JP2004266499A - Flat antenna system - Google Patents

Flat antenna system Download PDF

Info

Publication number
JP2004266499A
JP2004266499A JP2003053767A JP2003053767A JP2004266499A JP 2004266499 A JP2004266499 A JP 2004266499A JP 2003053767 A JP2003053767 A JP 2003053767A JP 2003053767 A JP2003053767 A JP 2003053767A JP 2004266499 A JP2004266499 A JP 2004266499A
Authority
JP
Japan
Prior art keywords
excitation element
polarization
cross polarization
dielectric substrate
ground conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003053767A
Other languages
Japanese (ja)
Other versions
JP4011501B2 (en
Inventor
Kengo Nishimoto
研悟 西本
Masataka Otsuka
昌孝 大塚
Toru Fukazawa
徹 深沢
Takeshi Oshima
毅 大島
Shigeru Makino
滋 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003053767A priority Critical patent/JP4011501B2/en
Publication of JP2004266499A publication Critical patent/JP2004266499A/en
Application granted granted Critical
Publication of JP4011501B2 publication Critical patent/JP4011501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize reduction of cross polarization of both of two orthogonal polarization in a prescribed covered area on a prescribed observation surface by selecting the optimum value of a relative dielectric constant or thickness of a dielectric substrate. <P>SOLUTION: In this flat antenna system, the dielectric substrate is arranged between a ground conductor and an excitation element, it has two orthogonal feeding points and the dielectric substrate has the relative dielectric constant ε<SB>r</SB>which equalizes relation F(ε<SB>r</SB>) between the maximum value F[dB] of the cross polarization level and the relative dielectric constant ε<SB>r</SB>of the dielectric substrate in the prescribed covered area on the prescribed observation surface in the case of feeding power from one of the feeding points to relation G(ε<SB>r</SB>) between the maximum value G[dB] of the cross polarization level and the relative dielectric constant ε<SB>r</SB>of the dielectric substrate in the prescribed covered area on the prescribed observation surface in the case of feeding power from the other of the feeding points. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、直交する2偏波を共用する平面アンテナ装置に関するものである。
【0002】
【従来の技術】
通信では、直交する偏波で異なるチャンネルを形成するものがあり、混信を避けるために低交差偏波特性が要求される。2偏波共用アンテナを用いて送受信を行う場合には、直交する2つの主偏波に対して、それぞれに対応する交差偏波を低減する必要がある。この低交差偏波を実現する方法としては、給電点を摂動させる方法がある(例えば、非特許文献1参照)。また、円偏波マイクロストリップアンテナを用い、円形放射素子と接地板間に介在させた誘電体基板の比誘電率を適当に選択することにより、軸比による損失の低減と交差偏波特性の改善を図る方法がある(例えば、特許文献1参照)。
【0003】
【非特許文献1】
高橋徹、他「直交偏波共用パッチアンテナの給電点摂動による低交差偏波設計法」2002年電子情報通信学会総合大会B−1−95、p.111
【特許文献1】
特開昭63−276302号公報(図3)
【0004】
【発明が解決しようとする課題】
従来のアンテナ装置の給電点を摂動させる方法は、直交給電点間の相互結合による交差偏波の劣化を低減する方法である。したがって、誘電体基板面の正面方向を含む観測面では有効であるが、基板面の正面方向から傾いた観測面では、アンテナの基本モードから発生する交差偏波が存在し、有効ではない。また、円偏波を励振させるアンテナではなくて、直交する2つの直線偏波を励振させるアンテナでは、誘電体基板の比誘電率を適当に選択することで交差偏波の改善を図る方法は存在していなかった。
以上のような理由により、従来の技術では、直交2偏波共用アンテナに関して、基板面の正面方向から傾いた観測面において、直交する2偏波双方の交差偏波を低減することは困難であった。
【0005】
この発明は上記のような課題を解決するためになされたもので、誘電体基板の比誘電率あるいは厚みの最適値を選択することにより、所定の観測面における所定の覆域内の、直交する2偏波双方の交差偏波の低減を実現することができる直交する2偏波を共用する平面アンテナ装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る平面アンテナ装置は、グランド導体と、このグランド導体の片面側に配置された励振素子と、グランド導体と励振素子の間に配置された誘電体基板と、励振素子を励振させ直交する偏波を発生させる位置に設けられた2点の給電点とを有するアンテナ構造を備えた平面アンテナ装置において、誘電体基板が、交差偏波の振幅を主偏波の振幅で除した値を交差偏波レベルと定義したとき、給電点の一方から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]と誘電体基板の比誘電率εとの関係F(ε )と、給電点の他方から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値G[dB]と誘電体基板の比誘電率ε との関係G(ε )とを等しくする比誘電率ε を有するようにしたものである。
【0007】
【発明の実施の形態】
以下、この発明の各実施の形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による平面アンテナ装置の構造体を示す2面図で、図1(a)は正面図、(b)はA−A断面図である。図において、グランド導体5の片面側に矩形の励振素子1が配置され、グランド導体5と励振素子1の間に誘電体基板4が配置されている。励振素子1を励振させるため給電点として誘電体基板4内を介して給電ピン(給電点)2,3が配置される。給電ピン2,3は偏波が直交して発生する位置関係を持つように設定されている。図示されていないが、グランド導体5側からそれぞれの同軸線路の内部導体が励振素子1の給電ピン2,3に接続され、各同軸線路の外部導体(被覆線)はグランド導体5に接続される。2点の給電点(給電ピン)2,3から励振素子1を励振することによって、直交する偏波を発生する直交2偏波共用アンテナとして動作する。このため、それぞれの主偏波に対する交差偏波を低減する必要がある。
【0008】
所定の観測面における所定の覆域内の交差偏波レベルについて考える。ここで、交差偏波レベルは、交差偏波の振幅を主偏波の振幅で除した値と定義する。一般には、誘電体基板4の比誘電率εを変化させた場合の所定の覆域内の交差偏波レベルの最大値の変化は、一方の給電点2から給電した時と、もう一方の給電点3から給電した時とでは異なっている。図2はこの各場合の交差偏波識別度の最大値対基板比誘電率について示す説明図である。F(ε )は、一方の給電点2から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]と誘電体基板の比誘電率ε との関係を示す。また、G(ε )は、もう一方の給電点3から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値G[dB]と誘電体基板の比誘電率ε との関係を示したものである。図2において、基板誘電率ε を上記F(ε )と上記G(ε )が等しくなるような値にすれば、直交する2偏波双方の交差偏波レベルを同程度まで下げられることが分かる。
【0009】
以上のように、実施の形態1によれば、所定の観測面における所定の覆域内において、数値計算あるいは測定をおこない上記F(ε )、G(ε )を求め、かつ、このF(ε )とG(ε )を等しくする誘電体基板4の比誘電率ε を求めることにより、所定の観測面における所定の覆域内において直交する2偏波双方の交差偏波レベルを同程度まで低減できる効果が得られる。
【0010】
実施の形態2.
ここでは、図1の平面アンテナ装置においてグランド導体5と誘電体基板4を有限とした場合について述べる。図3は、本実施の形態2における平面アンテナ装置の構造体を示す2面図で、図3(a)は正面図、図3(b)はA−A断面図である。図において、図1に相当する部分には同一符合を付して示す。ここでは、励振素子1は矩形と定義する。x,y,zは直交座標で、グランド導体5の面をy−z平面とし、グランド導体5の面上に原点を置いている。また、同様にr,θ,φ座標の原点としている。a,bはそれぞれ矩形励振素子1の1辺の長さで、x軸上を矩形の励振素子1の中心とし、矩形の各辺a,bがy軸またはz軸と平行になるように設定されている。給電点2,3はy,z軸上にそれぞれ位置している。図4はx,y,z座標とr,θ,φ座標との関係を示したものである。θをz軸からの離角とし、φをx−y平面におけるx軸からの離角とする。
【0011】
給電点2に給電した時に励振される主偏波をH偏波とし、給電点3に給電した時に励振される主偏波をV偏波とする。すなわち、電界のθ成分をEθ 、φ成分をEφ とすると、H偏波励振時の主偏波はEφ 、V偏波励振時の主偏波はEθ となる。
図5は、数値計算より求めた、H偏波励振時とV偏波励振時のθ=81°観測面の覆域φ=−40°〜40°内における交差偏波レベルの最大値と誘電体基板4の比誘電率ε との関係を示したものである。これは、グランド導体5と基板4を有限とし、アンテナの共振周波数で励振素子1を励振し、給電点2に給電する時は給電点3をダミー終端し、給電点3に給電する時は給電点2をダミー終端した場合について、数値計算を行った結果を示す。図4のようにr,θ,φ座標を定義し、θ=81°観測面の交差偏波レベルを計算し、覆域φ=−40°〜40°内での交差偏波レベルの最大値と誘電体基板の比誘電率ε の関係を求めたものである。
【0012】
図5において、直交する2偏波双方の交差偏波レベルを同程度まで下げるためには、基板誘電率ε を、H偏波励振時とV偏波励振時のθ=81°観測面の覆域φ=−40°〜40°内における交差偏波レベルの最大値が等しくなるεにすれば良いことが分かる。このε を求めると約1.65となる。
【0013】
以上のように、この実施の形態2によれば、グランド導体5と基板4を有限とした場合に、数値計算を用いることによって、H偏波励振時とV偏波励振時の所定の観測面における所定の覆域内において、直交する2偏波双方の交差偏波レベルの最大値が等しくなる誘電体基板の比誘電率ε を求めるようにしたので、所定の観測面における所定の覆域内において直交する2偏波双方の交差偏波レベルを同程度まで低減できる効果が得られる。
【0014】
実施の形態3.
この実施の形態3では、図3のグランド導体5と誘電体基板4がy、z方向に無限であるとした場合に、理論式から上記実施の形態1の効果について明らかにする。図6は、x,y,z座標とr,α,β座標との関係を示す説明図である。図7はH偏波励振時にキャビティモデルより求めたθ=81°観測面での交差偏波レベルであり、図8はV偏波励振時にキャビティモデルより求めたθ=81°観測面での交差偏波レベルである。図9はH偏波励振時とV偏波励振時のθ=81°観測面の覆域φ=−40°〜40°内における交差偏波レベルの最大値と誘電体基板4の比誘電率ε との関係を示したものである。
【0015】
理想的には、θ=90°面内、φ=0°面内では交差偏波は発生しない。しかし、基板の正面方向から傾けたθが一定(θ≠90°)あるいはφが一定(φ≠0°)の観測面では交差偏波が発生する。この交差偏波は、本来主偏波を放射する主モード(TM10モード)において座標系の関係から発生してしまうものである。グランド導体5と誘電体基板4がy,z方向に無限であると仮定する。図3のアンテナの主モードたるTM10モード共振時の放射界は、図6のようにr,α,β座標を定義すると、キャビティモデルにより、電界のα成分をEα 、β成分をEβ とし、誘電体基板4の比誘電率をε として、
【数6】

Figure 2004266499
となる。ここで、
【数7】
Figure 2004266499
であり、k は自由空間の波数、V は定数である。
【0016】
式(1)、(2)についてr、α、β座標からr,θ,φ座標への座標変換を行い、電界のθ成分Eθ 、φ成分Eφ を求める。そうすると、H偏波励振した場合には、主偏波はEφ 、交差偏波はEθ となるので、H偏波励振した場合の交差偏波レベルは、
【数8】
Figure 2004266499
となる。また、V偏波励振した場合には、主偏波はEθ 、交差偏波はEφ となるので、V偏波励振した場合の交差偏波レベルは、
【数9】
Figure 2004266499
となる。式(4)から、H偏波励振時には誘電体基板の比誘電率ε が大きくなるにつれ交差偏波レベルが小さくなることが分かる。逆に、式(5)から、V偏波励振時には誘電体基板の比誘電率ε が大きくなるにつれ交差偏波レベルが大きくなることが分かる。
【0017】
例えば、式(4)、(5)にθ=81°を代入し、θ=81°観測面での交差偏波レベルの誘電体基板の比誘電率ε に対する依存性を求めると、それぞれ図7、図8のようになる。さらに、例えば、覆域φ=−40°〜40°内での交差偏波レベルの最大値を求めると、図7および図8よりφ=±40°の時に式(4)、(5)は最大となり、H偏波励振時とV偏波励振時の覆域φ=−40°〜40°内での交差偏波レベルの最大値と誘電体基板の比誘電率ε との関係は図9のようになる。
【0018】
図9において、直交する2偏波双方の交差偏波レベルを同程度まで下げるためには、基板誘電率ε を、H偏波励振時とV偏波励振時のθ=81°観測面の覆域φ=−40°〜40°内における交差偏波レベルの最大値が等しくなるεにすれば良いことが分かる。このεを求めるとε =1.76となる。
【0019】
以上のように、実施の形態3によれば、グランド導体5と誘電体基板4をy,z方向に無限とした場合に、式(4)と式(5)から、H偏波励振時とV偏波励振時の、θが一定またはφが一定の所定の観測面における交差偏波レベルを求め、この時、所定の覆域内において、式(4)と式(5)の最大値が等しくなるような誘電体基板4の比誘電率ε を求めるようにしたので、θが一定またはφが一定の所定の観測面における所定の覆域内において、直交する2偏波双方の交差偏波レベルを同程度まで低減することができる効果が得られる。
【0020】
実施の形態4.
図10はこの発明の実施の形態4による平面アンテナ装置の構造体を示す2面図で、図10(a)は正面図、(b)は断面図である。図において、図1に相当する部分には同一符合を付して示す。この場合、2次励振素子9が、励振素子1の近傍に配置され、励振素子1からの電磁波によって間接的に励振されるように構成されている。誘電体基板10がグランド導体5と励振素子1の間および励振素子1と2次励振素子9の間にそれぞれ複数個N(N>1)配置される。この誘電体基板10の一部は空気層で形成されてもよい。ここで、N個の誘電体基板10のうち、n番目の誘電体基板の比誘電率をεrn、厚さをt とする。
【0021】
所定の観測面における所定の覆域内の交差偏波レベルを考える。数値計算あるいは測定をおこなうことにより、一方の給電点2から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]とn番目の誘電体基板の比誘電率εrnとの関係F(εrn)と、もう一方の給電点3から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値G[dB]とn番目の誘電体基板の比誘電率εrnとの関係G(εrn)を得る。
【0022】
一般に、n番目の誘電体基板の比誘電率εrnの増加に伴うF(εrn)とG(εrn)の増減の方向は逆となっている。したがって、上記実施の形態1と同じように、n番目の誘電体基板の比誘電率εrnを上記F(εrn)と上記G(εrn)が等しくなるようにおけば、直交する2偏波双方の交差偏波レベルを同程度まで低減することができる。
【0023】
同様に、数値計算あるいは測定をおこなうことにより、一方の給電点2から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]とn番目の誘電体基板の厚さt との関係F(t )と、もう一方の給電点3から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値G[dB]とn番目の誘電体基板の厚さt との関係G(t )を得る。
一般に、n番目の誘電体基板の厚さt の増加に伴うF(t )とG(t)の増減の方向は逆となっている。したがって、n番目の誘電体基板の厚さt を選ぶことにより上記F(t )と上記G(t )を等しくすることができる。
【0024】
以上のように、実施の形態4によれば、上記F(εrn)と上記G(εrn)が等しくなるn番目の誘電体基板の比誘電率εrnを設定するようにしたので、直交する2偏波双方の交差偏波レベルを同程度まで低減できる効果が得られる。一方、上記F(t )と上記G(t )を等しくするn番目の誘電体基板の厚さt を設定するようにしても、同様に、直交する2偏波双方の交差偏波レベルを同程度まで低減できる効果が得られる。
【0025】
実施の形態5.
この実施の形態5は、図10のグランド導体5と誘電体基板4がy,z方向に無限であるとした場合に、理論式から上記実施の形態4の効果を明らかにするものである。図11はこの発明の実施の形態5による平面アンテナ装置の構造体を示す2面図で、図11(a)は正面図、(b)はA−A断面図である。図において、図10に相当する部分には同一符合を付して示す。励振素子1および2次励振素子9は矩形とする。給電点2に給電した時に励振される偏波をH偏波、給電点3に給電した時に励振される偏波をV偏波とする。また、N個の誘電体基板10のうちn番目の誘電体基板の比誘電率をεrn、厚さをt とする。図4のx,y,z座標とr,θ,φ座標との関係を使用する。
【0026】
図11おいて、放射に主として寄与するのは2次励振素子9であるので、2次励振素子9の放射特性を考えればよい。また、2次励振素子9から見た等価比誘電率εreffは、
【数10】
Figure 2004266499
と定義することができる。したがって、上記実施の形態3においてキャビティモデルより求めた交差偏波レベル式(4)、(5)のε を、式(6)のεreffで置き換えることによって、図11の平面アンテナの交差偏波レベルを求めることができる。H偏波励振した場合の交差偏波レベル、すなわちy軸上に設けられた給電点から給電した場合の交差偏波の振幅|Eθ |と主偏波の振幅|Eφ |から得る交差偏波レベルは、
【数11】
Figure 2004266499
となり、V偏波励振した場合の交差偏波レベル、すなわちz軸上に設けられた給電点から給電した場合の交差偏波の振幅|Eφ |と主偏波の振幅|Eθ |による交差偏波レベルは、
【数12】
Figure 2004266499
となる。
【0027】
式(7)から、H偏波励振時には等価比誘電率εreffが大きくなるにつれ交差偏波レベルが小さくなることが分かる。逆に、式(8)から、V偏波励振時には等価比誘電率εreffが大きくなるにつれ交差偏波レベルが大きくなることが分かる。したがって、式(7)と式(8)が等しくなる等価比誘電率εreffが存在することになる。
【0028】
以上のように、実施の形態5によれば、グランド導体5と誘電体基板4を無限とした場合に、θが一定またはφが一定の所定の観測面における所定の覆域内において、式(7)と式(8)が等しくする等価比誘電率εreffを求めるようにしたので、直交する2偏波双方の交差偏波レベルを同程度まで低減できる効果が得られる。
【0029】
実施の形態6.
この実施の形態6は、給電ピンではなく給電線路を用いて励振素子を励振させた場合に、上記実施の形態1〜実施の形態5と同じ効果あることについて述べる。図12はこの実施の形態6における平面アンテナ装置の構造体を示す2面図で、図12(a)は正面図、(b)はA−A断面図である。図において、図1に相当する部分には同一符合を付して示す。ここでは、給電ピンの代わりに、給電線路11,12が励振素子1と同じ平面に設けられている。
励振素子1は、2つの給電線路11,12によって給電され、励振され、直交する偏波を発生し、実施の形態1乃至実施の形態3で述べたと同様に、直交2偏波共用アンテナとして動作する。また、アンテナ構造体として、上記実施の形態4の図10に示すように、励振素子1の近傍に2次励振素子9を配置し、グランド導体5と2次励振素子の間に複数個の誘電体基板を配置したものを適用してもよい。
以上のように、この実施の形態6によれば、給電点が、励振素子と共通な平面に設置した給電線路で形成されるようにしたので、給電ピンを用いた場合の給電ピン自体からの放射による不要な交差偏波が存在しないという効果が得られる。
【0030】
実施の形態7.
図13は実施の形態7による平面アンテナ装置の配置構成を示す正面図である。図において、図1に相当する部分には同一符合を付して示す。ここでは、複数のアンテナ構造体が平面上に配置された状態を示している。この配置は、上記実施の形態1乃至実施の形態6で述べたアンテナ構造体を適用することについて提案するものである。
このように励振素子1を平面上に複数個配置した場合、交差偏波レベルを維持したまま、1素子のときより利得を高くとることができる。図13では、一方向に励振素子1を配置した例を示しているが、給電点の位置関係を保てば、平面上でどのように配置してもよい。上記実施の形態4および実施の形態5で述べたような、励振素子1の近傍に2次励振素子9を配置し、グランド導体5と2次励振素子1の間に複数個の誘電体基板10を配置したアンテナ構造体を適用しても同様である。また、上記実施の形態6の給電線路11,12で給電するアンテナ構造体を適用しても同様である。
【0031】
以上のように、実施の形態7によれば、アンテナ構造体、すなわち放射素子を平面上に複数個配置しているので、所定の観測面における所定の覆域内において直交する2偏波双方の交差偏波レベルを同程度低減し、かつ1素子の場合より利得を高くできる効果が得られる。
【0032】
以上、実施の形態1乃至実施の形態7では、放射素子が矩形である場合について述べてきたが、放射素子は円形等、矩形以外の形状にしてもよく、おおむね同様の効果を奏することができる。
【0033】
【発明の効果】
以上のように、この発明によれば、グランド導体と、このグランド導体の片面側に配置された励振素子と、グランド導体と励振素子の間に配置された誘電体基板と、励振素子を励振させ直交する偏波を発生させる位置に設けられた2点の給電点とを有するアンテナ構造を備えた平面アンテナ装置において、誘電体基板が、交差偏波の振幅を主偏波の振幅で除した値を交差偏波レベルと定義したとき、給電点の一方から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]と誘電体基板の比誘電率εとの関係F(ε )と、給電点の他方から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値G[dB]と誘電体基板の比誘電率ε との関係G(ε )とを等しくする比誘電率ε を有するように構成したので、所定の観測面における所定の覆域内において直交する2偏波双方の交差偏波レベルを同程度まで低減できる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による平面アンテナ装置の構造体を示す2面図である。
【図2】この発明の実施の形態1係る平面アンテナ装置の交差偏波識別度の最大値対基板比誘電率について示す説明図である。
【図3】この発明の実施の形態2による平面アンテナ装置の構造体を示す2面図である。
【図4】この発明の実施の形態2および実施の形態5に係るx,y,z座標とr,θ,φ座標の関係を示す説明図である。
【図5】この発明の実施の形態2に係る平面アンテナ装置の交差偏波レベルの最大値対基板比誘電率を示す説明図である。
【図6】この発明の実施の形態3に係るx,y,z座標とr,α,β座標との関係を示す説明図である。
【図7】この発明の実施の形態3に係る平面アンテナ装置の交差偏波レベル対観側面の覆域を示す説明図である。
【図8】この発明の実施の形態3に係る平面アンテナ装置の他の交差偏波レベル対観側面の覆域を示す説明図である。
【図9】この発明の実施の形態3に係る平面アンテナ装置の交差偏波識別度の最大値対基板比誘電率について示す説明図である。
【図10】この発明の実施の形態4による平面アンテナ装置の構造体を示す2面図である。
【図11】この発明の実施の形態5による平面アンテナ装置の構造体を示す2面図である。
【図12】この発明の実施の形態6における平面アンテナ装置の構造体を示す2面図で
【図13】この発明の実施の形態7による平面アンテナ装置の配置構成を示す正面図である。
【符号の説明】
1 励振素子、2,3 給電ピン(給電点)、4,10 誘電体基板、5 グランド導体、9 2次励振素子、11,12 給電線路。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a planar antenna device that shares two orthogonally polarized waves.
[0002]
[Prior art]
In some communications, different channels are formed with orthogonal polarizations, and low cross polarization characteristics are required to avoid interference. When transmission and reception are performed using the dual-polarized antenna, it is necessary to reduce the cross polarization corresponding to each of two orthogonal main polarizations. As a method of realizing the low cross polarization, there is a method of perturbing a feeding point (for example, see Non-Patent Document 1). In addition, by using a circularly polarized microstrip antenna and appropriately selecting the relative permittivity of the dielectric substrate interposed between the circular radiating element and the ground plate, the loss due to the axial ratio can be reduced and the cross polarization characteristics can be improved. There is a method for improvement (for example, see Patent Document 1).
[0003]
[Non-patent document 1]
Toru Takahashi, et al., "Low Cross-Polarization Design Method Using Feed Point Perturbation for Orthogonally-Polarized Patch Antenna," IEICE General Conference, B-1-95, p. 111
[Patent Document 1]
JP-A-63-276302 (FIG. 3)
[0004]
[Problems to be solved by the invention]
A conventional method of perturbing a feed point of an antenna device is a method of reducing cross polarization deterioration due to mutual coupling between orthogonal feed points. Therefore, it is effective on the observation surface including the front direction of the dielectric substrate surface, but is not effective on the observation surface inclined from the front direction of the substrate surface because cross polarization generated from the fundamental mode of the antenna exists. In an antenna that excites two orthogonal linear polarizations instead of an antenna that excites circular polarization, there is a method of improving cross polarization by appropriately selecting the relative permittivity of the dielectric substrate. I didn't.
For the reasons described above, it is difficult for the conventional technology to reduce the cross polarization of both orthogonal two polarizations on the observation plane inclined from the front of the substrate surface for the dual orthogonal polarization antenna. Was.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. By selecting an optimum value of the relative permittivity or the thickness of the dielectric substrate, two orthogonal cross sections within a predetermined coverage area on a predetermined observation surface can be obtained. It is an object of the present invention to provide a planar antenna device that shares two orthogonal polarizations that can reduce cross polarization of both polarizations.
[0006]
[Means for Solving the Problems]
A planar antenna device according to the present invention includes a ground conductor, an excitation element disposed on one side of the ground conductor, a dielectric substrate disposed between the ground conductor and the excitation element, and an excitation element that is orthogonal to the excitation element. In a planar antenna device having an antenna structure having two feeding points provided at positions where polarization is generated, a dielectric substrate crosses a value obtained by dividing the amplitude of the cross polarization by the amplitude of the main polarization. When defined as the polarization level, the maximum value F [dB] of the cross polarization level within a predetermined coverage area on a predetermined observation surface when power is supplied from one of the feeding points and the relative permittivity ε r of the dielectric substrate The relationship between the relationship F (ε r ), the maximum value G [dB] of the cross polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from the other of the feeding points, and the relative permittivity ε r of the dielectric substrate. a dielectric for equalizing the relationship G (epsilon r) It is that to have a ε r.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a two-sided view showing a structure of a planar antenna device according to Embodiment 1 of the present invention. FIG. 1A is a front view, and FIG. In the figure, a rectangular excitation element 1 is arranged on one side of a ground conductor 5, and a dielectric substrate 4 is arranged between the ground conductor 5 and the excitation element 1. Feeding pins (feeding points) 2 and 3 are arranged as feed points through the dielectric substrate 4 to excite the excitation element 1. The power supply pins 2 and 3 are set so as to have a positional relationship in which polarized waves are generated orthogonally. Although not shown, the inner conductor of each coaxial line is connected to the power supply pins 2 and 3 of the excitation element 1 from the ground conductor 5 side, and the outer conductor (covered wire) of each coaxial line is connected to the ground conductor 5. . By exciting the excitation element 1 from two feeding points (feeding pins) 2 and 3, the antenna operates as a dual-polarized dual-use antenna that generates orthogonal polarized waves. For this reason, it is necessary to reduce cross polarization with respect to each main polarization.
[0008]
Consider the cross-polarization level in a predetermined coverage on a predetermined observation surface. Here, the cross polarization level is defined as a value obtained by dividing the amplitude of the cross polarization by the amplitude of the main polarization. In general, when the relative permittivity ε r of the dielectric substrate 4 is changed, the change in the maximum value of the cross polarization level within a predetermined coverage area is determined when the power is supplied from one power supply point 2 and when the other power is supplied. This is different from when power is supplied from point 3. FIG. 2 is an explanatory diagram showing the maximum value of the cross polarization discrimination degree versus the relative permittivity of the substrate in each case. F (ε r ) is the difference between the maximum value F [dB] of the cross polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from one of the feeding points 2 and the relative permittivity ε r of the dielectric substrate. Show the relationship. G (ε r ) is the maximum value G [dB] of the cross polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from the other power supply point 3 and the relative permittivity ε of the dielectric substrate. This shows the relationship with r . In FIG. 2, if the substrate dielectric constant ε r is set to a value such that the above-mentioned F (ε r ) and the above-mentioned G (ε r ) are equal, the cross polarization levels of both orthogonal two polarizations can be reduced to the same level. You can see that.
[0009]
As described above, according to the first embodiment, F (ε r ) and G (ε r ) are obtained by performing numerical calculation or measurement within a predetermined coverage area on a predetermined observation surface, and obtaining the F (ε r ). By obtaining the relative permittivity ε r of the dielectric substrate 4 that makes ε r ) and G (ε r ) equal, the cross polarization levels of both orthogonal two polarizations within the predetermined coverage area on the predetermined observation surface can be made the same. The effect that can be reduced to the extent is obtained.
[0010]
Embodiment 2 FIG.
Here, the case where the ground conductor 5 and the dielectric substrate 4 are finite in the planar antenna device of FIG. 1 will be described. 3A and 3B are two views showing a structure of the planar antenna device according to the second embodiment. FIG. 3A is a front view, and FIG. 3B is a cross-sectional view along AA. In the figure, portions corresponding to those in FIG. 1 are denoted by the same reference numerals. Here, the excitation element 1 is defined as a rectangle. x, y, and z are rectangular coordinates, and the plane of the ground conductor 5 is a yz plane, and the origin is located on the plane of the ground conductor 5. Similarly, the origin of the r, θ, φ coordinates is used. “a” and “b” are the lengths of one side of the rectangular excitation element 1 respectively. The center of the rectangular excitation element 1 is set on the x-axis, and the sides “a” and “b” of the rectangle are set to be parallel to the y-axis or the z-axis. Have been. Feed points 2 and 3 are located on the y and z axes, respectively. FIG. 4 shows the relationship between the x, y, z coordinates and the r, θ, φ coordinates. θ is the angle from the z-axis, and φ is the angle from the x-axis in the xy plane.
[0011]
The main polarization excited when power is supplied to the feeding point 2 is defined as H polarization, and the main polarization excited when feeding the power to the feeding point 3 is defined as V polarization. That is, assuming that the θ component of the electric field is E θ and the φ component is E φ , the main polarization at the time of H polarization excitation is E φ , and the main polarization at the time of V polarization excitation is E θ .
FIG. 5 shows the maximum value of the cross polarization level and the dielectric constant in the coverage φ of the observation plane φ = −40 ° to 40 ° during the H polarization excitation and the V polarization excitation, which were obtained by numerical calculation. It illustrates the relationship between the relative dielectric constant epsilon r of the body board 4. This means that the ground conductor 5 and the substrate 4 are finite, the excitation element 1 is excited at the resonance frequency of the antenna, the feeding point 3 is dummy-terminated when feeding the feeding point 2, and the feeding is performed when feeding the feeding point 3. The result of a numerical calculation performed when the point 2 is dummy terminated is shown. As shown in FIG. 4, r, θ, φ coordinates are defined, θ = 81 °, the cross polarization level of the observation plane is calculated, and the maximum value of the cross polarization level in the coverage area φ = −40 ° to 40 ° is calculated. and in which to determine the relationship between the specific dielectric constant epsilon r of the dielectric substrate.
[0012]
In FIG. 5, in order to reduce the cross polarization level of both orthogonal two polarizations to the same level, the substrate dielectric constant ε r is changed by θ = 81 ° of the observation plane during the H polarization excitation and the V polarization excitation. It can be seen that ε r at which the maximum value of the cross polarization level within the coverage area φ = −40 ° to 40 ° becomes equal is sufficient. When this ε r is obtained, it is about 1.65.
[0013]
As described above, according to the second embodiment, when the ground conductor 5 and the substrate 4 are finite, the numerical observation is used to obtain a predetermined observation surface at the time of the H polarization excitation and the V polarization excitation. In the predetermined coverage area in the above, the relative permittivity ε r of the dielectric substrate at which the maximum value of the cross polarization level of both orthogonal two polarizations is equal is obtained, so that within the predetermined coverage area on the predetermined observation surface The effect of reducing the cross polarization level of both orthogonal two polarizations to the same level can be obtained.
[0014]
Embodiment 3 FIG.
In the third embodiment, when the ground conductor 5 and the dielectric substrate 4 in FIG. 3 are infinite in the y and z directions, the effect of the first embodiment will be clarified from a theoretical formula. FIG. 6 is an explanatory diagram showing the relationship between the x, y, z coordinates and the r, α, β coordinates. FIG. 7 shows the cross polarization level at the θ = 81 ° observation plane obtained from the cavity model at the time of the H polarization excitation, and FIG. 8 shows the intersection at the θ = 81 ° observation plane obtained at the V polarization excitation. The polarization level. FIG. 9 shows the maximum value of the cross polarization level and the relative permittivity of the dielectric substrate 4 within the coverage area φ of the observation surface φ = −40 ° to 40 ° during the H polarization excitation and the V polarization excitation. This shows the relationship with ε r .
[0015]
Ideally, no cross-polarization occurs in the θ = 90 ° plane and φ = 0 ° plane. However, cross-polarization occurs on the observation plane where θ inclined from the front direction of the substrate is constant (θ ≠ 90 °) or φ is constant (φ ≠ 0 °). This cross-polarization is to occur from the relationship of the coordinate system in the main mode (TM 10 mode) for radiating the original main polarization. It is assumed that the ground conductor 5 and the dielectric substrate 4 are infinite in the y and z directions. The main mode serving TM 10 mode radiation field at resonance of the antenna of FIG. 3, r as shown in FIG. 6, alpha, when defining the beta coordinates, the cavity model, E the alpha component of the electric field alpha, the beta component E beta and then, the dielectric constant of the dielectric substrate 4 as epsilon r,
(Equation 6)
Figure 2004266499
It becomes. here,
(Equation 7)
Figure 2004266499
Where k 0 is the wave number of free space and V 0 is a constant.
[0016]
With respect to Expressions (1) and (2), coordinate conversion from r, α, β coordinates to r, θ, φ coordinates is performed to obtain θ components E θ and φ components E φ of the electric field. Then, when the H polarization excitation, the main polarization is E phi, since cross-polarization becomes E theta, cross-polarization level in the case of H polarization excitation,
(Equation 8)
Figure 2004266499
It becomes. When the V polarization is excited, the main polarization is E θ and the cross polarization is E φ. Therefore, the cross polarization level when the V polarization is excited is
(Equation 9)
Figure 2004266499
It becomes. From equation (4), it can be seen that the as the cross-polarization level relative dielectric constant epsilon r of the dielectric substrate is increased becomes smaller when the H-polarized wave excitation. Conversely, from equation (5), it can be seen that the cross polarization level increases as the relative permittivity ε r of the dielectric substrate increases during V polarization excitation.
[0017]
For example, the formula (4), (5) by substituting theta = 81 °, when determining the dependence on the relative dielectric constant epsilon r of the cross-polarization level of the dielectric substrate at theta = 81 ° observation surface, respectively view 7, as shown in FIG. Further, for example, when the maximum value of the cross polarization level within the coverage area φ = −40 ° to 40 ° is obtained, the equations (4) and (5) are obtained when φ = ± 40 ° from FIGS. The relationship between the maximum value of the cross polarization level and the relative permittivity ε r of the dielectric substrate in the coverage area φ = −40 ° to 40 ° during the H polarization excitation and the V polarization excitation is shown in FIG. It looks like 9.
[0018]
In FIG. 9, in order to reduce the cross polarization level of both orthogonal two polarizations to the same level, the substrate dielectric constant ε r is set to θ = 81 ° of the observation plane during the H polarization excitation and the V polarization excitation. It can be seen that it is sufficient to set ε r so that the maximum value of the cross polarization level within the coverage area φ = −40 ° to 40 ° becomes equal. When ε r is obtained, ε r = 1.76.
[0019]
As described above, according to the third embodiment, when the ground conductor 5 and the dielectric substrate 4 are infinite in the y and z directions, the equations (4) and (5) show that At the time of V-polarized excitation, the cross-polarization level at a predetermined observation plane where θ is constant or φ is constant is calculated. At this time, the maximum values of Equations (4) and (5) are equal within a predetermined coverage area. Since the relative permittivity ε r of the dielectric substrate 4 is determined as described above, the cross polarization level of both orthogonal two polarizations within a predetermined coverage on a predetermined observation surface where θ is constant or φ is constant. Can be reduced to the same extent.
[0020]
Embodiment 4 FIG.
10A and 10B are two views showing a structure of a planar antenna device according to a fourth embodiment of the present invention. FIG. 10A is a front view, and FIG. 10B is a cross-sectional view. In the figure, portions corresponding to those in FIG. 1 are denoted by the same reference numerals. In this case, the secondary excitation element 9 is arranged near the excitation element 1 and is configured to be indirectly excited by the electromagnetic wave from the excitation element 1. A plurality of dielectric substrates 10 are arranged between the ground conductor 5 and the excitation element 1 and between the excitation element 1 and the secondary excitation element 9 (N> 1). Part of the dielectric substrate 10 may be formed of an air layer. Here, among the N dielectric substrates 10, the relative dielectric constant of the n-th dielectric substrate is ε rn , and the thickness is t n .
[0021]
Consider the cross-polarization level within a given coverage area on a given observation surface. By performing numerical calculation or measurement, the maximum value F [dB] of the cross polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from one power supply point 2 and the relative dielectric constant of the n-th dielectric substrate The relationship F (ε rn ) with the rate ε rn , the maximum value G [dB] of the cross polarization level within a predetermined coverage area on a predetermined observation surface when power is supplied from the other feeding point 3, and the n-th dielectric The relationship G (ε rn ) with the relative permittivity ε rn of the body substrate is obtained.
[0022]
Generally, the directions of increase and decrease of F (ε rn ) and G (ε rn ) with the increase of the relative dielectric constant ε rn of the n-th dielectric substrate are opposite. Therefore, as in the first embodiment, if the relative permittivity ε rn of the n-th dielectric substrate is set so that the F (ε rn ) and the G (ε rn ) are equal, two orthogonal polarization The cross polarization level of both waves can be reduced to the same extent.
[0023]
Similarly, by performing a numerical calculation or measurement, the maximum value F [dB] of the cross polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from one of the power supply points 2 and the n-th dielectric substrate the relation between the thickness t n F (t n), the maximum value of the predetermined covering region of the cross-polarization level in the predetermined observation plane in the case of feeding from the other feeding point 3 G [dB] and n-th The relationship G (t n ) with the thickness t n of the dielectric substrate is obtained.
Generally, the directions of increase and decrease of F (t n ) and G (t n ) with the increase of the thickness t n of the n-th dielectric substrate are opposite. Therefore, F (t n ) and G (t n ) can be made equal by selecting the thickness t n of the n-th dielectric substrate.
[0024]
As described above, according to the fourth embodiment, the relative permittivity ε rn of the n-th dielectric substrate at which the above F (ε rn ) and the above G (ε rn ) are equal is set. The effect of reducing the cross polarization level of both the two polarizations to the same level can be obtained. On the other hand, even if the thickness t n of the n-th dielectric substrate is set so that F (t n ) and G (t n ) are equal, the cross polarization of both orthogonal two polarizations is similarly determined. The effect of reducing the level to the same level can be obtained.
[0025]
Embodiment 5 FIG.
The fifth embodiment clarifies the effect of the fourth embodiment from a theoretical formula when the ground conductor 5 and the dielectric substrate 4 in FIG. 10 are infinite in the y and z directions. 11 is a two-sided view showing a structure of a planar antenna device according to a fifth embodiment of the present invention. FIG. 11 (a) is a front view, and FIG. 11 (b) is a cross-sectional view along AA. In the figure, parts corresponding to those in FIG. 10 are denoted by the same reference numerals. The excitation element 1 and the secondary excitation element 9 are rectangular. The polarization excited when the power is supplied to the feeding point 2 is defined as H polarization, and the polarization excited when the power is fed to the feeding point 3 is defined as V polarization. Further, the relative dielectric constant of the n-th dielectric substrate among the N dielectric substrates 10 is ε rn , and the thickness is t n . The relationship between the x, y, z coordinates and the r, θ, φ coordinates in FIG. 4 is used.
[0026]
In FIG. 11, since the secondary excitation element 9 mainly contributes to radiation, the radiation characteristics of the secondary excitation element 9 may be considered. The equivalent relative permittivity ε ref seen from the secondary excitation element 9 is:
(Equation 10)
Figure 2004266499
Can be defined as Therefore, by replacing ε r in the cross polarization level equations (4) and (5) obtained from the cavity model in the third embodiment with ε ref in equation (6), the cross polarization level of the planar antenna in FIG. Wave level can be determined. The cross polarization level obtained when the H polarization is excited, that is, the cross polarization obtained from the cross polarization amplitude | E θ | and the main polarization amplitude | E φ | when power is supplied from a feed point provided on the y-axis. The wave level is
[Equation 11]
Figure 2004266499
The cross polarization level when the V polarization is excited, that is, the crossing by the cross polarization amplitude | E φ | and the main polarization amplitude | E θ | when the power is supplied from the feeding point provided on the z-axis. The polarization level is
(Equation 12)
Figure 2004266499
It becomes.
[0027]
From the equation (7), it can be seen that the cross polarization level decreases as the equivalent relative permittivity ε ref increases during the H polarization excitation. Conversely, from equation (8), it can be seen that the cross polarization level increases as the equivalent relative permittivity ε ref increases during V polarization excitation. Therefore, there is an equivalent relative permittivity ε ref at which Equation (7) and Equation (8) are equal.
[0028]
As described above, according to the fifth embodiment, when the ground conductor 5 and the dielectric substrate 4 are infinite, within a predetermined coverage on a predetermined observation surface where θ is constant or φ is constant, the expression (7) ) And Equation (8) are determined to obtain the equivalent relative permittivity ε ref , so that the effect of reducing the cross polarization level of both orthogonal two polarizations to the same level can be obtained.
[0029]
Embodiment 6 FIG.
In the sixth embodiment, the same effect as in the first to fifth embodiments will be described when the excitation element is excited using a feed line instead of a feed pin. FIGS. 12A and 12B are two views showing a structure of the planar antenna device according to the sixth embodiment. FIG. 12A is a front view, and FIG. In the figure, portions corresponding to those in FIG. 1 are denoted by the same reference numerals. Here, instead of the power supply pins, the power supply lines 11 and 12 are provided on the same plane as the excitation element 1.
Excitation element 1 is fed and excited by two feeder lines 11 and 12 to generate orthogonal polarized waves, and operates as a dual-polarized dual-use antenna, as described in the first to third embodiments. I do. As the antenna structure, as shown in FIG. 10 of the fourth embodiment, a secondary excitation element 9 is arranged near the excitation element 1 and a plurality of dielectric elements are provided between the ground conductor 5 and the secondary excitation element. A body substrate may be used.
As described above, according to the sixth embodiment, the power supply point is formed by the power supply line provided on the same plane as the excitation element. An effect that unnecessary cross polarization due to radiation does not exist is obtained.
[0030]
Embodiment 7 FIG.
FIG. 13 is a front view showing an arrangement configuration of the planar antenna device according to the seventh embodiment. In the figure, portions corresponding to those in FIG. 1 are denoted by the same reference numerals. Here, a state is shown in which a plurality of antenna structures are arranged on a plane. This arrangement proposes to apply the antenna structure described in the first to sixth embodiments.
When a plurality of the excitation elements 1 are arranged on a plane as described above, it is possible to increase the gain while maintaining the cross polarization level as compared with the case of one element. FIG. 13 shows an example in which the excitation elements 1 are arranged in one direction, but any arrangement may be made on a plane as long as the positional relationship between the feeding points is maintained. As described in the fourth and fifth embodiments, the secondary excitation element 9 is disposed in the vicinity of the excitation element 1, and the plurality of dielectric substrates 10 are provided between the ground conductor 5 and the secondary excitation element 1. The same applies to the case where an antenna structure in which is disposed is applied. The same applies to the case where the antenna structure for feeding power through the feed lines 11 and 12 of the sixth embodiment is applied.
[0031]
As described above, according to Embodiment 7, since a plurality of antenna structures, that is, a plurality of radiating elements are arranged on a plane, the intersection of both orthogonally polarized waves within a predetermined coverage area on a predetermined observation surface. The effect is obtained that the polarization level can be reduced to the same extent and the gain can be higher than in the case of one element.
[0032]
As described above, in the first to seventh embodiments, the case where the radiating element is rectangular has been described. However, the radiating element may have a shape other than a rectangle, such as a circle, and substantially the same effect can be obtained. .
[0033]
【The invention's effect】
As described above, according to the present invention, the ground conductor, the excitation element disposed on one side of the ground conductor, the dielectric substrate disposed between the ground conductor and the excitation element, and the excitation element are excited. In a planar antenna device having an antenna structure having two feed points provided at positions where orthogonal polarizations are generated, the dielectric substrate has a value obtained by dividing the amplitude of the cross polarization by the amplitude of the main polarization. Is defined as the cross polarization level, the maximum value F [dB] of the cross polarization level within a predetermined coverage area on a predetermined observation surface when power is supplied from one of the feeding points, and the relative permittivity ε r of the dielectric substrate F (ε r ), the maximum value G [dB] of the cross-polarization level within a predetermined coverage area on a predetermined observation surface when power is supplied from the other feeding point, and the relative permittivity ε r of the dielectric substrate Relative dielectric constant ε to make the relationship G (ε r ) Since it is configured to have r , there is an effect that the cross polarization level of both orthogonal two polarizations can be reduced to the same degree within a predetermined coverage area on a predetermined observation surface.
[Brief description of the drawings]
FIG. 1 is a two-sided view showing a structure of a planar antenna device according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing the maximum value of the cross polarization discrimination degree versus the relative permittivity of the substrate in the planar antenna device according to the first embodiment of the present invention;
FIG. 3 is a two-sided view showing a structure of a planar antenna device according to a second embodiment of the present invention.
FIG. 4 is an explanatory diagram showing a relationship between x, y, z coordinates and r, θ, φ coordinates according to Embodiments 2 and 5 of the present invention.
FIG. 5 is an explanatory diagram showing the maximum value of the cross polarization level versus the relative permittivity of the substrate in the planar antenna device according to Embodiment 2 of the present invention;
FIG. 6 is an explanatory diagram showing a relationship between x, y, z coordinates and r, α, β coordinates according to Embodiment 3 of the present invention.
FIG. 7 is an explanatory diagram showing a cross polarization level and a coverage area on a view side surface of the planar antenna device according to Embodiment 3 of the present invention.
FIG. 8 is an explanatory diagram showing another cross polarization level and a coverage area of a view side surface of the planar antenna device according to the third embodiment of the present invention.
FIG. 9 is an explanatory diagram showing the maximum value of cross polarization discrimination versus the relative permittivity of a substrate in the planar antenna device according to Embodiment 3 of the present invention.
FIG. 10 is a two-sided view showing a structure of a planar antenna device according to a fourth embodiment of the present invention.
FIG. 11 is a two-view drawing showing a structure of a planar antenna device according to a fifth embodiment of the present invention.
FIG. 12 is a two-sided view showing a structure of a planar antenna device according to a sixth embodiment of the present invention. FIG. 13 is a front view showing an arrangement configuration of the planar antenna device according to a seventh embodiment of the present invention.
[Explanation of symbols]
1 Exciting element, 2, 3 Feeding pin (feeding point), 4, 10 Dielectric substrate, 5 Ground conductor, 9 Secondary exciting element, 11, 12 Feeding line.

Claims (7)

グランド導体と、このグランド導体の片面側に配置された励振素子と、前記グランド導体と前記励振素子の間に配置された誘電体基板と、前記励振素子を励振させ直交する偏波を発生させる位置に設けられた2点の給電点とを有するアンテナ構造体を備えた平面アンテナ装置において、
前記誘電体基板が、
交差偏波の振幅を主偏波の振幅で除した値を交差偏波レベルと定義したとき、
前記給電点の一方から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]と誘電体基板の比誘電率εとの関係F(ε)と、
前記給電点の他方から給電した場合の前記所定の観測面における前記所定の覆域内の交差偏波レベルの最大値G[dB]と誘電体基板の比誘電率ε との関係G(ε )とを等しくする当該比誘電率ε を有することを特徴とする平面アンテナ装置。
A ground conductor, an excitation element disposed on one side of the ground conductor, a dielectric substrate disposed between the ground conductor and the excitation element, and a position for exciting the excitation element and generating orthogonal polarization. A planar antenna device provided with an antenna structure having two feeding points provided in
The dielectric substrate,
When the value obtained by dividing the amplitude of the cross polarization by the amplitude of the main polarization is defined as the cross polarization level,
The relation F (ε r ) between the maximum value F [dB] of the cross polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from one of the feeding points and the relative permittivity ε r of the dielectric substrate; ,
The relationship G (ε r ) between the maximum value G [dB] of the cross polarization level in the predetermined coverage area on the predetermined observation surface and the relative permittivity ε r of the dielectric substrate when power is supplied from the other of the power supply points. ) Having the relative permittivity ε r that is equal to
励振素子を矩形とし、
グランド導体の面上に原点を置くx,y,z直交座標とθ,φ座標を設定し、
前記グランド導体の面をy−z平面とし、かつx軸上を当該矩形の中心として当該矩形の各辺がy軸またはz軸と平行になるように置くと共に、給電点をy,z軸上にそれぞれ位置させ、
θをz軸からの離角とし、φをx−y平面におけるx軸からの離角とし、電界のθ成分をEθ とし、電界のφ成分をEφ とした場合、
y軸上に設けられた給電点から給電した場合の交差偏波の振幅|Eθ |と主偏波の振幅|Eφ |から得る交差偏波レベルを
Figure 2004266499
とし、
z軸上に設けられた給電点から給電した場合の交差偏波の振幅|Eφ |と主偏波の振幅|Eθ |による交差偏波レベルを
Figure 2004266499
とし、
θが一定またはφが一定の所定の観測面における所定の覆域内において、前記両式の最大値が等しくなる比誘電率ε を誘電体が有したことを特徴とする請求項1記載の平面アンテナ装置。
The excitation element is rectangular,
Set x, y, z orthogonal coordinates and θ, φ coordinates that place the origin on the surface of the ground conductor,
The plane of the ground conductor is a yz plane, and the sides of the rectangle are set in parallel with the y-axis or z-axis with the x-axis as the center of the rectangle, and the feeding point is set on the y-z axis. , Respectively,
Let θ be the angle from the z-axis, φ be the angle from the x-axis in the xy plane, let the θ component of the electric field be E θ, and let the φ component of the electric field be E φ
The cross polarization level obtained from the cross polarization amplitude | E θ | and the main polarization amplitude | E φ | when power is supplied from the power supply point provided on the y-axis.
Figure 2004266499
age,
The cross polarization level based on the cross polarization amplitude | E φ | and the main polarization amplitude | E θ | when power is supplied from the power supply point provided on the z-axis.
Figure 2004266499
age,
2. The plane according to claim 1, wherein the dielectric has a relative permittivity ε r at which the maximum value of the two equations becomes equal within a predetermined coverage area of a predetermined observation surface where θ is constant or φ is constant. Antenna device.
グランド導体と、
前記グランド導体の片面側に配置された励振素子と、
前記励振素子の前記グランド導体とは反対側の近傍に配置され前記励振素子からの電磁波によって間接的に励振される2次励振素子と、
前記グランド導体と前記励振素子の間および前記励振素子と前記2次励振素子の間にそれぞれ配置されたN個(N>1)の誘電体基板と、
前記励振素子を励振させ直交する偏波を発生させる位置に設けられた2点の給電点とを有するアンテナ構造体を備え、
n(N≧n≧1)番目の前記誘電体が、
交差偏波の振幅を主偏波の振幅で除した値を交差偏波レベルと定義したとき、
前記給電点の一方から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]と誘電体基板の比誘電率εrnとの関係F(εrn)と、
前記給電点の他方から給電した場合の前記所定の観測面における前記所定の覆域内の交差偏波レベルの最大値G[dB]と基板比誘電率εrnとの関係G(εrn)とを等しくなるような比誘電率εrnを有する平面アンテナ装置。
A ground conductor,
An excitation element arranged on one side of the ground conductor,
A secondary excitation element that is arranged near the ground element on the opposite side of the excitation element and is indirectly excited by electromagnetic waves from the excitation element;
N (N> 1) dielectric substrates disposed between the ground conductor and the excitation element and between the excitation element and the secondary excitation element, respectively;
An antenna structure having two feeding points provided at positions where the excitation element is excited to generate orthogonal polarization,
The n-th (N ≧ n ≧ 1) -th dielectric substance is
When the value obtained by dividing the amplitude of the cross polarization by the amplitude of the main polarization is defined as the cross polarization level,
The relation F (ε rn ) between the maximum value F [dB] of the cross polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from one of the feeding points and the relative permittivity ε rn of the dielectric substrate; ,
The relation G (ε rn ) between the maximum value G [dB] of the cross polarization level in the predetermined coverage area on the predetermined observation surface and the substrate relative permittivity ε rn when the power is fed from the other of the feeding points is A planar antenna device having a relative permittivity ε rn that is equal.
グランド導体と、
前記グランド導体の片面側に配置された励振素子と、
前記励振素子の前記グランド導体とは反対側の近傍に配置され前記励振素子からの電磁波によって間接的に励振される2次励振素子と、
前記グランド導体と前記励振素子の間および前記励振素子と前記2次励振素子の間にそれぞれ配置されたN個(N>1)の誘電体基板と、
前記励振素子を励振させ直交する偏波を発生させる位置に設けられた2点の給電点とを有するアンテナ構造体を備え、
n番目の誘電体基板が、
給電点の一方から給電した場合の所定の観測面における所定の覆域内の交差偏波レベルの最大値F[dB]と当該誘電体基板の厚さt との関係F(t )と、
給電点の他方から給電した場合の上記所定の観測面における上記所定の覆域内の交差偏波レベルの最大値G[dB]と当該誘電体基板の厚さt との関係G(t )とを等しくする厚さt を有する平面アンテナ装置。
A ground conductor,
An excitation element arranged on one side of the ground conductor,
A secondary excitation element that is arranged near the ground element on the opposite side of the excitation element and is indirectly excited by electromagnetic waves from the excitation element;
N (N> 1) dielectric substrates disposed between the ground conductor and the excitation element and between the excitation element and the secondary excitation element, respectively;
An antenna structure having two feeding points provided at positions where the excitation element is excited to generate orthogonal polarization,
The n-th dielectric substrate is
A relation F (t n ) between the maximum value F [dB] of the cross-polarization level in a predetermined coverage area on a predetermined observation surface when power is supplied from one of the feeding points and the thickness t n of the dielectric substrate;
The relation G (t n ) between the maximum value G [dB] of the cross polarization level in the predetermined coverage area on the predetermined observation surface and the thickness t n of the dielectric substrate when power is supplied from the other of the feeding points. A planar antenna device having a thickness t n that makes
励振素子と2次励振素子をそれぞれ矩形とし、
グランド導体の面上に原点を置くx,y,z直交座標とθ,φ座標を設定し、
前記グランド導体の面をy−z平面とし、かつx軸上を各矩形の中心として各矩形の各辺がy軸またはz軸と平行になるように置き、
n番目の誘電体基板の厚さをt とし、前記2次励振素子から見た等価比誘電率εreff
Figure 2004266499
と定義し、
θをz軸からの離角とし、φをx−y平面におけるx軸からの離角とし、電界のθ成分をEθ とし、電界のφ成分をEφ とした場合、
y軸上に設けられた給電点から給電した場合の交差偏波の振幅|Eθ |と主偏波の振幅|Eφ |から得る交差偏波レベルを
Figure 2004266499
とし、
z軸上に設けられた給電点から給電した場合の交差偏波の振幅|Eφ |と主偏波の振幅|Eθ |による交差偏波レベルを
Figure 2004266499
とし、
θが一定またはφが一定の所定の観測面における所定の覆域内において、前記式両式の最大値が等しくなるような等価比誘電率εreffを有したことを特徴とする請求項3または請求項4記載の平面アンテナ装置。
The excitation element and the secondary excitation element are each rectangular,
Set x, y, z orthogonal coordinates and θ, φ coordinates that place the origin on the surface of the ground conductor,
The surface of the ground conductor is a yz plane, and the sides of each rectangle are placed in parallel with the y-axis or the z-axis with the x-axis as the center of each rectangle,
When the thickness of the n-th dielectric substrate is t n , the equivalent relative permittivity ε ref seen from the secondary excitation element is
Figure 2004266499
Is defined as
Let θ be the angle from the z-axis, φ be the angle from the x-axis in the xy plane, let the θ component of the electric field be E θ, and let the φ component of the electric field be E φ
The cross polarization level obtained from the cross polarization amplitude | E θ | and the main polarization amplitude | E φ | when power is supplied from the power supply point provided on the y-axis.
Figure 2004266499
age,
The cross polarization level based on the cross polarization amplitude | E φ | and the main polarization amplitude | E θ | when power is supplied from the power supply point provided on the z-axis.
Figure 2004266499
age,
4. A method according to claim 3 or claim 3, wherein an equivalent relative permittivity ε ref is such that the maximum values of the above equations become equal within a predetermined coverage area of a predetermined observation plane where θ is constant or φ is constant. Item 6. The planar antenna device according to item 4.
給電点が、上記励振素子と共通な平面に設置した給電線路で形成されたことを特徴とする請求項1から請求項5のうちいずれか1項記載の平面アンテナ装置。The planar antenna device according to any one of claims 1 to 5, wherein the feed point is formed by a feed line provided on a common plane with the excitation element. アンテナ構造体を、平面上に複数個配置したことを特徴とする請求項1から請求項6のうちいずれか1項記載の平面アンテナ装置。The planar antenna device according to any one of claims 1 to 6, wherein a plurality of antenna structures are arranged on a plane.
JP2003053767A 2003-02-28 2003-02-28 Method for determining relative permittivity and thickness of dielectric substrate in planar antenna device Expired - Fee Related JP4011501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053767A JP4011501B2 (en) 2003-02-28 2003-02-28 Method for determining relative permittivity and thickness of dielectric substrate in planar antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053767A JP4011501B2 (en) 2003-02-28 2003-02-28 Method for determining relative permittivity and thickness of dielectric substrate in planar antenna device

Publications (2)

Publication Number Publication Date
JP2004266499A true JP2004266499A (en) 2004-09-24
JP4011501B2 JP4011501B2 (en) 2007-11-21

Family

ID=33118279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053767A Expired - Fee Related JP4011501B2 (en) 2003-02-28 2003-02-28 Method for determining relative permittivity and thickness of dielectric substrate in planar antenna device

Country Status (1)

Country Link
JP (1) JP4011501B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045966A1 (en) 2012-09-21 2014-03-27 株式会社村田製作所 Dual-polarized antenna
WO2014097846A1 (en) 2012-12-20 2014-06-26 株式会社村田製作所 Multiband antenna
KR20170001385U (en) 2015-10-07 2017-04-18 주식회사 소스텔 Multi-band antenna

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045966A1 (en) 2012-09-21 2014-03-27 株式会社村田製作所 Dual-polarized antenna
KR20150041054A (en) 2012-09-21 2015-04-15 가부시키가이샤 무라타 세이사쿠쇼 Dual-polarized antenna
US9865928B2 (en) 2012-09-21 2018-01-09 Murata Manufacturing Co., Ltd. Dual-polarized antenna
CN104662737B (en) * 2012-09-21 2019-01-11 株式会社村田制作所 Dual polarized antenna
WO2014097846A1 (en) 2012-12-20 2014-06-26 株式会社村田製作所 Multiband antenna
KR20150072433A (en) 2012-12-20 2015-06-29 가부시키가이샤 무라타 세이사쿠쇼 Multiband antenna
US9660340B2 (en) 2012-12-20 2017-05-23 Murata Manufacturing Co., Ltd. Multiband antenna
KR20170001385U (en) 2015-10-07 2017-04-18 주식회사 소스텔 Multi-band antenna

Also Published As

Publication number Publication date
JP4011501B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
Li et al. A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications
JP6165963B2 (en) Antenna array, its access network node and vehicle for transmitting and / or receiving high frequency signals
CN107437659A (en) For reducing the apparatus and method of mutual coupling in aerial array
WO2016109920A1 (en) Radial line feed dielectric resonant antenna array
JP2002026638A (en) Antenna system
JP4680097B2 (en) Antenna device
WO2018077408A1 (en) Compact dual-band mimo antenna
Bae et al. 5G dual (S-/Ka-) band antenna using thick patch containing slotted cavity array
Wu et al. A low-profile wideband dual-polarized antenna based on an improved HIS and its broad-angle beam-scanning array
Zhou et al. Dual-band linearly and circularly polarized unidirectional hybrid loop/magnetoelectric dipole antenna with single feeding
JP4769664B2 (en) Circularly polarized patch antenna
JPH0998016A (en) Microstrip antenna
JP2007142876A (en) Polarization-common patch antenna
JP4011501B2 (en) Method for determining relative permittivity and thickness of dielectric substrate in planar antenna device
KR101988172B1 (en) Dual Circular-Polarization Antenna Apparatus
Wen et al. Design of a broadband circularly polarized antenna by using axial ratio contour
JP2021057705A (en) Antenna device and array antenna device
JP2002344238A (en) Polarized wave shared planar antenna
JPS60217702A (en) Circularly polarized wave conical beam antenna
JP2003224416A (en) Antenna
Chen et al. A cross-polarization suppressed probe-fed patch antenna and its applications to wide-angle beam-scanning arrays
JP2001244727A (en) Microstrip antenna
CN113540789B (en) Antenna system and electronic device
JPH10247818A (en) Polarized wave-sharing antenna
JP2007059959A (en) Combined antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees