の電圧制御方法の他の実施形態は、前記静止型無効電力補償装置の高速応答と低速応答の割合を前記リミッタの設定レベルによって任意に設定することを特徴とする。このようにすれば、電圧制御対象機器の要求電圧安定度、配電系統の電圧変動レベル等に応じて簡単な設定で効率的なSVRとSVCとの協調運転による配電系の電圧変動補償制御が可能になる。
【0010】
本発明による送電系統の電圧制御方法は、送電系統中に負荷時タップ切換装置と電圧一定制御方式の静止型無効電力補償装置とを設置して送電系統の電圧変動を補償する送電系統の電圧制御方法において、前記送電系統中に該送電系統の電圧変動を検出および処理する電圧信号検出処理装置をさらに設置し、この電圧信号検出処理装置の出力に基づいて前記静止型無効電力補償装置を動作させることを特徴とする。このようにすれば、簡単な電圧信号検出処理装置の追加とその簡便な設定、調整によって、効率的なOLTCとSVCとの協調運転による送電系の電圧変動補償制御が可能になる。
【0011】
本発明による送電系統の電圧制御方法の一実施形態は、前記電圧信号検出処理装置が、高域通過フィルタと、低域通過フィルタと、リミッタと、重ね合わせ回路とを具えることを特徴とする。このようにすれば、電圧信号検出処理装置を簡単に実現することができる。
【0012】
本発明による送電系統の電圧制御方法の他の実施形態は、前記静止型無効電力補償装置の高速応答と低速応答の割合を前記リミッタの設定レベルによって任意に設定することを特徴とする。このようにすれば、電圧制御対象機器の要求電圧安定度、送電系統の電圧変動レベル等に応じて簡単な設定で効率的なOLTCとSVCとの協調運転による送電系の電圧変動補償制御が可能になる。
【0013】
上記のような本発明による送電系統の電圧制御方法および配電系統の電圧制御方法では、電圧一定制御方式の静止型無効電力補償装置すなわちSVCの代わりに、他の電圧一定制御方式の高速機器を用いても同様の構成で実施することができ、同様の効果が得られる。
【0014】
【発明の実施の形態】
本発明による送配電系統の電圧制御方法は、送配電系統中にSVR(配電系統用)あるいはOLTC(送電系統用)と電圧一定制御型SVCとを設置し、さらに、高域通過フィルタと、低域通過フィルタと、リミッタと、重ね合わせ回路とを具える電圧信号検出処理装置を設置し、供給電圧対象機器の要求電圧安定度、送配電系統の電圧変動レベル等に応じて前記高域通過フィルタと、低域通過フィルタと、リミッタの各々のレベルを設定し、前記電圧信号検出処理装置からの出力信号に基づいて前記SVCを動作させる。
【0015】
図2は、本発明による送配電系統の電圧制御方法において用いる電圧信号検出処理装置の基本構成を示すブロック図である。電圧信号検出処理装置1は、入力信号を受けるように配置された高域通過フィルタ2および低域通過フィルタ4と、高域通過フィルタ2の出力信号を受けるように配置されたリミッタ6と、低域通過フィルタ4およびリミッタ6の出力信号を受けるように配置された重ね合わせ回路8とを具える。
【0016】
図3は、図2に示したaないしeの各部における信号の一例を示すグラフである。各々のグラフにおける横軸は時間を示し、縦軸は電圧を示す。図3aは図2のa部における信号を示す。この信号は、制御を行おうとする母線電圧信号であり、高周波変動分と低周波変動分とを含んでいて、変動範囲が前記SVCでの電圧補償可能範囲より大きい。この信号は電圧信号検出処理装置1への入力信号であり、電圧信号検出処理装置1における高域通過フィルタ2および低域通過フィルタ4に入力される。図3bは図2のb部における信号を示し、この信号は低域通過フィルタ4の出力信号であり、リミッタ6に入力される。図3cは図2のc部における信号を示し、この信号はリミッタ6の出力信号であり、重ね合わせ回路8に入力される。図3dは図2のd部における信号を示し、この信号は高域通過フィルタ2の出力信号であり、重ね合わせ回路8に入力される。図3eは図2のe部における信号を示し、この信号は重ね合わせ回路8の出力信号であると共に電圧信号検出処理装置1の出力信号であり、前記SVC(図示せず)に供給される。ここで、このe部での信号の変動範囲が前記SVCの電圧補償可能範囲に収まるように高域通過フィルタ2および低域通過フィルタ4のフィルタ係数と、リミッタ6のリミッタ範囲とを設定する。このようにすれば、e部での信号の電圧変動分はすべて前記SVCで補償される。図4は、前記SVCが補償しきれない低周波変動分を示すグラフである。この低周波変動分は、SVRあるいはOLTCによって補償されることになる。なお、SVRの二次側(配電線の末端側)に電源が設置された配電系統で上記の低周波成分を補償するためには逆潮流防止リレーを取り外しておく等の処置が必要であるが、SVRでの電圧補償手順は既知であるためここでは詳しくは説明しない。OLTCに関しても電圧補償手順は既知であるためここでは詳しくは説明しない。以上のように、送配電系統に設置されているSVCの電圧補償可能範囲(すなわちSVC容量)に応じて図3のリミッタ6の設定範囲を調節することによって、前記SVCを適切な条件下で動作させることが可能になる。ちなみにリミッタの設定範囲をゼロにした場合、SVC容量極小状態(SVCでは高周波電圧変動分のみを補償し、低周波電圧変動分はすべてSVRあるいはOLTCで補償する状態)での運転となる。
【0017】
以上は、送配電系統に電圧一定制御型SVCとSVRあるいはOLTCがすでに設置されている場合に、本発明の電圧信号検出処理装置を追加設置して満足のいく変動電圧補償機能を発揮する方法に関する説明であるが、SVRあるいはOLTCのみが設置されている送配電系統に新たに電圧一定制御型SVCおよび本発明の電圧信号検出処理装置を追加設置して電圧の安定を図る場合には、SVC容量とリミッタ範囲とを適切に調節することにより、種々の容量のSVCに対応して柔軟に変動電圧の補償機能を実現することができる。
【0018】
図5は、配電系の負荷曲線を示すグラフであり、横軸は時間、縦軸は電圧を表す。図6は、図5の負荷曲線に加わる外乱成分を示すグラフであり、横軸は時間、縦軸は電圧を表す。以下の3つのケースについてそれぞれシミュレーション解析を行った。
ケース1:SVRのみでの電圧変動補償制御
ケース2:SVRと電圧一定制御型SVCの協調運転制御
ケース3:本発明の方法によるSVRとSVCの協調運転制御
解析条件(配電系の諸設定条件)の詳細は本発明を説明する上で本質的なことではないため示さない。
【0019】
図7は、ケース1における被制御母線電圧(電圧変動補償制御を行った後の電圧波形)を示すグラフである。横軸は時間、縦軸は電圧を表す。このグラフから、SVRのみでは十分な補償ができず、低周波変動成分と高周波変動成分が重なり合った波形になっているのがわかる。
【0020】
図8aは、ケース2における被制御母線電圧を示すグラフである。横軸は時間、縦軸は電圧を表す。このグラフから、図7に示すケース1のSVRのみの制御に比べ、全体の電圧変動が改善されていることがわかるが、高周波変動成分に関しては、全時間帯にわたっての補償はされていないことがわかる。図8bは、このときのSVCの制御量を示すグラフである。横軸は時間、縦軸は電圧を表す。このグラフから、SVCの制御可能範囲を超えた領域が直線波形となっており、この領域に対応する図8aの部分に高周波変動成分が未補償で残っていることがわかる。
【0021】
図9aは、ケース3における被制御母線電圧を示すグラフである。横軸は時間、縦軸は電圧を表す。このグラフから、図8aに示すケース2の従来のSVRおよびSVCの協調運転制御に比べ、電圧変動が改善されており、高周波変動成分に関しても、全時間帯にわたって補償されていることがわかる。図9bは、このときのSVCの制御量を示すグラフである。横軸は時間、縦軸は電圧を表す。このグラフから、本発明の協調方法によってSVCの制御可能範囲を超えることなく制御がなされていることがわかる。
【0022】
上記の説明は、配電系統の電圧制御例(SVCとSVRとの協調)について示したものであるが、送電系統の電圧制御(SVCとOLTCとの協調)に関しても同様の効果を得ることができる。また、SVCの代わりに、SVG、UPFC、PS、TCSC等のパワーエレクトロニクスを応用した高速電圧制御機器や、分散型電源、発電機等を用いても同様の構成で実施することができ、同様の効果を得ることができる。
【図面の簡単な説明】
【図1】aないしcはSVCでの電圧補償の一例を示すグラフである。
【図2】本発明による電圧信号検出処理装置の基本構成を示すブロック図である。
【図3】aないしeは図2に示したaないしeの各部における信号の一例を示すグラフである。
【図4】SVCが補償しきれない低周波変動分を示すグラフである。
【図5】配電系の負荷曲線を示すグラフである。
【図6】図5の負荷曲線に加わる外乱成分を示すグラフである。
【図7】ケース1における被制御母線電圧を示すグラフである。
【図8】aはケース2における被制御母線電圧を示すグラフであり、bはSVCの制御量を示すグラフである。
【図9】aはケース3における被制御母線電圧を示すグラフであり、bはSVCの制御量を示すグラフである。
【符号の説明】
1 電圧信号検出処理装置
2 高域通過フィルタ
4 低域通過フィルタ
6 リミッタ
8 重ね合わせ回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a voltage control method for a power transmission and distribution system, and in particular, installs a high-speed device such as a static var compensator (hereinafter abbreviated as SVC) in the power transmission and distribution system and controls the power transmission and distribution system. The present invention relates to a voltage control method for stabilizing the voltage of the power transmission and distribution system by supplying reactive power for detecting a voltage fluctuation and instantaneously canceling a load fluctuation amount.
[0002]
[Prior art]
In recent years, the need for improving the quality of electric power has been increasing due to the progress of the advanced information society. However, due to the effects of wind power generation equipment linked to the transmission and distribution system and large-capacity motor loads, the conventional step-type power regulator (Step In some cases, a transient voltage fluctuation that cannot be compensated for by using a voltage regulator (hereinafter abbreviated as SVR) or a tap change device under load (hereinafter abbreviated as OLTC) occurs. Therefore, a voltage control method that incorporates a constant voltage control type SVC into a power transmission and distribution system and utilizes its high-speed response has been implemented.
[0003]
However, when the constant voltage type SVC and the SVR (for the power distribution system) or the OLTC (for the power transmission system) are installed in the same power transmission and distribution system, the slow voltage fluctuation to be compensated by the SVR or the OLTC is not affected by the SVC. Compensation is first performed for high-speed responsiveness, and a problem arises in that it is not possible to secure a high-speed voltage fluctuation compensation capacity that should be originally handled by the SVC. FIG. 1 is a graph showing an example of voltage compensation in SVC for explaining such a problem. For example, when a voltage fluctuation in which a slow fluctuation and a high-speed fluctuation are superimposed as shown in FIG. 1A occurs, the operation is such that all voltage fluctuations are compensated only by the SVC and the voltage compensation as shown in FIG. Is performed, and a portion exceeding the compensation capacity of the SVC remains as an uncompensated portion as shown in FIG. 1c.
[0004]
In order to solve this problem, various methods in which SVC is mainly improved have been proposed and put into practical use. For example, "Development of SVR cooperative operation type SVC" by Furukawa and Yoshitake, National Institute of Electrical Engineers of Japan, 1593, March 1998. In the conventional conventional constant voltage control type SVC main body, in addition to the SVC original voltage constant control unit, a reactive power detection unit, a reactive power output target range command unit, and a calculation unit are provided. The aim is to enable cooperative operation with SVC or OLTC by limiting the compensation function. By limiting the voltage compensating function of the conventional voltage-constant control type SVC, the voltage change that the SVC could not compensate is SVR or OLTC if it has a speed that can be compensated by SVR or OLTC. The OLTC takes charge of compensation, and voltage control of the power transmission and distribution system can be performed in cooperation with the SVC. However, this method has a disadvantage that the existing constant voltage control type SVC cannot be used as it is, and it is necessary to replace it with a modified SVC.
[0005]
High-speed devices other than SVC, that is, voltage control devices that respond in seconds or about 10 seconds or less, for example, SVG (Static Var Generator) also called self-excited SVC, UPFC (Unified Power Flow Controller), phase shifter, or stationary phase Power devices that apply power electronics generally called FACTS devices, such as a phase shifter (PS) also called a regulator and a Thyristor Controlled Series Capacitor (TCSC) also called a static series capacitor, operate in cooperation with an SVR or an OLTC. It can be used for control. In this case, the same problem as that of the SVC described above occurs. At present, distributed power sources other than electric power companies are increasing due to the liberalization of electric power, and it is not decided how to perform voltage control for these power sources. High-speed voltage control is possible, and can be used for voltage control in cooperation with SVR or OLTC. In this case as well, there is a limit in the adjustment capacity of the distributed power supply, so that the same problem as in the SVC described above occurs. In addition, there is a problem that, even in an existing large-capacity power plant, if voltage control is performed, the output of electric power (active power) must be limited as a price. At present, this problem is not particularly apparent, but there is a possibility that the adjustment capacity will be limited by the liberalization of power in the future, and in this case, the same problem as the above-described SVC will occur.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the conventional power transmission and distribution system voltage fluctuation compensation method as described above, and to provide an SVR or OLTC and an existing high-speed device of a constant voltage control method by simply adding a simple device externally. In particular, it is an object of the present invention to provide a voltage control method for a power distribution system and a voltage control method for a power transmission system that can compensate for voltage fluctuations while cooperating with an SVC.
[0007]
[Means for Solving the Problems]
A voltage control method for a distribution system according to the present invention includes a step-type voltage regulator and a static var compensator of a constant voltage control system installed in the distribution system to compensate for voltage fluctuations in the distribution system. In the control method, a voltage signal detection processing device that detects and processes voltage fluctuation of the distribution system is further installed in the power distribution system, and the static var compensator is configured based on an output signal of the voltage signal detection processing device. It is characterized by operating. In this way, by adding a simple voltage signal detection processing device and simple setting and adjustment thereof, efficient voltage fluctuation compensation control of the power distribution system by cooperative operation between the SVR and the SVC becomes possible.
[0008]
In one embodiment of the voltage control method for a power distribution system according to the present invention, the voltage signal detection processing device includes a high-pass filter, a low-pass filter, a limiter, and a superposition circuit. . This makes it possible to easily realize the voltage signal detection processing device.
[0009]
Another embodiment of the voltage control method of the distribution system according to the present invention is characterized in that the ratio between the high-speed response and the low-speed response of the static var compensator is arbitrarily set according to the setting level of the limiter. With this configuration, it is possible to efficiently control the voltage fluctuation of the power distribution system by cooperative operation of the SVR and the SVC with a simple setting according to the required voltage stability of the voltage controlled device, the voltage fluctuation level of the power distribution system, and the like. become.
[0010]
A voltage control method for a power transmission system according to the present invention includes a voltage control method for a power transmission system in which a tap change device at load and a static var compensator of a constant voltage control method are installed in the power transmission system to compensate for voltage fluctuations in the power transmission system. In the method, a voltage signal detection processing device for detecting and processing voltage fluctuation of the transmission system is further installed in the power transmission system, and the static var compensator is operated based on an output of the voltage signal detection processing device. It is characterized by the following. With this configuration, by adding a simple voltage signal detection processing device and simple setting and adjustment thereof, efficient voltage fluctuation compensation control of the power transmission system by cooperative operation between the OLTC and the SVC can be performed.
[0011]
One embodiment of a voltage control method for a power transmission system according to the present invention is characterized in that the voltage signal detection processing device includes a high-pass filter, a low-pass filter, a limiter, and a superposition circuit. . This makes it possible to easily realize the voltage signal detection processing device.
[0012]
Another embodiment of the voltage control method of the transmission system according to the present invention is characterized in that the ratio of the high-speed response and the low-speed response of the static var compensator is arbitrarily set according to the set level of the limiter. This makes it possible to perform efficient voltage fluctuation compensation control of the power transmission system by cooperative operation of the OLTC and the SVC with simple settings according to the required voltage stability of the voltage control target device, the voltage fluctuation level of the power transmission system, and the like. become.
[0013]
In the voltage control method of the power transmission system and the voltage control method of the power distribution system according to the present invention as described above, a high-speed device of another constant voltage control method is used instead of the static var compensator of the constant voltage control method, that is, the SVC. However, the present invention can be implemented with a similar configuration, and a similar effect can be obtained.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A voltage control method for a transmission and distribution system according to the present invention includes installing an SVR (for a distribution system) or an OLTC (for a transmission system) and a constant voltage control type SVC in a transmission and distribution system, further including a high-pass filter and a low-pass filter. A voltage signal detection processor comprising a band-pass filter, a limiter, and a superimposing circuit is installed, and the high-pass filter is provided according to a required voltage stability of a supply voltage target device, a voltage fluctuation level of a transmission and distribution system, and the like. , A low-pass filter and a limiter are set, and the SVC is operated based on an output signal from the voltage signal detection processing device.
[0015]
FIG. 2 is a block diagram showing a basic configuration of a voltage signal detection processing device used in the voltage control method of the power transmission and distribution system according to the present invention. The voltage signal detection processing device 1 includes a high-pass filter 2 and a low-pass filter 4 arranged to receive an input signal, a limiter 6 arranged to receive an output signal of the high-pass filter 2, A superposition circuit 8 arranged to receive the output signal of the bandpass filter 4 and the limiter 6.
[0016]
FIG. 3 is a graph showing an example of a signal in each of the parts a to e shown in FIG. The horizontal axis in each graph indicates time, and the vertical axis indicates voltage. FIG. 3a shows the signal in part a of FIG. This signal is a bus voltage signal to be controlled, and includes a high-frequency fluctuation and a low-frequency fluctuation, and the fluctuation range is larger than the voltage compensation range in the SVC. This signal is an input signal to the voltage signal detection processing device 1 and is input to the high-pass filter 2 and the low-pass filter 4 in the voltage signal detection processing device 1. FIG. 3B shows a signal in a portion b of FIG. 2, which is an output signal of the low-pass filter 4 and is input to the limiter 6. FIG. 3C shows a signal in a part c of FIG. 2, which is an output signal of the limiter 6 and is input to the superimposing circuit 8. FIG. 3D shows a signal in a part d in FIG. 2, which is an output signal of the high-pass filter 2 and is input to the superposition circuit 8. FIG. 3e shows the signal at the part e in FIG. 2, which is the output signal of the superposition circuit 8 and the output signal of the voltage signal detection processing device 1, and is supplied to the SVC (not shown). Here, the filter coefficients of the high-pass filter 2 and the low-pass filter 4 and the limiter range of the limiter 6 are set so that the fluctuation range of the signal in the section e falls within the voltage compensation range of the SVC. With this configuration, all the voltage fluctuations of the signal in the portion e are compensated by the SVC. FIG. 4 is a graph showing low frequency fluctuations that cannot be compensated for by the SVC. This low frequency fluctuation is compensated by SVR or OLTC. In order to compensate for the low-frequency component in a distribution system in which a power source is installed on the secondary side (end side of the distribution line) of the SVR, it is necessary to take measures such as removing a reverse flow prevention relay. , SVR are known and will not be described in detail here. The voltage compensation procedure is also known for the OLTC and will not be described in detail here. As described above, the SVC operates under appropriate conditions by adjusting the setting range of the limiter 6 in FIG. 3 according to the voltage compensable range (that is, the SVC capacity) of the SVC installed in the power transmission and distribution system. It becomes possible to do. Incidentally, when the setting range of the limiter is set to zero, the operation is performed in a state where the SVC capacity is minimum (in the SVC, only the high-frequency voltage fluctuation is compensated and all the low-frequency voltage fluctuations are compensated in the SVR or OLTC).
[0017]
The above description relates to a method of providing a satisfactory variable voltage compensation function by additionally installing a voltage signal detection processing device of the present invention when a constant voltage control type SVC and SVR or OLTC are already installed in a transmission and distribution system. As an explanation, when a voltage constant control type SVC and a voltage signal detection processing device of the present invention are additionally installed in a transmission and distribution system in which only an SVR or an OLTC is installed to stabilize the voltage, the SVC capacity is required. By appropriately adjusting the limiter and the limiter range, a function of compensating a fluctuating voltage can be flexibly realized in correspondence with SVCs of various capacities.
[0018]
FIG. 5 is a graph showing a load curve of the power distribution system. The horizontal axis represents time, and the vertical axis represents voltage. FIG. 6 is a graph showing a disturbance component added to the load curve of FIG. 5, in which the horizontal axis represents time and the vertical axis represents voltage. Simulation analysis was performed for each of the following three cases.
Case 1: Voltage fluctuation compensation control using only SVR Case 2: Cooperative operation control of SVR and constant voltage control type SVC Case 3: Cooperative operation control analysis conditions of SVR and SVC by the method of the present invention (distribution system setting conditions) Are not shown because they are not essential for describing the present invention.
[0019]
FIG. 7 is a graph showing the controlled bus voltage (voltage waveform after performing the voltage fluctuation compensation control) in Case 1. The horizontal axis represents time, and the vertical axis represents voltage. From this graph, it can be seen that the SVR alone cannot provide sufficient compensation and has a waveform in which the low-frequency fluctuation component and the high-frequency fluctuation component overlap.
[0020]
FIG. 8A is a graph showing the controlled bus voltage in Case 2. The horizontal axis represents time, and the vertical axis represents voltage. From this graph, it can be seen that the overall voltage fluctuation is improved as compared to the case of only the SVR control in case 1 shown in FIG. 7, but it is clear that the high-frequency fluctuation component is not compensated over the entire time period. Understand. FIG. 8B is a graph showing the control amount of the SVC at this time. The horizontal axis represents time, and the vertical axis represents voltage. From this graph, it can be seen that the region beyond the controllable range of the SVC has a linear waveform, and the high-frequency fluctuation component remains uncompensated in the portion of FIG. 8A corresponding to this region.
[0021]
FIG. 9A is a graph showing the controlled bus voltage in Case 3. The horizontal axis represents time, and the vertical axis represents voltage. From this graph, it can be seen that the voltage fluctuation is improved as compared with the conventional SVR and SVC cooperative operation control of Case 2 shown in FIG. 8A, and the high-frequency fluctuation component is also compensated over the entire time period. FIG. 9B is a graph showing the control amount of the SVC at this time. The horizontal axis represents time, and the vertical axis represents voltage. From this graph, it can be understood that the control is performed without exceeding the controllable range of the SVC by the cooperation method of the present invention.
[0022]
Although the above description has been given of an example of voltage control of the distribution system (cooperation between SVC and SVR), the same effect can be obtained with respect to voltage control of the transmission system (cooperation between SVC and OLTC). . In addition, instead of the SVC, a high-speed voltage control device to which power electronics such as SVG, UPFC, PS, and TCSC are applied, or a distributed power supply, a generator, or the like can be used. The effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of voltage compensation in SVC.
FIG. 2 is a block diagram showing a basic configuration of a voltage signal detection processing device according to the present invention.
FIGS. 3A to 3E are graphs showing examples of signals in respective units a to e shown in FIG. 2;
FIG. 4 is a graph showing a low-frequency variation that cannot be completely compensated by SVC.
FIG. 5 is a graph showing a load curve of a power distribution system.
FIG. 6 is a graph showing a disturbance component added to the load curve of FIG. 5;
FIG. 7 is a graph showing a controlled bus voltage in case 1;
8A is a graph showing a controlled bus voltage in Case 2, and FIG. 8B is a graph showing a control amount of SVC.
9A is a graph showing a controlled bus voltage in Case 3, and FIG. 9B is a graph showing an SVC control amount.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Voltage signal detection processing device 2 High-pass filter 4 Low-pass filter 6 Limiter 8 Superposition circuit

Claims (12)

配電系統中にステップ式電圧調整器と電圧一定制御方式の高速機器とを設置して前記配電系統の電圧変動を補償する配電系統の電圧制御方法において、前記配電系統中に該配電系統の電圧変動を検出および処理する電圧信号検出処理装置をさらに設置し、この電圧信号検出処理装置の出力信号に基づいて前記高速機器を動作させることを特徴とする、配電系統の電圧制御方法。A voltage control method for a distribution system in which a step-type voltage regulator and a high-speed device of a constant voltage control method are installed in a distribution system to compensate for the voltage variation of the distribution system, A voltage control method for a power distribution system, further comprising: installing a voltage signal detection processing device that detects and processes the voltage, and operating the high-speed device based on an output signal of the voltage signal detection processing device. 請求項1に記載の配電系統の電圧制御方法において、前記電圧信号検出処理装置が、高域通過フィルタと、低域通過フィルタと、リミッタと、重ね合わせ回路とを具えることを特徴とする、配電系統の電圧制御方法。The voltage control method for a power distribution system according to claim 1, wherein the voltage signal detection processing device includes a high-pass filter, a low-pass filter, a limiter, and a superposition circuit. Distribution system voltage control method. 請求項1または2に記載の配電系統の電圧制御方法において、前記高速機器の高速応答と低速応答の割合を前記リミッタの設定レベルによって任意に設定することを特徴とする、配電系統の電圧制御方法。3. The voltage control method for a distribution system according to claim 1, wherein a ratio between a high-speed response and a low-speed response of the high-speed device is arbitrarily set according to a setting level of the limiter. 4. . 配電系統中にステップ式電圧調整器と電圧一定制御方式の静止型無効電力補償装置とを設置して前記配電系統の電圧変動を補償する配電系統の電圧制御方法において、前記配電系統中に該配電系統の電圧変動を検出および処理する電圧信号検出処理装置をさらに設置し、この電圧信号検出処理装置の出力信号に基づいて前記静止型無効電力補償装置を動作させることを特徴とする、配電系統の電圧制御方法。A voltage control method for a distribution system, in which a step-type voltage regulator and a static var compensator of a constant voltage control method are installed in a distribution system to compensate for voltage fluctuations in the distribution system, the method comprises the steps of: A voltage signal detection processing device for detecting and processing voltage fluctuations in the system is further installed, and the static type reactive power compensator is operated based on an output signal of the voltage signal detection processing device. Voltage control method. 請求項4に記載の配電系統の電圧制御方法において、前記電圧信号検出処理装置が、高域通過フィルタと、低域通過フィルタと、リミッタと、重ね合わせ回路とを具えることを特徴とする、配電系統の電圧制御方法。5. The voltage control method for a distribution system according to claim 4, wherein the voltage signal detection processing device includes a high-pass filter, a low-pass filter, a limiter, and a superposition circuit. Distribution system voltage control method. 請求項3または4に記載の配電系統の電圧制御方法において、前記静止型無効電力補償装置の高速応答と低速応答の割合を前記リミッタの設定レベルによって任意に設定することを特徴とする、配電系統の電圧制御方法。5. The distribution system voltage control method according to claim 3, wherein a ratio between a high-speed response and a low-speed response of the static var compensator is arbitrarily set according to a setting level of the limiter. 6. Voltage control method. 送電系統中に負荷時タップ切換装置と電圧一定制御方式の高速機器とを設置して送電系統の電圧変動を補償する送電系統の電圧制御方法において、前記送電系統中に該送電系統の電圧変動を検出および処理する電圧信号検出処理装置をさらに設置し、この電圧信号検出処理装置の出力に基づいて前記高速機器を動作させることを特徴とする、送電系統の電圧補償方法。In a voltage control method of a transmission system, in which a load tap switching device and a high-speed device of a constant voltage control method are installed in a transmission system to compensate for a voltage variation of the transmission system, the voltage variation of the transmission system is reduced during the transmission system. A voltage compensation method for a power transmission system, further comprising installing a voltage signal detection processing device for detecting and processing, and operating the high-speed device based on an output of the voltage signal detection processing device. 請求項7に記載の送電系統の電圧制御方法において、前記電圧信号検出処理装置が、高域通過フィルタと、低域通過フィルタと、リミッタと、重ね合わせ回路とを具えることを特徴とする、送電系統の電圧制御方法。The voltage control method for a power transmission system according to claim 7, wherein the voltage signal detection processing device includes a high-pass filter, a low-pass filter, a limiter, and a superposition circuit. Voltage control method for transmission system. 請求項7または8に記載の送電系統の電圧制御方法において、前記高速機器の高速応答と低速応答の割合を前記リミッタの設定レベルによって任意に設定することを特徴とする、送電系統の電圧制御方法。9. The voltage control method for a power transmission system according to claim 7, wherein a ratio between a high-speed response and a low-speed response of the high-speed device is arbitrarily set according to a setting level of the limiter. . 送電系統中に負荷時タップ切換装置と電圧一定制御方式の静止型無効電力補償装置とを設置して送電系統の電圧変動を補償する送電系統の電圧制御方法において、前記送電系統中に該送電系統の電圧変動を検出および処理する電圧信号検出処理装置をさらに設置し、この電圧信号検出処理装置の出力に基づいて前記静止型無効電力補償装置を動作させることを特徴とする、送電系統の電圧補償方法。In a voltage control method for a transmission system, in which a tap change device under load and a static var compensator of a constant voltage control method are installed in a transmission system to compensate for voltage fluctuations in the transmission system, the transmission system includes A voltage signal detection processor for detecting and processing the voltage fluctuation of the power system, and operating the static var compensator based on the output of the voltage signal detection processor. Method. 請求項10に記載の送電系統の電圧制御方法において、前記電圧信号検出処理装置が、高域通過フィルタと、低域通過フィルタと、リミッタと、重ね合わせ回路とを具えることを特徴とする、送電系統の電圧制御方法。The voltage control method for a power transmission system according to claim 10, wherein the voltage signal detection processing device includes a high-pass filter, a low-pass filter, a limiter, and a superposition circuit. Voltage control method for transmission system. 請求項10または11に記載の送電系統の電圧制御方法において、前記静止型無効電力補償装置の高速応答と低速応答の割合を前記リミッタの設定レベルによって任意に設定することを特徴とする、送電系統の電圧制御方法。12. The power transmission system voltage control method according to claim 10, wherein a ratio between a high-speed response and a low-speed response of the static var compensator is arbitrarily set according to a setting level of the limiter. Voltage control method.
JP2003053532A 2003-02-28 2003-02-28 Voltage control method for power transmission and distribution system Expired - Lifetime JP3918056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053532A JP3918056B2 (en) 2003-02-28 2003-02-28 Voltage control method for power transmission and distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053532A JP3918056B2 (en) 2003-02-28 2003-02-28 Voltage control method for power transmission and distribution system

Publications (2)

Publication Number Publication Date
JP2004266915A true JP2004266915A (en) 2004-09-24
JP3918056B2 JP3918056B2 (en) 2007-05-23

Family

ID=33118106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053532A Expired - Lifetime JP3918056B2 (en) 2003-02-28 2003-02-28 Voltage control method for power transmission and distribution system

Country Status (1)

Country Link
JP (1) JP3918056B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907637B2 (en) 2010-12-01 2014-12-09 Abb Technology Ag Reactive power compensator having a booster transformer
WO2016121014A1 (en) * 2015-01-28 2016-08-04 株式会社日立製作所 Voltage control device and voltage-control-device control method
JP2018107877A (en) * 2016-12-26 2018-07-05 愛知電機株式会社 Reactive power compensation apparatus and power system voltage control method using the same
CN112421628A (en) * 2020-11-23 2021-02-26 国网山东省电力公司电力科学研究院 Power distribution network simulation analysis method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907637B2 (en) 2010-12-01 2014-12-09 Abb Technology Ag Reactive power compensator having a booster transformer
WO2016121014A1 (en) * 2015-01-28 2016-08-04 株式会社日立製作所 Voltage control device and voltage-control-device control method
JP2018107877A (en) * 2016-12-26 2018-07-05 愛知電機株式会社 Reactive power compensation apparatus and power system voltage control method using the same
CN112421628A (en) * 2020-11-23 2021-02-26 国网山东省电力公司电力科学研究院 Power distribution network simulation analysis method and system

Also Published As

Publication number Publication date
JP3918056B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
Shair et al. Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges
RU2393608C2 (en) Device and method of power flow control in transmission line
KR101152364B1 (en) Control device for reactive power compansator of hvdc system and hvdc system having the same
US5818208A (en) Flicker controllers using voltage source converters
Larsson et al. STATCOM, an efficient means for flicker mitigation
JP5062325B2 (en) System stabilization device
CN101010848B (en) Method and device for electric power flow control in high-voltage grid
Ghorbani et al. Application of subsynchronous damping controller (SSDC) to STATCOM
US7847527B2 (en) Apparatus and method for improved power flow control in a high voltage network
US20120187924A1 (en) Method for controlling current converters and assembly for performing said method
JP5141764B2 (en) System stabilization device
RU2656356C1 (en) Method and device for reducing of vibration voltage in power supply network
JP2004266915A (en) Method for controlling voltage of power transmission and distribution system
JP5077431B2 (en) System stabilization device
Yee et al. Damping of system oscillatory modes by a phase compensated gas turbine governor
JP2018107877A (en) Reactive power compensation apparatus and power system voltage control method using the same
Hung et al. The Control Method in Synchronous Frame for DVR to Mitigate the Balanced and Unbalanced Voltage Sag/Swells Phenomenon in Power Network
Zhang et al. A comparison of the dynamic performance of FACTS with energy storage to a unified power flow controller
JP3744831B2 (en) Power storage system
Narne et al. Dynamic stability enhancement using self-tuning static synchronous compensator
Sharma et al. A robust Adaline based control of shunt active power filter without load and filter current measurement
CN118316095A (en) Control method and system for HVDC synchronous camera with rapid and adjustable dynamic response
Rao et al. Power System Stability Improvemet with TCSC and SSSC Controller
Chuncha et al. UPFC for Mitigation of Voltage Sag and Swell in Power System
Adhikary et al. Optimal Design of KVAr Based SVC for Improvement of Stability in Electrical Power System

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Ref document number: 3918056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term