WO2016121014A1 - Voltage control device and voltage-control-device control method - Google Patents

Voltage control device and voltage-control-device control method Download PDF

Info

Publication number
WO2016121014A1
WO2016121014A1 PCT/JP2015/052257 JP2015052257W WO2016121014A1 WO 2016121014 A1 WO2016121014 A1 WO 2016121014A1 JP 2015052257 W JP2015052257 W JP 2015052257W WO 2016121014 A1 WO2016121014 A1 WO 2016121014A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
voltage
voltage control
svr
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2015/052257
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 逢見
山根 憲一郎
正俊 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to PCT/JP2015/052257 priority Critical patent/WO2016121014A1/en
Publication of WO2016121014A1 publication Critical patent/WO2016121014A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/12Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Definitions

  • the present invention relates to a voltage control device for a power system that performs voltage control of the power system.
  • the voltage of the power system is controlled by a voltage control device such as an SVR (Step Voltage Regulator) or an SVC (Static Var Compensator).
  • a voltage control device such as an SVR (Step Voltage Regulator) or an SVC (Static Var Compensator).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-217581
  • the automatic voltage regulator for a line according to the present invention performs the switching control of the tap by monitoring the continuation state of the reactive power passing through the own device. It is possible to prevent hunting of the operation between the two, and to perform efficient voltage control in cooperation with the operation of the static reactive power compensator ”.
  • the technique described in Patent Document 1 is based on the premise that a dead zone is set in the SVC in order to promote the operation of the SVR, and the dead zone of the SVC needs to be set larger than the dead zone of the SVR.
  • the dead zone is a set voltage range.
  • the voltage control device does not control the voltage. Since the SVC does not control the voltage when the voltage is within the dead band, there is no voltage margin and the voltage deviates from the appropriate range (101 ⁇ 6V or 202 ⁇ 20V) determined by the Electricity Business Law other than the SVC installation point. there's a possibility that.
  • the present invention has been made in view of the above problems, and its object is to suppress short-cycle fluctuations faster than the SVR operation time period and long-period fluctuations smaller than the SVR control width while ensuring the output capacity of the SVC.
  • the purpose is to prevent voltage deviation.
  • the present invention provides a voltage control device that controls a voltage of a power system, and the voltage control device is based on system information of the power system, a system voltage, and an output of the voltage control device.
  • Non-compensation voltage calculator that calculates a non-compensation voltage that is a system voltage at the time of no compensation, the system information, the non-compensation voltage, and other voltage control that is an operation parameter of another voltage control device in the power system
  • Another voltage control device output change prediction unit that predicts an output change amount of the other voltage control device when the voltage control device is not compensated based on the device operation parameter, the system information, the system voltage, and the other voltage control
  • a control amount calculation unit that calculates a control amount of the voltage control device from an output change prediction amount of the device.
  • the SVC control amount is calculated by subtracting the voltage compensation amount expected to be generated by the output change predicted value of the SVR, thereby suppressing the output of the SVC and securing the reserve for short period fluctuations. can do.
  • the voltage compensation amount can be shared for each voltage control device by operating the SVR triggered by the voltage change caused by the SVC output suppression. Furthermore, even if the voltage is within the SVR dead band, the voltage is maintained at the target value by the SVC, so that a voltage margin can be secured, and it is possible to contribute to prevention of voltage deviations at points other than the installation point of the voltage control device.
  • FIG. 1 is a diagram illustrating an example of a system configuration in which the voltage control device is SVC and the other voltage control device is SVR.
  • SVC was selected as the voltage control device, but high-speed power operation by power electronics control such as PCS (Power Conditioning System), UPFC (Unified Power Flow Controller), TSC (Thyristor Switched Capacitor) Or a device capable of changing the power flow state such as reactive power.
  • PCS Power Conditioning System
  • UPFC Unified Power Flow Controller
  • TSC Thyristor Switched Capacitor
  • the SVR is selected as the other voltage control device, a device that controls the voltage in multiple stages by mechanically switching a switch such as SC (Switched Capacitor) or ShR (Shunt Reactor) may be used.
  • SC Switchched Capacitor
  • ShR Switch Reactor
  • the power system 101 is connected to an SVR 102, a voltage / current sensor 103, an SVC 105, and a voltage sensor 106.
  • the SVR 102 and the voltage / current sensor 103 are connected to the SVR controller 104, and the SVC 105 and the voltage sensor 106 are connected to the SVC controller 107.
  • the SVR controller 104 and the SVC controller 107 are configured by input means, output means, CPU, RAM, database, and program data, respectively.
  • FIG. 2 is a diagram illustrating an example of a functional configuration related to program data and database functions in the SVC controller 107.
  • the SVC controller 107 includes functions of a system topology DB 201, an uncompensated voltage calculation unit 202, an SVR output change prediction unit 203, a control amount calculation unit 204, and an SVR operation parameter DB 205.
  • the system topology DB 201 holds the impedance of the branch in the power system 101, the connection state of the branch, and the connection information of the devices existing on the power system.
  • the uncompensated voltage calculation unit 202 acquires the system information 206 from the system topology DB 201, the SVC output from the SVC 105, the voltage at the installation point of the SVC 105 from the voltage sensor 106, and the uncompensated voltage 207 when there is no SVC 105 output. calculate.
  • the non-compensation voltage 207 is calculated by Equation 1, for example.
  • V 0 is the uncompensated voltage 207 at the SVC 105 installation point
  • V is the system voltage detected by the voltage sensor 106
  • F is the output of the SVC 105
  • K SVC is the control sensitivity of the SVC 105.
  • the control sensitivity is a differential amount of the system voltage change with respect to the output change of the voltage control device, and is uniquely obtained from the system information 206.
  • the SVR operation parameter DB 205 holds the same SVR operation time limit, target voltage, dead band width, and LDC parameters that the SVR controller 104 holds.
  • the SVR output change prediction unit 203 acquires the uncompensated voltage 206 from the uncompensated voltage calculation unit 202 and the SVR operation parameter 208 from the SVR operation parameter DB 205, and the SVR output change predicted value 209 when there is no compensation by the SVC 105. Is calculated. In calculating the SVR output change predicted value 209, the SVR output change prediction unit 203 first extracts long-period voltage fluctuations from the uncompensated voltage using a low-pass filter. When long-period voltage fluctuations deviate from the SVR dead band lower limit, it is predicted that the SVR taps up by one step, and when it deviates from the dead band upper limit, the SVR taps down by one step. Predicting and outputting the predicted SVR output change value 209 to the control amount calculation unit 204.
  • the control amount calculation unit 204 acquires the system information 206 from the system topology DB 201, the SVR output change predicted value 209 from the SVR output change prediction unit 203, and the system voltage from the voltage sensor 106, and calculates the control amount.
  • the control amount is calculated by, for example, Equation 2.
  • ⁇ F SVC is the amount of change in the SVC output
  • ⁇ F SVR is the predicted SVR output change value 209
  • K SVR is the control sensitivity of the SVR 102, and is uniquely obtained from the system information 206 like the SVC 105.
  • FIG. 3 is a schematic diagram of the power system 101.
  • the power system 101 is roughly divided into a plurality of nodes 301 and branches 302.
  • the node 301 corresponds to a substation, a pole transformer, a switch, and the like existing on the power system.
  • the branch 302 corresponds to a power line on the power system, and an impedance corresponding to each power line is set.
  • the nodes 301a to 301g are not particularly distinguished, they are called the node 301, and when the branches 302a to 302e are not particularly distinguished, they are called the branch 302.
  • node 301a is a substation.
  • Nodes 301b, 301e, and 301g are utility poles to which consumers are connected.
  • the node 301 c is a primary side end of the SVR 102, and the node 301 d is a secondary side end of the SVR 102.
  • the SVC 105 is connected to the node 301f.
  • FIG. 4 is a flowchart illustrating an example of processing from when the SVC controller 107 acquires the system voltage to when the control amount is calculated.
  • step S 401 the uncompensated voltage calculation unit 202 acquires the system voltage from the voltage sensor 106.
  • the uncompensated voltage calculation unit 202 acquires the SVC output from the SVC 105 and the system information 206 from the system topology DB 201 in addition to the system voltage, calculates the uncompensated voltage 207, and calculates the SVR output change prediction unit. Output to.
  • the non-compensation voltage 207 is calculated by, for example, Equation 1, and the control sensitivity is uniquely obtained from the system information 206.
  • step S403 the SVR output change prediction unit 203 acquires the non-compensation voltage 207 from the non-compensation voltage calculation unit 202, and extracts long-period fluctuation using, for example, a low-pass filter.
  • step S404 the SVR output change prediction unit 203 acquires the SVR operation parameter 208 from the SVR operation parameter DB 205, and determines whether the long-period fluctuation has deviated from the SVR dead zone. If the long-period fluctuation deviates from the SVR dead zone (Yes), the process proceeds to step S405. If not deviating (No), the process proceeds to step S408.
  • step S408 the SVR output change prediction unit 203 sets the SVR output change prediction value 209 to 0 and outputs it to the control amount calculation unit 204.
  • step S405 the SVR output change prediction unit 203 determines whether the long-period fluctuation has deviated from the upper limit or the lower limit of the SVR dead zone. If it deviates from the upper limit (departs from the upper limit), the process proceeds to step S406. If it deviates from the lower limit (departs from the lower limit), the process proceeds to step S407.
  • the SVR output change prediction unit 203 calculates the SVR output change predicted value 209 assuming that the SVR performs a step-down operation, and outputs it to the control amount calculation unit 204.
  • the SVR output change prediction unit 203 calculates the SVR output change predicted value 209, assuming that the SVR performs a boost operation, and outputs it to the control amount calculation unit 204.
  • step S409 the control amount calculation unit 204 calculates an SVR output change excluded voltage obtained by excluding the compensation by the SVR output change predicted value 209 from the system voltage.
  • the SVR output change exclusion voltage is calculated by, for example, an expression obtained by multiplying both sides of the above-described expression 2 by K SVR that is the control sensitivity of the SVR 102.
  • step S410 the control amount calculation unit 204 calculates the SVC control amount from the SVR output change exclusion voltage.
  • FIG. 5 shows the relationship between the uncompensated voltage 207, long-period fluctuation, voltage compensation due to the predicted SVR output change value 209, and voltage compensation due to SVC.
  • the horizontal axis is time, and the vertical axis is voltage.
  • the uncompensated voltage is indicated by a long dotted line, the long period fluctuation is indicated by a solid line, the voltage compensation by the predicted SVR output change is indicated by a dot area, the voltage compensation by SVC is indicated by a hatching area, and the dead zone is indicated by a short dotted line.
  • the uncompensated voltage is calculated by, for example, Equation 1, and includes both short-period fluctuation and long-period fluctuation.
  • the solid line in the figure shows the long-period fluctuation extracted from the uncompensated voltage.
  • the SVR output change predicted value 209 is calculated.
  • the voltage assumed to be compensated by the SVR output change predicted value is the dot area in the figure. Since the SVC compensates the difference between the uncompensated voltage 207 and the voltage compensation by the SVR output change predicted value, the hatched area in the figure is the voltage compensation by the SVC.
  • FIG. 6 shows the system voltage at t1 and the outputs of SVR102 and SVC105.
  • the voltage at the SVC installation point is kept constant by the SVC 105 and does not deviate from the dead zone of the SVR. However, the SVC 105 outputs to near the capacity limit.
  • FIG. 7 shows the system voltage at t2 and the outputs of SVR102 and SVC105.
  • FIG. 8 shows the system voltage at t3 and the outputs of SVR102 and SVC105.
  • the SVR performs step-down operation triggered by the fact that the system voltage deviates from the upper limit of the SVR dead band at t2.
  • the SVC predicts the output change of the SVR, thereby suppressing the output of the SVC itself.
  • the resulting voltage change induces SVR operation and can share the voltage variation compensated by SVC and SVR.
  • the SVC controls the voltage at a constant value except when the output is shifted between the SVC and the SVR, a margin from the upper and lower limits of the system voltage can be secured, thereby contributing to prevention of voltage deviation.
  • the voltage constant point monitored by the SVR is far away from the SVC installation point.
  • the voltage at the fixed voltage point can be acquired via the communication line.
  • FIG. 9 is a functional configuration diagram in the second embodiment.
  • a sensor-equipped switch 901 is connected to the SVC controller 107 via a communication line.
  • the power system 101, the SVR 102, the voltage / current sensor 103, the SVR controller 104, the SVC 105, the voltage sensor 106, the system topology DB 201, and the SVR operation parameter DB 205 in FIG. 9 are the same as those in the first embodiment.
  • the functions of the non-compensation voltage calculation unit 202 and the control amount calculation unit 204 are partially different from those in the first embodiment.
  • the non-compensation voltage calculation unit 202 calculates the non-compensation voltage 901 at a constant voltage monitored by the SVR, not the SVC installation point, and outputs it to the SVR output change prediction unit 203.
  • the control sensitivity of the SVC 105 with respect to a voltage at a fixed voltage monitored by the SVR is uniquely obtained from the system information 206 acquired from the system topology DB 201.
  • the SVR output change prediction unit 203 extracts long-period fluctuations from the voltage 901 non-compensation voltage 901, determines the deviation of the SVR dead zone, and determines the SVR output change predicted value 209 as the control amount calculation unit 204. To calculate.
  • the control amount calculation unit 204 in the second embodiment controls, for example, an expression so as to control the voltage at a certain voltage point monitored by the SVR.
  • the control amount is calculated according to 3.
  • V ′ is a voltage at a certain voltage point monitored by the SVR
  • K ′ SVC is a control sensitivity of the SVC with respect to a voltage at the certain voltage point monitored by the SVR.
  • the voltage at the voltage fixed point can be estimated by load apportionment or linear approximation, so the second embodiment is applied. It is possible.
  • the SVC can secure a margin of voltage while securing an output capacity and contributes to prevention of voltage deviation.
  • the SVC cannot directly acquire the voltage at the voltage constant point monitored by the SVR.
  • FIG. 10 is a functional configuration diagram in the third embodiment.
  • the SVR output change prediction unit 203 also acquires the system information 206 from the system topology DB 201.
  • the non-compensation voltage calculation unit 202 in the third embodiment calculates the difference between the system voltage at the fixed voltage point and the non-compensation voltage 207 from the system voltage at the SVC installation point and the non-compensation voltage 207, that is, the SVC compensation voltage at the voltage fixed point. 1001 is calculated and output to the SVR output change prediction unit 203.
  • the SVR output change prediction unit 203 in the third embodiment extracts a long-period component of the SVC compensation voltage 1001 at a constant voltage point.
  • an SVR output change predicted value is calculated and output to the control amount calculation unit 204.
  • the control amount calculation unit 204 calculates the control amount according to, for example, Equation 3 so as to control the voltage at the voltage constant point monitored by the SVR. According to the present embodiment, even when the fixed voltage point monitored by the SVR and the SVC installation point are far apart and there is no communication line, the SVC can secure a margin of voltage while securing an output capacity and voltage deviation. Contributes to prevention.
  • Embodiment 4 describes a case where the SVR controller 104 and the SVC controller 107 are connected by a communication line.
  • the non-compensation voltage calculation unit 202 acquires the SVR measurement value 1101 from the SVR controller 104 via the communication line.
  • the SVR measurement value 1101 is a voltage, current, power factor, or the like measured by the voltage / current sensor 103 connected to the SVR controller 104.
  • the non-compensation voltage calculation unit 202 represents the non-compensation voltage 901 at a fixed voltage point monitored by the SVR based on the acquired SVR measurement value 1101, the system information 206, the output of the SVC 105, and the SVR operation parameter 208, for example, as shown in Equation 4. Estimated by LDC (Line Drop Compensator).
  • V 0 ′ is the uncompensated voltage at the fixed voltage point monitored by the SVR
  • R is the resistance from the SVR to the fixed voltage point
  • X is the reactance from the SVR to the fixed voltage point
  • I 0 is on the secondary side of the SVR
  • the current when no SVC is compensated, ⁇ is the power factor on the secondary side of the SVR.
  • the SVR output change prediction value calculated by the SVR output change prediction unit is non-zero
  • the SVR output change prediction value is transmitted to the SVR controller via the communication line.
  • the SVC cooperates with the SVR according to the present embodiment, and can ensure a voltage margin while ensuring an output remaining capacity, thereby contributing to prevention of voltage deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention secures available SVC output capacity, suppresses short-period fluctuation faster than the operating time limit of an SVR and long-period fluctuation shorter than the control width of the SVR, and prevents voltage deviation. The present invention is a voltage control device for controlling the voltage of a power system, said voltage control device being provided with: a noncorrected voltage calculation unit for calculating, on the basis of system information for the power system, the system voltage, and the output of the voltage control device, a system voltage for when the voltage control device is not corrected; an other-voltage-control-device output variation prediction unit for predicting, on the basis of the system information, noncorrected voltage, and other-voltage-control-device operation parameters that are the operation parameters of another voltage control device in the power system, the amount of output variation of the other voltage control device when the voltage control device is not corrected; and a control amount calculation unit for calculating, on the basis of the system information, system voltage, and the predicted amount of output variation of the other voltage control device, a control amount for the voltage control device.

Description

電圧制御装置および電圧制御装置の制御方法Voltage control device and voltage control device control method

 本発明は、電力系統の電圧制御を行う電力系統の電圧制御装置に関するものである。 The present invention relates to a voltage control device for a power system that performs voltage control of the power system.

 一般に電力系統では、SVR(Step Voltage Regulator:自動電圧調整器)やSVC(Static Var Compensator:無効電力補償装置)等の電圧制御装置によって、電力系統の電圧を制御している。 Generally, in a power system, the voltage of the power system is controlled by a voltage control device such as an SVR (Step Voltage Regulator) or an SVC (Static Var Compensator).

 電力系統における電圧制御において、電圧制御装置同士の協調動作を実現するために、特開2011-217581号公報(特許文献1)に記載の技術がある。この公報には、「この発明の線路用自動電圧調整装置は自装置を通過する無効電力の継続状態を監視することにより、タップの切替制御を行うようにしたので、静止型無効電力補償装置との間での動作のハンチングを防止し、静止型無効電力補償装置の動作と協調した効率的な電圧制御を行うことができる」という記載がある。 In voltage control in a power system, there is a technique described in Japanese Patent Application Laid-Open No. 2011-217581 (Patent Document 1) in order to realize cooperative operation between voltage control devices. In this publication, “the automatic voltage regulator for a line according to the present invention performs the switching control of the tap by monitoring the continuation state of the reactive power passing through the own device. It is possible to prevent hunting of the operation between the two, and to perform efficient voltage control in cooperation with the operation of the static reactive power compensator ”.

特開2011-217581号公報JP 2011-217581 A

 特許文献1に記載の技術は、SVRの動作を促すためにSVCに不感帯を設定することが前提となっており、SVCの不感帯はSVRの不感帯よりも大きく設定する必要がある。不感帯とは設定された電圧の幅であり、計測もしくは算出した電圧が不感帯内に存在する場合、電圧制御装置は電圧を制御しない。SVCは電圧が不感帯内に収まっている場合には電圧を制御しないため、電圧余裕が無くなりSVCの設置点以外において電圧が電気事業法で定められる適正範囲(101±6Vまたは202±20V)を逸脱する可能性がある。 The technique described in Patent Document 1 is based on the premise that a dead zone is set in the SVC in order to promote the operation of the SVR, and the dead zone of the SVC needs to be set larger than the dead zone of the SVR. The dead zone is a set voltage range. When the measured or calculated voltage exists in the dead zone, the voltage control device does not control the voltage. Since the SVC does not control the voltage when the voltage is within the dead band, there is no voltage margin and the voltage deviates from the appropriate range (101 ± 6V or 202 ± 20V) determined by the Electricity Business Law other than the SVC installation point. there's a possibility that.

 本発明は上記課題に鑑みてなされたもので、その目的は、SVCの出力余力を確保しながら、SVRの動作時限よりも速い短周期変動と、SVRの制御幅よりも小さい長周期変動を抑制し電圧逸脱を防止することにある。 The present invention has been made in view of the above problems, and its object is to suppress short-cycle fluctuations faster than the SVR operation time period and long-period fluctuations smaller than the SVR control width while ensuring the output capacity of the SVC. The purpose is to prevent voltage deviation.

 上記課題を解決する為に本発明は、電力系統の電圧を制御する電圧制御装置であって、前記電力系統の系統情報と系統電圧と当該電圧制御装置の出力とに基づいて当該電圧制御装置が無補償時の系統電圧である無補償時電圧を算出する無補償時電圧算出部と、前記系統情報と前記無補償時電圧と、前記電力系統における他電圧制御装置の動作パラメータである他電圧制御装置動作パラメータとに基づいて、当該電圧制御装置が無補償時の他電圧制御装置の出力変化量を予測する他電圧制御装置出力変化予測部と、前記系統情報と前記系統電圧と前記他電圧制御装置の出力変化予測量より当該電圧制御装置の制御量を算出する制御量算出部と、を備えることを特徴とする。 In order to solve the above-described problem, the present invention provides a voltage control device that controls a voltage of a power system, and the voltage control device is based on system information of the power system, a system voltage, and an output of the voltage control device. Non-compensation voltage calculator that calculates a non-compensation voltage that is a system voltage at the time of no compensation, the system information, the non-compensation voltage, and other voltage control that is an operation parameter of another voltage control device in the power system Another voltage control device output change prediction unit that predicts an output change amount of the other voltage control device when the voltage control device is not compensated based on the device operation parameter, the system information, the system voltage, and the other voltage control A control amount calculation unit that calculates a control amount of the voltage control device from an output change prediction amount of the device.

 本発明によれば、SVRの出力変化予測値によって生じると期待される電圧補償量を差し引いてSVCの制御量を算出することで、SVCの出力を抑制し、短周期変動に対して余力を確保することができる。また、SVCの出力抑制によって生じる電圧変化をきっかけとして、SVRが動作することで、電圧制御装置毎に電圧補償量を分担することができる。さらに、電圧がSVRの不感帯内にあっても、SVCによって電圧が目標値に維持されるため電圧余裕を確保でき、電圧制御装置の設置点以外での電圧逸脱防止に寄与することができる。 According to the present invention, the SVC control amount is calculated by subtracting the voltage compensation amount expected to be generated by the output change predicted value of the SVR, thereby suppressing the output of the SVC and securing the reserve for short period fluctuations. can do. Moreover, the voltage compensation amount can be shared for each voltage control device by operating the SVR triggered by the voltage change caused by the SVC output suppression. Furthermore, even if the voltage is within the SVR dead band, the voltage is maintained at the target value by the SVC, so that a voltage margin can be secured, and it is possible to contribute to prevention of voltage deviations at points other than the installation point of the voltage control device.

本発明の実施の形態における電圧制御装置のシステム構成図である。It is a system configuration figure of the voltage control device in an embodiment of the invention. 本発明の実施の形態における電圧制御装置の機能構成図である。It is a functional lineblock diagram of a voltage control device in an embodiment of the invention. 電圧制御装置を適用する電力系統の模式図である。It is a schematic diagram of the electric power system which applies a voltage control apparatus. 電圧制御装置の処理フロー図である。It is a processing flowchart of a voltage control apparatus. 電圧制御装置の効果を表す模式図である。It is a schematic diagram showing the effect of a voltage control apparatus. 電圧制御装置の効果を表す模式図である。It is a schematic diagram showing the effect of a voltage control apparatus. 電圧制御装置の効果を表す模式図である。It is a schematic diagram showing the effect of a voltage control apparatus. 電圧制御装置の効果を表す模式図である。It is a schematic diagram showing the effect of a voltage control apparatus. 実施例2における電圧制御装置の機能構成図である。It is a functional block diagram of the voltage control apparatus in Example 2. 実施例3における電圧制御装置の機能構成図である。It is a function block diagram of the voltage control apparatus in Example 3. 実施例4における電圧制御装置の機能構成図である。It is a function block diagram of the voltage control apparatus in Example 4.

 以下、図面に基づいて本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

 図1は、電圧制御装置をSVCとし、他電圧制御装置をSVRとした場合のシステム構成例を表す図である。例として電圧制御装置としてSVCを選択したが、PCS(Power Conditioning System)やUPFC(Unified Power Flow Controller)、TSC(Thyristor Swetched Capacitor)のように、パワエレ制御によって高速動作し、電力系統上の有効電力や無効電力といった潮流状態を変化させることが可能な装置でも良い。また、他電圧制御装置としてSVRを選択したが、SC(Switched Capacitor)やShR(Shunt Reactor)といった、機械的にスイッチを切り替えることによって多段で電圧を制御する装置でも良い。 FIG. 1 is a diagram illustrating an example of a system configuration in which the voltage control device is SVC and the other voltage control device is SVR. As an example, SVC was selected as the voltage control device, but high-speed power operation by power electronics control such as PCS (Power Conditioning System), UPFC (Unified Power Flow Controller), TSC (Thyristor Switched Capacitor) Or a device capable of changing the power flow state such as reactive power. Although the SVR is selected as the other voltage control device, a device that controls the voltage in multiple stages by mechanically switching a switch such as SC (Switched Capacitor) or ShR (Shunt Reactor) may be used.

 電力系統101にはSVR102と電圧電流センサ103、SVC105、電圧センサ106が接続されている。SVR102と電圧電流センサ103はSVRコントローラ104に、SVC105と電圧センサ106はSVCコントローラ107に接続されている。SVRコントローラ104とSVCコントローラ107はそれぞれ入力手段、出力手段、CPU、RAM、データベース、プログラムデータによって構成されている。 The power system 101 is connected to an SVR 102, a voltage / current sensor 103, an SVC 105, and a voltage sensor 106. The SVR 102 and the voltage / current sensor 103 are connected to the SVR controller 104, and the SVC 105 and the voltage sensor 106 are connected to the SVC controller 107. The SVR controller 104 and the SVC controller 107 are configured by input means, output means, CPU, RAM, database, and program data, respectively.

 図2は、SVCコントローラ107におけるプログラムデータとデータベースの機能に関する機能構成例を表す図である。SVCコントローラ107は系統トポロジーDB201と、無補償時電圧算出部202と、SVR出力変化予測部203と、制御量算出部204とSVR動作パラメータDB205の機能から構成されている。 FIG. 2 is a diagram illustrating an example of a functional configuration related to program data and database functions in the SVC controller 107. The SVC controller 107 includes functions of a system topology DB 201, an uncompensated voltage calculation unit 202, an SVR output change prediction unit 203, a control amount calculation unit 204, and an SVR operation parameter DB 205.

 系統トポロジーDB201は電力系統101におけるブランチのインピーダンスや、ブランチの接続状態、電力系統上に存在する装置の接続情報を保持している。無補償時電圧算出部202は系統トポロジーDB201より系統情報206を、SVC105よりSVC出力を、電圧センサ106よりSVC105設置点の電圧を取得し、SVC105の出力が無かった場合の無補償時電圧207を算出する。無補償時電圧207はたとえば式1によって算出される。 The system topology DB 201 holds the impedance of the branch in the power system 101, the connection state of the branch, and the connection information of the devices existing on the power system. The uncompensated voltage calculation unit 202 acquires the system information 206 from the system topology DB 201, the SVC output from the SVC 105, the voltage at the installation point of the SVC 105 from the voltage sensor 106, and the uncompensated voltage 207 when there is no SVC 105 output. calculate. The non-compensation voltage 207 is calculated by Equation 1, for example.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 V0はSVC105設置点における無補償時電圧207、Vは電圧センサ106により検出した系統電圧、FはSVC105の出力、KSVCはSVC105の制御感度である。制御感度は電圧制御装置の出力変化に対する系統電圧変化の微分量であり、系統情報206より一意に求まる。 V 0 is the uncompensated voltage 207 at the SVC 105 installation point, V is the system voltage detected by the voltage sensor 106, F is the output of the SVC 105, and K SVC is the control sensitivity of the SVC 105. The control sensitivity is a differential amount of the system voltage change with respect to the output change of the voltage control device, and is uniquely obtained from the system information 206.

 SVR動作パラメータDB205はSVRコントローラ104が保持しているSVRの動作時限や目標電圧、不感帯幅、LDCパラメータと同じものを保持している。 The SVR operation parameter DB 205 holds the same SVR operation time limit, target voltage, dead band width, and LDC parameters that the SVR controller 104 holds.

 SVR出力変化予測部203は、無補償時電圧算出部202より無補償時電圧206を、SVR動作パラメータDB205よりSVR動作パラメータ208を取得し、SVC105による補償が無かった場合のSVR出力変化予測値209を算出する。SVR出力変化予測値209を算出するにあたって、SVR出力変化予測部203ではまず、ローパスフィルタを用いて無補償時電圧より長周期電圧変動を抽出する。長周期電圧変動がSVRの不感帯下限を逸脱している場合にはSVRが1段上げタップ動作するものと予測し、不感帯上限を逸脱している場合にはSVRが1段下げタップ動作するものと予測し、そのSVR出力変化予測値209を制御量算出部204へ出力する。 The SVR output change prediction unit 203 acquires the uncompensated voltage 206 from the uncompensated voltage calculation unit 202 and the SVR operation parameter 208 from the SVR operation parameter DB 205, and the SVR output change predicted value 209 when there is no compensation by the SVC 105. Is calculated. In calculating the SVR output change predicted value 209, the SVR output change prediction unit 203 first extracts long-period voltage fluctuations from the uncompensated voltage using a low-pass filter. When long-period voltage fluctuations deviate from the SVR dead band lower limit, it is predicted that the SVR taps up by one step, and when it deviates from the dead band upper limit, the SVR taps down by one step. Predicting and outputting the predicted SVR output change value 209 to the control amount calculation unit 204.

 制御量算出部204は系統トポロジーDB201より系統情報206を、SVR出力変化予測部203よりSVR出力変化予測値209を、電圧センサ106より系統電圧を取得し、制御量を算出する。制御量はたとえば式2によって算出される。 The control amount calculation unit 204 acquires the system information 206 from the system topology DB 201, the SVR output change predicted value 209 from the SVR output change prediction unit 203, and the system voltage from the voltage sensor 106, and calculates the control amount. The control amount is calculated by, for example, Equation 2.

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

 ΔFSVCはSVC出力の変化量、ΔFSVRはSVR出力変化予測値209、KSVRはSVR102の制御感度でありSVC105同様系統情報206より一意に求まる。 ΔF SVC is the amount of change in the SVC output, ΔF SVR is the predicted SVR output change value 209, and K SVR is the control sensitivity of the SVR 102, and is uniquely obtained from the system information 206 like the SVC 105.

 図3は電力系統101の概略図である。電力系統101は大別して、複数のノード301とブランチ302から構成されており、ノード301は電力系統上に存在する変電所や柱上変圧器、開閉器等に対応する。ブランチ302は電力系統上の電力線に対応しており、それぞれ電力線に対応するインピーダンスが設定されている。ノード301a~301gを特に区別しない場合はノード301と呼び、ブランチ302a~302eを特に区別しない場合はブランチ302と呼ぶ。 FIG. 3 is a schematic diagram of the power system 101. The power system 101 is roughly divided into a plurality of nodes 301 and branches 302. The node 301 corresponds to a substation, a pole transformer, a switch, and the like existing on the power system. The branch 302 corresponds to a power line on the power system, and an impedance corresponding to each power line is set. When the nodes 301a to 301g are not particularly distinguished, they are called the node 301, and when the branches 302a to 302e are not particularly distinguished, they are called the branch 302.

 たとえばノード301aは変電所である。ノード301b、ノード301e、ノード301gは需要家が接続されている電柱である。ノード301cはSVR102の一次側端、ノード301dはSVR102の二次側端である。ノード301fにはSVC105が接続されている。 For example, node 301a is a substation. Nodes 301b, 301e, and 301g are utility poles to which consumers are connected. The node 301 c is a primary side end of the SVR 102, and the node 301 d is a secondary side end of the SVR 102. The SVC 105 is connected to the node 301f.

 図4はSVCコントローラ107が系統電圧を取得してから、制御量を算出するまでの処理の例をフローチャートとして図示したものである。 FIG. 4 is a flowchart illustrating an example of processing from when the SVC controller 107 acquires the system voltage to when the control amount is calculated.

 まず、ステップS401で無補償時電圧算出部202は、電圧センサ106より系統電圧を取得する。 First, in step S 401, the uncompensated voltage calculation unit 202 acquires the system voltage from the voltage sensor 106.

 次に、ステップS402で無補償時電圧算出部202は、系統電圧に加え、SVC105よりSVC出力を、系統トポロジーDB201より系統情報206を取得し、無補償時電圧207を算出しSVR出力変化予測部へ出力する。無補償時電圧207は前述の通りたとえば式1により算出され、制御感度は系統情報206より一意に求まる。 Next, in step S402, the uncompensated voltage calculation unit 202 acquires the SVC output from the SVC 105 and the system information 206 from the system topology DB 201 in addition to the system voltage, calculates the uncompensated voltage 207, and calculates the SVR output change prediction unit. Output to. As described above, the non-compensation voltage 207 is calculated by, for example, Equation 1, and the control sensitivity is uniquely obtained from the system information 206.

 次に、ステップS403でSVR出力変化予測部203は、無補償時電圧算出部202より無補償時電圧207を取得し、たとえばローパスフィルタによって長周期変動を抽出する。 Next, in step S403, the SVR output change prediction unit 203 acquires the non-compensation voltage 207 from the non-compensation voltage calculation unit 202, and extracts long-period fluctuation using, for example, a low-pass filter.

 次に、ステップS404でSVR出力変化予測部203は、SVR動作パラメータDB205よりSVR動作パラメータ208を取得し、長周期変動がSVR不感帯を逸脱していないか判定する。長周期変動がSVR不感帯を逸脱している(Yes)場合にはステップS405へ進む。逸脱していない(No)場合にはステップS408へ進む。 Next, in step S404, the SVR output change prediction unit 203 acquires the SVR operation parameter 208 from the SVR operation parameter DB 205, and determines whether the long-period fluctuation has deviated from the SVR dead zone. If the long-period fluctuation deviates from the SVR dead zone (Yes), the process proceeds to step S405. If not deviating (No), the process proceeds to step S408.

 ステップS408へ進んだ場合には、SVR出力変化予測部203はSVR出力変化予測値209を0として制御量算出部204へ出力する。 When the process proceeds to step S408, the SVR output change prediction unit 203 sets the SVR output change prediction value 209 to 0 and outputs it to the control amount calculation unit 204.

 ステップS405へ進んだ場合には、SVR出力変化予測部203は長周期変動がSVR不感帯の上限から逸脱しているのか、下限から逸脱しているのかを判定する。上限から逸脱している(上限逸脱)場合にはステップS406へ進む。下限から逸脱している(下限逸脱)場合にはステップS407へ進む。 When the process proceeds to step S405, the SVR output change prediction unit 203 determines whether the long-period fluctuation has deviated from the upper limit or the lower limit of the SVR dead zone. If it deviates from the upper limit (departs from the upper limit), the process proceeds to step S406. If it deviates from the lower limit (departs from the lower limit), the process proceeds to step S407.

 ステップS406へ進んだ場合には、SVR出力変化予測部203はSVRが降圧動作するものとしてSVR出力変化予測値209を算出し、制御量算出部204へ出力する。 When the process proceeds to step S 406, the SVR output change prediction unit 203 calculates the SVR output change predicted value 209 assuming that the SVR performs a step-down operation, and outputs it to the control amount calculation unit 204.

 ステップS407へ進んだ場合には、SVR出力変化予測部203はSVRが昇圧動作するものとしてSVR出力変化予測値209を算出し、制御量算出部204へ出力する。 When the process proceeds to step S407, the SVR output change prediction unit 203 calculates the SVR output change predicted value 209, assuming that the SVR performs a boost operation, and outputs it to the control amount calculation unit 204.

 次に、ステップS409で制御量算出部204は、系統電圧からSVR出力変化予測値209による補償分を除外したSVR出力変化分除外電圧を算出する。SVR出力変化分除外電圧はたとえば前述の式2の両辺にSVR102の制御感度であるKSVRを乗じた式によって算出される。 Next, in step S409, the control amount calculation unit 204 calculates an SVR output change excluded voltage obtained by excluding the compensation by the SVR output change predicted value 209 from the system voltage. The SVR output change exclusion voltage is calculated by, for example, an expression obtained by multiplying both sides of the above-described expression 2 by K SVR that is the control sensitivity of the SVR 102.

 次に、ステップS410で制御量算出部204は、SVR出力変化分除外電圧よりSVCの制御量を算出する。 Next, in step S410, the control amount calculation unit 204 calculates the SVC control amount from the SVR output change exclusion voltage.

 図5に、無補償時電圧207と長周期変動、SVR出力変化予測値209による電圧補償分、SVCによる電圧補償分の関係を示す。横軸を時間、縦軸を電圧とした。無補償時電圧を長点線、長周期変動を実線、SVR出力変化予測値による電圧補償分をドット領域、SVCによる電圧補償分をハッチング領域、不感帯を短点線で示す。無補償時電圧はたとえば式1により算出され、短周期変動と長周期変動の両方を含んでいる。無補償時電圧から長周期変動を抽出したものが図中の実線である。長周期変動が不感帯を逸脱した場合、SVR出力変化予測値209を算出するが、SVR出力変化予測値によって補償されると想定される電圧が図中のドット領域となる。SVCは無補償時電圧207とSVR出力変化予測値による電圧補償分の差分を補償するため、図中のハッチング領域がSVCによる電圧補償分となる。以下、SVR出力変化予測が生じる前のt1、SVR出力変化予測が生じた直後のt2、SVR出力変化予測が生じてからしばらくたったt3のそれぞれの時間における電圧と、SVCおよびSVRの出力を考えることで発明の効果について説明する。 FIG. 5 shows the relationship between the uncompensated voltage 207, long-period fluctuation, voltage compensation due to the predicted SVR output change value 209, and voltage compensation due to SVC. The horizontal axis is time, and the vertical axis is voltage. The uncompensated voltage is indicated by a long dotted line, the long period fluctuation is indicated by a solid line, the voltage compensation by the predicted SVR output change is indicated by a dot area, the voltage compensation by SVC is indicated by a hatching area, and the dead zone is indicated by a short dotted line. The uncompensated voltage is calculated by, for example, Equation 1, and includes both short-period fluctuation and long-period fluctuation. The solid line in the figure shows the long-period fluctuation extracted from the uncompensated voltage. When the long-period fluctuation deviates from the dead zone, the SVR output change predicted value 209 is calculated. The voltage assumed to be compensated by the SVR output change predicted value is the dot area in the figure. Since the SVC compensates the difference between the uncompensated voltage 207 and the voltage compensation by the SVR output change predicted value, the hatched area in the figure is the voltage compensation by the SVC. Hereinafter, consider the voltages at the respective times of t1 before the SVR output change prediction occurs, t2 immediately after the SVR output change prediction occurs, and t3 a short time after the SVR output change prediction, and the outputs of the SVC and SVR. Now, the effect of the invention will be described.

 図6はt1における系統電圧とSVR102およびSVC105の出力を示している。SVC105によってSVC設置点の電圧は一定に保たれており、SVRの不感帯を逸脱することはない。しかし、SVC105は容量の限界近くまで出力している。 FIG. 6 shows the system voltage at t1 and the outputs of SVR102 and SVC105. The voltage at the SVC installation point is kept constant by the SVC 105 and does not deviate from the dead zone of the SVR. However, the SVC 105 outputs to near the capacity limit.

 図7はt2における系統電圧とSVR102およびSVC105の出力を示している。無補償時電圧の長周期成分が不感帯から逸脱したことにより、SVCはSVRの出力変化予測値を算出し、SVC自身の出力を抑制する。その結果、系統の電圧はSVR不感帯の上限を逸脱する。 FIG. 7 shows the system voltage at t2 and the outputs of SVR102 and SVC105. When the long-period component of the non-compensation voltage deviates from the dead zone, the SVC calculates an output change predicted value of the SVR and suppresses the output of the SVC itself. As a result, the system voltage deviates from the upper limit of the SVR dead zone.

 図8はt3における系統電圧とSVR102およびSVC105の出力を示している。t2にて系統電圧がSVR不感帯の上限を逸脱したことをきっかけとしてSVRは降圧動作する。 FIG. 8 shows the system voltage at t3 and the outputs of SVR102 and SVC105. The SVR performs step-down operation triggered by the fact that the system voltage deviates from the upper limit of the SVR dead band at t2.

 以上の図6~8に示したように、本実施例では、SVCがSVRの出力変化を予測することで、SVC自身の出力を抑制する。その結果生じた電圧変化によってSVRの動作が誘発され、SVCとSVRが補償する電圧変動を分担できる。また、SVCとSVR間の出力移行時以外ではSVCが電圧を一定に制御するため、系統電圧の上下限からの余裕を確保でき、電圧逸脱の防止に寄与できる。 As shown in FIGS. 6 to 8 above, in this embodiment, the SVC predicts the output change of the SVR, thereby suppressing the output of the SVC itself. The resulting voltage change induces SVR operation and can share the voltage variation compensated by SVC and SVR. In addition, since the SVC controls the voltage at a constant value except when the output is shifted between the SVC and the SVR, a margin from the upper and lower limits of the system voltage can be secured, thereby contributing to prevention of voltage deviation.

 実施例2では、SVRが監視している電圧一定点とSVC設置点が遠く離れている場合について説明する。この場合、SVRが監視している電圧一定点にセンサ付開閉器が存在すれば、通信回線を介して電圧一定点の電圧を取得することができる。 In the second embodiment, a case where the voltage constant point monitored by the SVR is far away from the SVC installation point will be described. In this case, if there is a sensor-equipped switch at a fixed voltage point monitored by the SVR, the voltage at the fixed voltage point can be acquired via the communication line.

 図9は実施例2における機能構成図である。センサ付開閉器901が通信回線を介してSVCコントローラ107に接続されている。図9の電力系統101、SVR102、電圧電流センサ103、SVRコントローラ104、SVC105、電圧センサ106、系統トポロジーDB201、SVR動作パラメータDB205は実施例1と同一である。無補償時電圧算出部202、制御量算出部204の機能が実施例1とは一部異なる。 FIG. 9 is a functional configuration diagram in the second embodiment. A sensor-equipped switch 901 is connected to the SVC controller 107 via a communication line. The power system 101, the SVR 102, the voltage / current sensor 103, the SVR controller 104, the SVC 105, the voltage sensor 106, the system topology DB 201, and the SVR operation parameter DB 205 in FIG. 9 are the same as those in the first embodiment. The functions of the non-compensation voltage calculation unit 202 and the control amount calculation unit 204 are partially different from those in the first embodiment.

 実施例2における無補償時電圧算出部202はSVC設置点ではなく、SVRが監視している電圧一定点の無補償時電圧901を算出し、SVR出力変化予測部203へ出力する。SVRが監視している電圧一定点の電圧に対するSVC105の制御感度は、系統トポロジーDB201より取得した系統情報206より一意に求まる。 In the second embodiment, the non-compensation voltage calculation unit 202 calculates the non-compensation voltage 901 at a constant voltage monitored by the SVR, not the SVC installation point, and outputs it to the SVR output change prediction unit 203. The control sensitivity of the SVC 105 with respect to a voltage at a fixed voltage monitored by the SVR is uniquely obtained from the system information 206 acquired from the system topology DB 201.

 SVR出力変化予測部203は実施例1と同様に、電圧一定点無補償時電圧901から長周期変動を抽出し、SVR不感帯の逸脱判定をしてSVR出力変化予測値209を制御量算出部204へ算出する。 As in the first embodiment, the SVR output change prediction unit 203 extracts long-period fluctuations from the voltage 901 non-compensation voltage 901, determines the deviation of the SVR dead zone, and determines the SVR output change predicted value 209 as the control amount calculation unit 204. To calculate.

 実施例2における制御量算出部204は、SVR出力変化予測部203から取得したSVR出力変化予測値209が非零の場合、SVRが監視している電圧一定点の電圧を制御するようにたとえば式3に従って制御量を算出する。 When the SVR output change predicted value 209 acquired from the SVR output change prediction unit 203 is non-zero, the control amount calculation unit 204 in the second embodiment controls, for example, an expression so as to control the voltage at a certain voltage point monitored by the SVR. The control amount is calculated according to 3.

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

 V’はSVRが監視している電圧一定点の電圧、K’SVCはSVRが監視している電圧一定点の電圧に対するSVCの制御感度である。 V ′ is a voltage at a certain voltage point monitored by the SVR, and K ′ SVC is a control sensitivity of the SVC with respect to a voltage at the certain voltage point monitored by the SVR.

 また、センサ付開閉器の設置地点が、SVRが監視している電圧一定点と同一でない場合でも、負荷按分や線形近似によって電圧一定点の電圧が推定可能であるため、実施例2を適用することが可能である。 Further, even when the installation position of the sensor-equipped switch is not the same as the voltage fixed point monitored by the SVR, the voltage at the voltage fixed point can be estimated by load apportionment or linear approximation, so the second embodiment is applied. It is possible.

 本実施例により、SVRが監視している電圧一定点とSVC設置点が遠く離れている場合でも、SVCは出力余力を確保しながら、電圧余裕を確保でき、電圧逸脱防止に寄与する。 According to the present embodiment, even when the voltage constant point monitored by the SVR and the SVC installation point are far apart, the SVC can secure a margin of voltage while securing an output capacity and contributes to prevention of voltage deviation.

 実施例3では、SVRが監視している電圧一定点とSVC設置点が遠方に離れており、かつ、通信回線が存在しない場合について説明する。この場合、SVCはSVRが監視している電圧一定点の電圧を直接取得することはできない。しかし、間接的にSVRが監視している電圧一定点の電圧変化を推定することはできる。 In the third embodiment, a case where the fixed voltage point monitored by the SVR and the SVC installation point are far away and no communication line exists will be described. In this case, the SVC cannot directly acquire the voltage at the voltage constant point monitored by the SVR. However, it is possible to estimate a voltage change at a fixed voltage point that is indirectly monitored by the SVR.

 図10は実施例3における機能構成図である。SVR出力変化予測部203も系統トポロジーDB201より系統情報206を取得する。 FIG. 10 is a functional configuration diagram in the third embodiment. The SVR output change prediction unit 203 also acquires the system information 206 from the system topology DB 201.

 実施例3における無補償時電圧算出部202は、SVC設置点における系統電圧と無補償時電圧207より、電圧一定点における系統電圧と無補償時電圧207の差、すなわち電圧一定点におけるSVC補償電圧1001を算出し、SVR出力変化予測部203へ出力する。 The non-compensation voltage calculation unit 202 in the third embodiment calculates the difference between the system voltage at the fixed voltage point and the non-compensation voltage 207 from the system voltage at the SVC installation point and the non-compensation voltage 207, that is, the SVC compensation voltage at the voltage fixed point. 1001 is calculated and output to the SVR output change prediction unit 203.

 実施例3におけるSVR出力変化予測部203は電圧一定点におけるSVC補償電圧1001の長周期成分を抽出する。抽出した長周期成分の最大値と最小値の差が、たとえばSVR不感帯幅を超えた場合、SVR出力変化予測値を算出し制御量算出部204へ出力する。 The SVR output change prediction unit 203 in the third embodiment extracts a long-period component of the SVC compensation voltage 1001 at a constant voltage point. When the difference between the maximum value and the minimum value of the extracted long-period components exceeds, for example, the SVR dead band width, an SVR output change predicted value is calculated and output to the control amount calculation unit 204.

 制御量算出部204はSVR出力変化予測値が非零の場合は、SVRが監視している電圧一定点の電圧を制御するようにたとえば式3に従って制御量を算出する。
 本実施例により、SVRが監視している電圧一定点とSVC設置点が遠く離れており、かつ、通信回線が無い場合でも、SVCは出力余力を確保しながら、電圧余裕を確保でき、電圧逸脱防止に寄与する。
When the predicted SVR output change value is non-zero, the control amount calculation unit 204 calculates the control amount according to, for example, Equation 3 so as to control the voltage at the voltage constant point monitored by the SVR.
According to the present embodiment, even when the fixed voltage point monitored by the SVR and the SVC installation point are far apart and there is no communication line, the SVC can secure a margin of voltage while securing an output capacity and voltage deviation. Contributes to prevention.

 実施例4では、SVRコントローラ104とSVCコントローラ107が通信回線によって接続されている場合について説明する。 Embodiment 4 describes a case where the SVR controller 104 and the SVC controller 107 are connected by a communication line.

 無補償時電圧算出部202は通信回線を介してSVRコントローラ104よりSVR計測値1101を取得する。SVR計測値1101はSVRコントローラ104に接続された電圧電流センサ103によって計測される、電圧や電流、力率等である。 The non-compensation voltage calculation unit 202 acquires the SVR measurement value 1101 from the SVR controller 104 via the communication line. The SVR measurement value 1101 is a voltage, current, power factor, or the like measured by the voltage / current sensor 103 connected to the SVR controller 104.

 無補償時電圧算出部202は取得したSVR計測値1101と系統情報206とSVC105の出力とSVR動作パラメータ208より、SVRが監視している電圧一定点の無補償時電圧901をたとえば式4に示すLDC(Line Drop Compensator)により推定する。 The non-compensation voltage calculation unit 202 represents the non-compensation voltage 901 at a fixed voltage point monitored by the SVR based on the acquired SVR measurement value 1101, the system information 206, the output of the SVC 105, and the SVR operation parameter 208, for example, as shown in Equation 4. Estimated by LDC (Line Drop Compensator).

Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004

 V0’はSVRが監視している電圧一定点の無補償時電圧、RはSVRから電圧一定点までの抵抗、XはSVRから電圧一定点までのリアクタンス、I0はSVRの二次側におけるSVC無補償時の電流、θはSVRの二次側における力率である。 V 0 ′ is the uncompensated voltage at the fixed voltage point monitored by the SVR, R is the resistance from the SVR to the fixed voltage point, X is the reactance from the SVR to the fixed voltage point, and I 0 is on the secondary side of the SVR The current when no SVC is compensated, θ is the power factor on the secondary side of the SVR.

 SVR出力変化予測部によって算出されたSVR出力変化予測値が非零の場合、通信回線を介してSVRコントローラにSVR出力変化予測値を送信する。SVRが外部からの指令によって動作する場合、本実施例によりSVCはSVRと協調動作して、出力余力を確保しながら、電圧余裕を確保でき、電圧逸脱の防止に寄与する。 When the SVR output change prediction value calculated by the SVR output change prediction unit is non-zero, the SVR output change prediction value is transmitted to the SVR controller via the communication line. In the case where the SVR operates in response to an external command, the SVC cooperates with the SVR according to the present embodiment, and can ensure a voltage margin while ensuring an output remaining capacity, thereby contributing to prevention of voltage deviation.

101 電力系統
102 SVR
103 電圧電流センサ
104 SVRコントローラ
105 SVC
106 電圧センサ
107 SVCコントローラ
201 系統トポロジーDB
202 無補償時電圧算出部
203 SVR出力変化予測部
204 制御量算出部
205 SVR動作パラメータDB
206 系統情報
207 無補償時電圧
208 SVR動作パラメータ
209 SVR出力変化予測値
301 ノード
302 ブランチ
303 負荷
901 電圧一定点無補償時電圧
1001 電圧一定点におけるSVC補償電圧
1101 SVR計測値
1102 動作指令
101 Power system 102 SVR
103 Voltage Current Sensor 104 SVR Controller 105 SVC
106 Voltage sensor 107 SVC controller 201 System topology DB
202 Non-compensation voltage calculation unit 203 SVR output change prediction unit 204 Control amount calculation unit 205 SVR operation parameter DB
206 System information 207 Non-compensation voltage 208 SVR operation parameter 209 SVR output change predicted value 301 Node 302 Branch 303 Load 901 Voltage fixed point non-compensation voltage 1001 SVC compensation voltage 1101 SVR measured value 1102 Operation command

Claims (14)

 電力系統の電圧を制御する電圧制御装置であって、
 前記電力系統の系統情報と系統電圧と当該電圧制御装置の出力とに基づいて当該電圧制御装置が無補償時の系統電圧である無補償時電圧を算出する無補償時電圧算出部と、
 前記系統情報と前記無補償時電圧と、前記電力系統における他電圧制御装置の動作パラメータである他電圧制御装置動作パラメータとに基づいて、当該電圧制御装置が無補償時の他電圧制御装置の出力変化量を予測する他電圧制御装置出力変化予測部と、
 前記系統情報と前記系統電圧と前記他電圧制御装置の出力変化予測量より当該電圧制御装置の制御量を算出する制御量算出部と、
 を備えることを特徴とする電圧制御装置。
A voltage control device for controlling the voltage of a power system,
A non-compensation voltage calculation unit that calculates a non-compensation voltage that is a system voltage when the voltage control device is uncompensated based on the system information of the power system, the system voltage, and the output of the voltage control device;
Based on the system information, the non-compensation voltage, and the other voltage control device operation parameter that is the operation parameter of the other voltage control device in the power system, the output of the other voltage control device when the voltage control device is not compensated Other voltage control device output change prediction unit for predicting the change amount,
A control amount calculation unit that calculates a control amount of the voltage control device from the system information, the system voltage, and an output change prediction amount of the other voltage control device;
A voltage control device comprising:
 請求項1に記載の電圧制御装置は、
 前記他電圧制御装置の動作パラメータを保存する他電圧制御装置動作パラメータDBと、
 系統情報を保存する系統情報DBと、
 を更に備えることを特徴とする電圧制御装置。
The voltage control device according to claim 1 is:
Another voltage control device operation parameter DB for storing operation parameters of the other voltage control device;
A system information DB for storing system information;
The voltage control apparatus further comprising:
 請求項1に記載の電圧制御装置であって、
 電力系統における電力潮流を変化させることで、間接的に電圧を制御すること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
Indirectly controlling the voltage by changing the power flow in the power system,
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記他電圧制御装置動作パラメータとは、他電圧制御装置が制御量の算出や動作の決定に用い、事前に静的もしくは動的に設定されるパラメータであること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The other voltage control device operation parameter is a parameter that is used by the other voltage control device to calculate a control amount or determine an operation, and is set statically or dynamically in advance.
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記系統情報とは、電力系統におけるブランチのインピーダンスや、ブランチの接続状況、機器の配置が含まれること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The grid information includes the impedance of the branch in the power system, the connection status of the branch, the arrangement of the equipment,
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記無補償時電圧算出部は、前記系統情報より電力系統上の所定の地点の電圧に対する前記当該電圧制御装置の制御感度を算出すること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The non-compensation voltage calculation unit calculates the control sensitivity of the voltage control device with respect to the voltage at a predetermined point on the power system from the system information;
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記無補償時電圧算出部は、前記系統電圧より前記当該電圧制御装置の出力と前記当該電圧制御装置の制御感度の積を差し引くこと、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The uncompensated voltage calculation unit subtracts the product of the output of the voltage control device and the control sensitivity of the voltage control device from the system voltage,
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記他電圧制御装置出力変化予測部は、前記無補償時電圧より長周期変動を抽出すること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The other voltage control device output change prediction unit extracts long-period fluctuations from the non-compensation voltage,
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記他電圧制御装置出力変化予測部は、前記長周期変動と前記他電圧制御装置動作パラメータの比較により、前記電力系統上に前記長周期変動が存在した場合に、前記他電圧制御装置の出力が変化するかを判定すること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The other voltage control device output change predicting unit outputs the output of the other voltage control device when the long period variation exists on the power system by comparing the long cycle variation and the other voltage control device operation parameter. To determine if it changes,
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記他電圧制御装置出力変化予測部は、前記他電圧制御装置の出力が変化すると判定した場合に、前記他電圧制御装置の出力変化量を算出すること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
When the other voltage control device output change prediction unit determines that the output of the other voltage control device changes, the output change amount of the other voltage control device is calculated.
A voltage control device.
 請求項1に記載の電圧制御装置は、
 前記他電圧制御装置の出力変化量を、前記他電圧制御装置に通信回線を介して送信する送信部を更に備えること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1 is:
An output change amount of the other voltage control device further comprising a transmission unit that transmits the other voltage control device to the other voltage control device via a communication line;
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記制御量算出部は、前記系統情報より電力系統上の所定の地点の電圧に対する前記他電圧制御装置の制御感度を算出すること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The control amount calculation unit calculates a control sensitivity of the other voltage control device with respect to a voltage at a predetermined point on the power system from the system information;
A voltage control device.
 請求項1に記載の電圧制御装置であって、
 前記制御量算出部は、前記系統電圧より前記他電圧制御装置の出力変化量と前記他電圧制御装置の制御感度の積を差し引き、前記当該電圧制御装置の制御感度で除すること、
 を特徴とする電圧制御装置。
The voltage control device according to claim 1,
The control amount calculation unit subtracts the product of the output change amount of the other voltage control device and the control sensitivity of the other voltage control device from the system voltage, and divides by the control sensitivity of the voltage control device;
A voltage control device.
 電力系統の電圧を制御する電圧制御装置の制御方法であって、
 前記電力系統の系統情報と系統電圧と当該電圧制御装置の出力とに基づいて当該電圧制御装置が無補償時の系統電圧である無補償時電圧を算出し、
 前記系統情報と前記無補償時電圧と、前記電力系統における他電圧制御装置の動作パラメータである他電圧制御装置動作パラメータとに基づいて当該電圧制御装置が無補償時の他電圧制御装置の出力変化量を予測し、
 前記系統情報と前記系統電圧と前記他電圧制御装置の出力変化予測量より当該電圧制御装置の制御量を算出すること、
 を特徴とする電圧制御装置の制御方法。
A control method of a voltage control device for controlling the voltage of an electric power system,
Based on the system information of the power system, the system voltage, and the output of the voltage control device, the voltage control device calculates a non-compensation voltage that is a system voltage at the time of no compensation,
Based on the system information, the non-compensation voltage, and the other voltage control device operation parameter that is an operation parameter of the other voltage control device in the power system, the output change of the other voltage control device when the voltage control device is not compensated Predict the quantity,
Calculating a control amount of the voltage control device from the system information, the system voltage, and an output change prediction amount of the other voltage control device;
A control method for a voltage control device.
PCT/JP2015/052257 2015-01-28 2015-01-28 Voltage control device and voltage-control-device control method Ceased WO2016121014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052257 WO2016121014A1 (en) 2015-01-28 2015-01-28 Voltage control device and voltage-control-device control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052257 WO2016121014A1 (en) 2015-01-28 2015-01-28 Voltage control device and voltage-control-device control method

Publications (1)

Publication Number Publication Date
WO2016121014A1 true WO2016121014A1 (en) 2016-08-04

Family

ID=56542671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052257 Ceased WO2016121014A1 (en) 2015-01-28 2015-01-28 Voltage control device and voltage-control-device control method

Country Status (1)

Country Link
WO (1) WO2016121014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537761B1 (en) * 2019-01-11 2019-07-03 三菱電機株式会社 POWER CONVERSION SYSTEM AND POWER CONVERSION DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266915A (en) * 2003-02-28 2004-09-24 Univ Hiroshima Voltage control method of transmission and distribution system
JP2011217581A (en) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp Automatic voltage regulating device for lines
JP2013031362A (en) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry User voltage stabilization system in power distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266915A (en) * 2003-02-28 2004-09-24 Univ Hiroshima Voltage control method of transmission and distribution system
JP2011217581A (en) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp Automatic voltage regulating device for lines
JP2013031362A (en) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry User voltage stabilization system in power distribution system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537761B1 (en) * 2019-01-11 2019-07-03 三菱電機株式会社 POWER CONVERSION SYSTEM AND POWER CONVERSION DEVICE
WO2020144841A1 (en) * 2019-01-11 2020-07-16 三菱電機株式会社 Power conversion system and power conversion device
US11309807B2 (en) 2019-01-11 2022-04-19 Mitsubishi Electric Corporation Power conversion system and power conversion device

Similar Documents

Publication Publication Date Title
Han et al. Review of power sharing, voltage restoration and stabilization techniques in hierarchical controlled DC microgrids
US20230291230A1 (en) Highly flexible, electrical distribution grid edge energy manager and router
CN108370157B (en) Method of controlling power distribution
JP6168528B2 (en) Power control system, method, and information transmission capability control system, method
JP5554217B2 (en) Reactive power compensator
US10096998B2 (en) Distributed reactive power control in power distribution systems
JP5538639B1 (en) Voltage control device and voltage monitoring device
JP2014225947A (en) Tap planned value calculation method and determination method of tap command value using the same, control target value calculation method, and tap planned value calculation device, tap command value determination device, tap planned value calculation program
KR101527446B1 (en) An apparatus and a method for model predictive control of an uninterruptible power supply
JP6778665B2 (en) Power system load frequency control device and method
JP5457949B2 (en) Reactive power compensator with power flow calculation function, and system and method thereof
WO2016121014A1 (en) Voltage control device and voltage-control-device control method
Arshad et al. Multi-agent based distributed voltage regulation scheme with grid-tied inverters in active distribution networks
JP6519783B2 (en) Autonomous distributed voltage control system
KR101705663B1 (en) Microgrid control system and method for the same
KR20210045105A (en) Apparatus and method for controlling distribution
WO2021228958A1 (en) Method, system and device for power balancing in a power grid
Hiskens et al. Model predictive control for power networks
US20200313459A1 (en) Network management
JP6462545B2 (en) Apparatus and method for calculating settling value of voltage regulator
CN104377703A (en) Comprehensive voltage sag treatment device control method based on sensitive user
RU2835155C1 (en) SMART-INVERTER FOR MAINTENANCE OF QUALITY STANDARDS OF ELECTRIC ENERGY IN DISTRIBUTION NETWORKS OF POWER SUPPLY OF 0.4 kV TO THEIR ESTABLISHED VALUES AND INTELLIGENT-AUTOMATED CONTROL SYSTEM OF ELECTRIC NETWORKS BASED ON SMART-INVERTER
KR20150045081A (en) Method and Apparatus for Predictive Contol for Operating Point of FACTS Device
JP5783980B2 (en) Voltage control apparatus and system
JP7258630B2 (en) Control device and control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP