JP2004265680A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2004265680A
JP2004265680A JP2003053652A JP2003053652A JP2004265680A JP 2004265680 A JP2004265680 A JP 2004265680A JP 2003053652 A JP2003053652 A JP 2003053652A JP 2003053652 A JP2003053652 A JP 2003053652A JP 2004265680 A JP2004265680 A JP 2004265680A
Authority
JP
Japan
Prior art keywords
titanium
negative electrode
vinylene carbonate
secondary battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053652A
Other languages
Japanese (ja)
Inventor
Kenji Asaoka
賢司 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003053652A priority Critical patent/JP2004265680A/en
Publication of JP2004265680A publication Critical patent/JP2004265680A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery enhancing cycle characteristics. <P>SOLUTION: The nonaqueous secondary battery is manufactured by pouring a nonaqueous electrolyte containing an electrolyte solution in an electrode body 20 formed by winding a positive plate 201 and a negative plate 202 through a separator 203, the negative plate 202 or the electrolyte solution contains an organic titanate, and the electrolyte solution contains vinylene carbonate. Decrease in discharge capacity in the secondary battery caused by charge/discharge cycles can be suppressed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質を備える非水二次電池に関し、そのサイクル特性を向上する技術に関する。
【0002】
【従来の技術】
近年、非水二次電池は、電解質としてゲル状電解質を採用することによってラミネートタイプなどの薄型電池として形成可能なため、携帯機器の電源などの用途に広く用いられている。上記ゲル状電解質においては、電解質として用いられるポリマーと相溶性のあるエチレンカーボネートやプロピレンカーボネートなどが電解液として混合されて用いられている。
【0003】
ところが、これらの電解液を用いた場合には、初回充放電効率が充分得られにくく電池容量が小さくなるとともに、電池のサイクル特性が不十分となる傾向がある。
そこで、上記電解液に対してビニレンカーボネートまたはビニレンカーボネート誘導体を所定割合混合することによって、非水二次電池のサイクル特性を向上する技術が開示されている(特許文献1参照)。
【0004】
【特許文献1】
特開2001−167797号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術においてもサイクル特性が充分改善されているとはいえず、非水二次電池においてはさらにその特性を向上する技術が望まれている。
本発明は、上記課題に鑑み、従来よりもさらにサイクル特性を向上することができる非水二次電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る非水二次電池は、負極と、電解液を含む非水電解質とを備える非水二次電池であって、負極または電解液が、有機チタネートを含み、かつ電解液が、ビニレンカーボネートまたはビニレンカーボネート誘導体を含むことを特徴としている。
【0007】
充放電を繰り返すことによって放電容量が低下する理由の一つとしては、負極を保護していると考えられるSEI膜(Solid Electrolyte Interface)、すなわち電解液に含まれる有機物質が分解したものなどが負極に被覆されて形成される膜が、電池の充放電の繰り返しによって劣化し負極板が損傷していくことが考えられている。
【0008】
本発明によれば、ビニレンカーボネートと有機チタネートをともに加える構成としているので、SEI膜を従来よりも強固なものに形成することができると考えられ、そのため、非水二次電池のサイクル特性を従来よりも向上することができると考えられる。
具体的には、負極が、黒鉛を含み、負極または電解液、あるいは負極と電解液とに含まれる有機チタネートの含有量が、負極の黒鉛に対してチタン量換算で0.5〜10質量%であり、電解液に含まれるビニレンカーボネートまたはビニレンカーボネート誘導体、あるいはビニレンカーボネートおよびビニレンカーボネート誘導体の含有量が0.5〜5質量%である構成とすれば、初期充放電特性や自己放電特性を悪化させることなく非水二次電池のサイクル特性を向上することができる。
【0009】
有機チタネートとしては、チタンラクテート、チタニウムメトキシド、チタニウムエトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタニウムブトキシド、チタニウムノニルオキシド、チタニウムステアリルオキシド、チタニウム2−エチルヘキシルオキシド、チタニウムジイソプロポキシドビス(2,4−ペンタンジオネート)、チタニウムビス(エチルアセトアセテート)ジイソプロポキシド、チタニウムジブトキシドビス(2,4−ペンタンジオネート)、チタニウムジイソプロポキシドビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオネート)から選択されるいずれか一つまたは複数の物質を用いることができる。
【0010】
【発明の実施の形態】
以下、本発明に係る非水二次電池を、ラミネート型リチウム二次電池(以下、「電池」という。)に適用した場合における一実施の形態について、図面を参照しながら説明する。
(1)電池の構成
図1は、本実施の形態に係る電池1の斜視図である。
【0011】
同図に示すように、電池1は、アルミラミネートシート(アルミニウム箔をポリプロピレン層あるいはポリエチレン層などによって被覆したシート)を成型した外装体10の内部に、電極体20が収納された構成を有する。
外装体10は、電極体20を収納する凹部を成型した一枚の長方形のアルミラミネートシートがその凹部を覆うように折り返され、端辺10t,10sが溶着されて形成される。
【0012】
外装体10の端辺10tにおいては、電極体20から延出された正極集電タブ21aおよび負極集電タブ21bが外部に導出された状態で溶着されており、電池1は、これらの正極集電タブ21a,負極集電タブ21bを介して装着対象の機器に電力を供給する。
図2は、図1におけるA−A´矢視断面図である。
【0013】
同図に示すように、電極体20は、帯状の正極板201と負極板202とが帯状のセパレータ203を介して巻回され、各極板およびその間にゲル状電解質(不図示)が注入されたものであり、巻回中心付近から正極集電タブ21aおよび負極集電タブ21b(不図示)が延出されている。
正極板201は、例えば、帯状のアルミ箔の表面上にコバルト酸リチウム、黒鉛、フッ化ビニリデン樹脂(PVdF)の混合物が被覆された電極を用いることができる。
【0014】
負極板202は、帯状の銅箔の表面上に、活物質となる黒鉛粉末、結着材となるPVdF、および有機チタネートを混合した混合物が被覆された電極板を用いることができる。負極板202に用いる黒鉛粉末としては、平均粒径が10〜35μmの粒子径を有するものが好ましく、黒鉛粉末と結着材の混合比率は、例えば90:10とすることができる。有機チタネートの添加量としては、黒鉛粉末に対してチタン量に換算して0.5〜10質量%の範囲とすることが好ましい。その添加量が0.5質量%を下回ると電池の自己放電率が高まり、10質量%を超えると電池の初期充放電効率が低下するためである。
【0015】
有機チタネートとしては、チタニウムメトキシド、チタニウムエトキシド、チタニウムプロポキシド、チタニウムブトキシド、チタニウムノニルオキシド、チタニウムステアリルオキシド、チタニウム−2−エチルエキシルオキシドなどのチタンアルコキシドや、チタニウムジイソプロポキシドビス(2,4−ペンタンジオネート)、チタニウムジイソプロポキシドビス(2,2,6,6−テトラメチル3,5−ヘプタンジオネート)、チタンラクテートなどのチタンキレート化合物から選択される一または複数の物質を用いることができる。なお、有機チタネートは、必ずしも負極板202に含まれるように形成する必要はなく、上記と同量の有機チタネートを電極体20に含侵される電解質に含まれるようにしたり、負極板202と電解質の双方に含ませその双方に含まれる有機チタネートの合計量を同じにしたりしても同様の効果を得ることができる。
【0016】
セパレータ203は、絶縁性のものであればよく、例えば帯状のポリエチレンフィルムを用いることができる。
電解質としては、例えば、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネートを10:10:80の質量比で混合させた溶媒に、電解質塩としてLiPFを1.0mol/Lとなるように加えた溶液(電解液)を作製し、さらにこの電解液に対してビニレンカーボネートを10質量%以下加え、この溶液とエチレングリコールジアクリレートを90:10(質量比)となるようにして混合して作製したプレゲルを電池内においてゲル化させたものを用いることができる。ここで、電解液に加えるビニレンカーボネートの量は、電解液に対して0.5〜5質量%とすることが好ましい。0.5質量%を下回ると電池の初期充放電効率が低下し、5質量%を超えると自己放電率が高まるからである。ここで、電解液に加える物質としては、ビニレンカーボネート以外にもビニレンカーボネート誘導体を用いることができる。なお、上述したように、負極板202において有機チタネートが含まれていない場合には、上記と同量の有機チタネートを電解液に混合して電解質を作製するようにすればよい。
【0017】
本発明者らは、上記のように電解液にビニレンカーボネートまたはビニレンカーボネート誘導体を加え、かつ負極板202または電解液に有機チタネートを添加することによって、電池におけるサイクル特性を従来に比べて向上できることを見出した。このようにサイクル特性が向上する理由については解明できていないが、極板や電解液等に含まれる有機物が分解されることによって充放電初期に負極板202に被覆されるSEI膜が、従来に比べて強固に形成されたためではないかと考えられる。このSEI膜は、負極板202の保護の役目を果たす一方、充放電の繰り返しによって破壊されやすく、そのため従来においては負極板の界面抵抗が上昇して非水二次電池のサイクル特性が低下する原因となっていたと考えられる。
【0018】
一方、本発明においては、上記構成によって形成されるSEI膜が従来よりも強固なものに形成されると考えられるため、充放電の繰り返しを行っても負極板の界面抵抗が上昇しにくくなり従来に比べてサイクル特性を高めることができる。
(2)実験
以下、上記実施の形態に基づく非水二次電池の実施例サンプルおよび比較例サンプルを作製し、各サンプルについてそのサイクル特性の評価実験を行い、実験結果を検討する。なお、各サンプルにおいては、負極板に加える有機チタネートの量と電解液に加えるビニレンカーボネートの量が表1に示すように異なっている。
【0019】
〈実施例サンプル1〜9ならびに比較例サンプル1〜3の作製〉
(負極板の作製)
平均粒子径25μmの黒鉛粉末とPVdFとが質量比で90:10となるように均一に混合してスラリーを作製した。このスラリーに含まれる黒鉛の質量に対して、有機チタネートとしてチタンラクテートを用い、これをチタン量に換算して表1に示す各量となるようにはかり取り、スラリーに均一に混合した。このチタンラクテートが混合されたスラリーを厚さ10μmの銅箔に塗布して乾燥させた後圧延して、厚さ120μmの負極板を作製した。
【0020】
(正極板の作製)
コバルト酸リチウムと、黒鉛とPVdFとを90:5:5の質量比となるように均一に混合し、厚み20μmのアルミ箔に塗布して乾燥した後圧延して厚さ125μmの正極板を作製した。
(電解質の作製)
エチレンカーボネート、プロピレンカーボネート、およびジエチルカーボネートを質量比で10:10:80の割合で混合した溶媒に対し、電解質塩としてLiPFを1.0mol/Lとなるように加えて電解液を調整した。この電解液に対してビニレンカーボネートを表1に示す各量を加え、この電解液とエチレングリコールジアクリレートを90:10の質量比となるように加え、電解質となるプレゲルを作製した。
【0021】
(電池の組み立て)
上記作製した正極板と負極板とを厚み20μmのポリエチレンからなるセパレータを介して、各極板の幅方向の中心線を一致させながら積層した。これを巻き取り機を用いて巻回し、その最終端をテープ止めすることによって電極体を形成した。
【0022】
次に、この電極体をアルミラミネートからなる外装体に挿入し、電極体から演出させた正極集電タブ、負極集電タブを外装体とともに溶着させた。最後に、プレゲルを注入し、外装体の開口部を封口した後、電池内においてプレゲルを重合してゲル化させ、電池の各実施例サンプル1〜9、各比較例サンプル1〜3を作製した。
【0023】
〈評価実験〉
(サイクル特性)
上記各実施例サンプル1〜5および比較例サンプル1〜3に対して、1100mA(1C)の定電流で4.2Vとなるまで充電し、さらに4.2Vの定電圧で電流値が55mA(C/20)となるまで充電を行った。そして10分間充電を休止した後、1100mAの定電流で2.75Vとなるまで放電させた後10分間休止した。ここまでの充放電期間を1サイクルとして、各サンプルに対して500サイクル充放電を繰り返し、電池における初期の放電容量と、試験後の放電容量とを測定し、その比率を評価した。その結果を表1に示す。
【0024】
【表1】

Figure 2004265680
表1に示すように、有機チタネートのみを添加した比較例サンプル3(55.0%)においては、何も添加していない比較例サンプル1(62.6%)よりも放電容量比が低下していることが分かる。また、従来技術のところにおいて説明した参考文献1のように、ビニレンカーボネートのみを添加した比較例サンプル3の場合、比較例サンプル1に比べ放電容量比が72.2%に増加することが確認された。
【0025】
一方、本発明にかかる実施例サンプル1〜5の放電容量比は、比較例サンプル2にくらべて6.3〜12.4%も向上していることが確認された。
これにより、ビニレンカーボネートおよび有機チタネートの添加によって電池のサイクル特性が従来よりも向上することが確認された。
(初期充放電効率)
実施例サンプル1,3,4,6,7については、初期充放電効率の測定を行った。
【0026】
初期充放電効率の測定は、サイクル特性の評価と同様の方法を用い、その1サイクル目の充電容量をC1、放電容量をC2とし、C2/C1×100で表される値を初期充放電効率として測定した。その結果を表1に示す。
これより、実施例サンプル6のようにビニレンカーボネートの添加量が0.5%を下回った場合や、実施例サンプル7のように有機チタネートの添加量が10%を超える場合には、初期充放電効率が他の実施例サンプルに比べて3%程度低下していることが確認された。したがって、ビニレンカーボネートの添加量は0.5%以上が好ましく、有機チタネートの添加量は10%以下が好ましいことが分かる。
【0027】
(自己放電率)
実施例サンプル1,2,5,8,9については、自己放電率の測定を行った。自己放電率の測定は、各サンプルの電池を組み立てた直後の25℃における放電容量D1を測定するとともに、その後1100mA(1C)の定電流で4.2Vまで充電し、さらに4.2Vの定電圧を保ちつつ電流値が55mA(C/20)になるまで充電し80℃の温度下で20日間保存した後、25℃で測定した放電容量D2を測定して行った。なお、表1に示す自己放電率(%)は、(1−D2/D1)×100で表され、上記保存期間の経過に伴って自己放電を起こした割合を示す。
【0028】
これより、実施例サンプル8のようにビニレンカーボネートの添加量が5%を超えた場合や、実施例サンプル9のように有機チタネートの添加量が0.5%を下回る場合には、自己放電率が他の実施例サンプルに比べて6%程度増加していることが確認された。したがって、ビニレンカーボネートの添加量は5%以下が好ましく、有機チタネートの添加量は0.5%以上が好ましいことが分かる
【0029】
【発明の効果】
以上説明してきたように、本発明に係る非水二次電池においては、負極板に有機チタネートを含むとともに、電解液にビニレンカーボネートを含む構成とすることによって、負極板に強固な皮膜が形成されると考えられ、従来よりも電池のサイクル特性を向上することができる。
【図面の簡単な説明】
【図1】ラミネート型リチウム二次電池の概略斜視図である。
【図2】図1におけるラミネート型リチウム二次電池のA−A´矢視断面図である。
【符号の説明】
1 電池
10 外装体
10t,10s 端辺
20 電極体
21a 正極集電タブ
21b 負極集電タブ
201 正極板
202 負極板
203 セパレータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous secondary battery including a non-aqueous electrolyte, and to a technique for improving the cycle characteristics thereof.
[0002]
[Prior art]
In recent years, nonaqueous secondary batteries can be formed as thin batteries such as a laminate type by adopting a gel electrolyte as an electrolyte, and thus are widely used in applications such as power supplies for portable devices. In the gel electrolyte, ethylene carbonate, propylene carbonate, or the like, which is compatible with the polymer used as the electrolyte, is used as a mixture.
[0003]
However, when these electrolytes are used, sufficient initial charge / discharge efficiency is difficult to obtain, the battery capacity tends to be small, and the cycle characteristics of the battery tend to be insufficient.
Therefore, a technique has been disclosed in which the cycle characteristics of a non-aqueous secondary battery are improved by mixing vinylene carbonate or a vinylene carbonate derivative at a predetermined ratio with the electrolyte solution (see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-167797 A
[Problems to be solved by the invention]
However, the cycle characteristics cannot be said to be sufficiently improved even in the above-described conventional technology, and a technology for further improving the characteristics is desired in a non-aqueous secondary battery.
In view of the above problems, an object of the present invention is to provide a non-aqueous secondary battery that can further improve the cycle characteristics as compared with the related art.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery including a negative electrode and a non-aqueous electrolyte containing an electrolyte, wherein the negative electrode or the electrolyte contains an organic titanate. And wherein the electrolyte solution contains vinylene carbonate or a vinylene carbonate derivative.
[0007]
One of the reasons why the discharge capacity is reduced by repeating charging and discharging is that an SEI film (Solid Electrolyte Interface), which is considered to protect the negative electrode, that is, a material obtained by decomposing an organic substance contained in the electrolytic solution is used as the negative electrode. It is considered that a film formed by coating on the anode is deteriorated by repeated charge / discharge of the battery and the negative electrode plate is damaged.
[0008]
According to the present invention, since it is configured to add both vinylene carbonate and organic titanate, it is considered that the SEI film can be formed to be stronger than before, so that the cycle characteristics of the non-aqueous secondary battery can be improved. It is thought that it can be improved more.
Specifically, the negative electrode contains graphite, and the content of the organic titanate contained in the negative electrode or the electrolytic solution, or the negative electrode and the electrolytic solution is 0.5 to 10% by mass in terms of titanium amount with respect to the graphite of the negative electrode. If the content of vinylene carbonate or vinylene carbonate derivative, or vinylene carbonate and vinylene carbonate derivative contained in the electrolytic solution is 0.5 to 5% by mass, the initial charge / discharge characteristics and self-discharge characteristics are deteriorated. Without this, the cycle characteristics of the non-aqueous secondary battery can be improved.
[0009]
Examples of the organic titanate include titanium lactate, titanium methoxide, titanium ethoxide, titanium propoxide, titanium isopropoxide, titanium butoxide, titanium nonyl oxide, titanium stearyl oxide, titanium 2-ethylhexyl oxide, and titanium diisopropoxide bis (2 , 4-pentanedionate), titanium bis (ethylacetoacetate) diisopropoxide, titanium dibutoxide bis (2,4-pentanedionate), titanium diisopropoxide bis (2,2,6,6-tetra Any one or a plurality of substances selected from methyl-3,5-heptanedionate) can be used.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which a nonaqueous secondary battery according to the present invention is applied to a laminated lithium secondary battery (hereinafter, referred to as “battery”) will be described with reference to the drawings.
(1) Configuration of Battery FIG. 1 is a perspective view of a battery 1 according to the present embodiment.
[0011]
As shown in FIG. 1, the battery 1 has a configuration in which an electrode body 20 is housed inside an exterior body 10 formed by molding an aluminum laminate sheet (a sheet in which an aluminum foil is covered with a polypropylene layer or a polyethylene layer).
The exterior body 10 is formed by folding one rectangular aluminum laminate sheet formed with a recess for accommodating the electrode body 20 so as to cover the recess, and welding the edges 10t and 10s.
[0012]
At the end 10t of the exterior body 10, the positive electrode current collecting tab 21a and the negative electrode current collecting tab 21b extended from the electrode body 20 are welded in a state of being led out to the outside. Electric power is supplied to the device to be mounted via the current tab 21a and the negative electrode current collection tab 21b.
FIG. 2 is a sectional view taken along the line AA 'in FIG.
[0013]
As shown in the figure, in the electrode body 20, a strip-shaped positive electrode plate 201 and a strip-shaped negative electrode plate 202 are wound via a strip-shaped separator 203, and a gel electrolyte (not shown) is injected between each of the electrode plates and between them. A positive current collecting tab 21a and a negative current collecting tab 21b (not shown) extend from the vicinity of the winding center.
As the positive electrode plate 201, for example, an electrode in which a mixture of lithium cobalt oxide, graphite, and vinylidene fluoride resin (PVdF) is coated on a surface of a strip-shaped aluminum foil can be used.
[0014]
As the negative electrode plate 202, an electrode plate in which a mixture of a mixture of graphite powder serving as an active material, PVdF serving as a binder, and organic titanate on a surface of a strip-shaped copper foil can be used. The graphite powder used for the negative electrode plate 202 preferably has an average particle diameter of 10 to 35 μm, and the mixing ratio between the graphite powder and the binder can be, for example, 90:10. The addition amount of the organic titanate is preferably in the range of 0.5 to 10% by mass in terms of the amount of titanium with respect to the graphite powder. If the amount is less than 0.5% by mass, the self-discharge rate of the battery increases, and if it exceeds 10% by mass, the initial charge / discharge efficiency of the battery decreases.
[0015]
Examples of the organic titanate include titanium alkoxides such as titanium methoxide, titanium ethoxide, titanium propoxide, titanium butoxide, titanium nonyl oxide, titanium stearyl oxide, and titanium-2-ethyl exyl oxide; and titanium diisopropoxide bis (2 , 4-pentanedionate), titanium diisopropoxide bis (2,2,6,6-tetramethyl 3,5-heptanedionate), and one or more substances selected from titanium chelate compounds such as titanium lactate Can be used. Note that the organic titanate does not necessarily need to be formed so as to be included in the negative electrode plate 202, and the same amount of organic titanate as described above may be included in the electrolyte impregnated in the electrode body 20, or the negative electrode plate 202 and the electrolyte may be included. The same effect can be obtained even if the total amount of the organic titanate contained in both is the same.
[0016]
The separator 203 only needs to be insulating, and for example, a belt-like polyethylene film can be used.
As the electrolyte, for example, a solution obtained by adding LiPF 6 as an electrolyte salt to a solvent in which ethylene carbonate, propylene carbonate, and diethyl carbonate are mixed at a mass ratio of 10:10:80 so as to have a concentration of 1.0 mol / L (electrolysis) Liquid), vinylene carbonate was added to the electrolyte solution in an amount of 10% by mass or less, and the solution was mixed with ethylene glycol diacrylate in a ratio of 90:10 (mass ratio) to prepare a pregel. A gelled product can be used. Here, the amount of vinylene carbonate added to the electrolyte is preferably 0.5 to 5% by mass based on the electrolyte. If the amount is less than 0.5% by mass, the initial charge / discharge efficiency of the battery decreases, and if the amount exceeds 5% by mass, the self-discharge rate increases. Here, as a substance to be added to the electrolyte solution, a vinylene carbonate derivative can be used in addition to vinylene carbonate. As described above, when organic titanate is not contained in the negative electrode plate 202, an electrolyte may be prepared by mixing the same amount of organic titanate with the electrolytic solution.
[0017]
The present inventors have found that by adding vinylene carbonate or a vinylene carbonate derivative to the electrolytic solution as described above, and by adding an organic titanate to the negative electrode plate 202 or the electrolytic solution, the cycle characteristics of the battery can be improved as compared with the conventional case. I found it. Although the reason why the cycle characteristics are improved as described above has not been elucidated, the SEI film coated on the negative electrode plate 202 in the initial stage of charge and discharge by the decomposition of the organic substance contained in the electrode plate and the electrolytic solution has been conventionally known. It is thought that the reason was that it was formed more firmly. While this SEI film serves to protect the negative electrode plate 202, it is liable to be broken by repeated charge / discharge. Therefore, conventionally, the interface resistance of the negative electrode plate increases and the cycle characteristics of the nonaqueous secondary battery deteriorate. It is thought that it was.
[0018]
On the other hand, in the present invention, since it is considered that the SEI film formed by the above configuration is formed to be stronger than before, the interfacial resistance of the negative electrode plate does not easily increase even if charge and discharge are repeated, and Cycle characteristics can be enhanced as compared with
(2) Experiment Hereinafter, an example sample and a comparative example sample of the non-aqueous secondary battery based on the above-described embodiment will be manufactured, and an evaluation experiment of the cycle characteristics of each sample will be performed, and the experimental results will be examined. In addition, in each sample, the amount of organic titanate added to the negative electrode plate and the amount of vinylene carbonate added to the electrolytic solution are different as shown in Table 1.
[0019]
<Production of Example Samples 1 to 9 and Comparative Samples 1 to 3>
(Production of negative electrode plate)
A slurry was prepared by uniformly mixing graphite powder having an average particle diameter of 25 μm and PVdF so as to have a mass ratio of 90:10. Titanium lactate was used as an organic titanate with respect to the mass of graphite contained in this slurry, and this was converted to the amount of titanium and weighed so as to become each amount shown in Table 1, and uniformly mixed with the slurry. The slurry in which the titanium lactate was mixed was applied to a 10-μm-thick copper foil, dried, and then rolled to produce a 120-μm-thick negative electrode plate.
[0020]
(Production of positive electrode plate)
Lithium cobaltate, graphite and PVdF are uniformly mixed in a mass ratio of 90: 5: 5, applied to an aluminum foil having a thickness of 20 μm, dried, and then rolled to produce a positive electrode plate having a thickness of 125 μm. did.
(Preparation of electrolyte)
An electrolyte was prepared by adding LiPF 6 as an electrolyte salt to a solvent in which ethylene carbonate, propylene carbonate, and diethyl carbonate were mixed at a mass ratio of 10:10:80 so as to have a concentration of 1.0 mol / L. To this electrolyte solution, vinylene carbonate was added in the respective amounts shown in Table 1, and this electrolyte solution and ethylene glycol diacrylate were added at a mass ratio of 90:10 to prepare a pregel serving as an electrolyte.
[0021]
(Battery assembly)
The positive electrode plate and the negative electrode plate manufactured as described above were laminated via a separator made of polyethylene having a thickness of 20 μm, with the center lines in the width direction of the respective electrode plates aligned. This was wound using a winding machine, and the final end was taped to form an electrode body.
[0022]
Next, this electrode body was inserted into an exterior body made of an aluminum laminate, and the positive electrode current collection tab and the negative electrode current collection tab produced from the electrode body were welded together with the exterior body. Lastly, after injecting the pregel and closing the opening of the exterior body, the pregel was polymerized and gelled in the battery, thereby producing each of the example samples 1 to 9 of the battery and the comparative examples 1 to 3. .
[0023]
<Evaluation experiment>
(Cycle characteristics)
Each of the above Examples 1 to 5 and Comparative Examples 1 to 3 was charged at a constant current of 1100 mA (1 C) until it reached 4.2 V, and the current value was 55 mA (C) at a constant voltage of 4.2 V. / 20). Then, after suspending the charging for 10 minutes, the battery was discharged at a constant current of 1100 mA until it reached 2.75 V, and then suspended for 10 minutes. The charge / discharge period so far was defined as one cycle, and charge / discharge was repeated 500 times for each sample, the initial discharge capacity of the battery and the discharge capacity after the test were measured, and the ratio was evaluated. Table 1 shows the results.
[0024]
[Table 1]
Figure 2004265680
As shown in Table 1, in Comparative Sample 3 (55.0%) to which only the organic titanate was added, the discharge capacity ratio was lower than in Comparative Sample 1 (62.6%) to which nothing was added. You can see that. Further, as in Reference Document 1 described in the description of the prior art, in the case of Comparative Example Sample 3 in which only vinylene carbonate was added, it was confirmed that the discharge capacity ratio was increased to 72.2% as compared with Comparative Example Sample 1. Was.
[0025]
On the other hand, it was confirmed that the discharge capacity ratio of Example samples 1 to 5 according to the present invention was improved by 6.3 to 12.4% as compared with Comparative example sample 2.
Thus, it was confirmed that the cycle characteristics of the battery were improved by adding vinylene carbonate and organic titanate as compared with the conventional battery.
(Initial charge / discharge efficiency)
For the example samples 1, 3, 4, 6, and 7, the initial charge / discharge efficiency was measured.
[0026]
The initial charge / discharge efficiency was measured using the same method as in the evaluation of the cycle characteristics. The charge capacity in the first cycle was C1 and the discharge capacity was C2. Was measured. Table 1 shows the results.
Thus, when the amount of vinylene carbonate added is less than 0.5% as in Example Sample 6, or when the amount of organic titanate exceeds 10% as in Example Sample 7, the initial charge / discharge is performed. It was confirmed that the efficiency was reduced by about 3% as compared with the other examples. Therefore, it is understood that the amount of vinylene carbonate added is preferably 0.5% or more, and the amount of organic titanate is preferably 10% or less.
[0027]
(Self-discharge rate)
For the example samples 1, 2, 5, 8, and 9, the self-discharge rate was measured. The self-discharge rate was measured by measuring the discharge capacity D1 at 25 ° C. immediately after assembling the battery of each sample, charging the battery to 4.2 V with a constant current of 1100 mA (1 C), and further charging the battery at a constant voltage of 4.2 V. After the battery was charged until the current value became 55 mA (C / 20) while keeping the temperature at 80 ° C. for 20 days, the discharge capacity D2 measured at 25 ° C. was measured. The self-discharge rate (%) shown in Table 1 is represented by (1−D2 / D1) × 100, and indicates the rate at which self-discharge occurred with the lapse of the storage period.
[0028]
Thus, when the addition amount of vinylene carbonate exceeds 5% as in Example Sample 8, or when the addition amount of organic titanate is less than 0.5% as in Example Sample 9, the self-discharge rate is reduced. Was increased by about 6% as compared with the samples of the other examples. Therefore, it is understood that the addition amount of vinylene carbonate is preferably 5% or less, and the addition amount of organic titanate is preferably 0.5% or more.
【The invention's effect】
As described above, in the nonaqueous secondary battery according to the present invention, the negative electrode plate contains organic titanate, and the electrolyte solution contains vinylene carbonate, whereby a strong film is formed on the negative electrode plate. It is considered that the cycle characteristics of the battery can be improved as compared with the related art.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a laminated lithium secondary battery.
FIG. 2 is a sectional view of the laminated lithium secondary battery in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 10 Outer body 10t, 10s Edge 20 Electrode body 21a Positive current collecting tab 21b Negative current collecting tab 201 Positive electrode plate 202 Negative electrode plate 203 Separator

Claims (3)

負極と、電解液を含む非水電解質とを備える非水二次電池であって、
前記負極または前記電解液は、有機チタネートを含み、かつ前記電解液は、ビニレンカーボネートまたはビニレンカーボネート誘導体を含むことを特徴とする非水二次電池。
A non-aqueous secondary battery including a negative electrode and a non-aqueous electrolyte containing an electrolytic solution,
The nonaqueous secondary battery, wherein the negative electrode or the electrolyte contains an organic titanate, and the electrolyte contains vinylene carbonate or a vinylene carbonate derivative.
前記負極は、黒鉛を含み、
前記負極または前記電解液、あるいは前記負極および前記電解液に含まれる有機チタネートの含有量は、前記負極の黒鉛に対してチタン量換算で0.5〜10質量%であり、
前記電解液に含まれるビニレンカーボネートまたはビニレンカーボネート誘導体、あるいはビニレンカーボネートおよびビニレンカーボネート誘導体の含有量は、0.5〜5質量%であることを特徴とする請求項1に記載の非水二次電池。
The negative electrode includes graphite,
The content of the organic titanate contained in the negative electrode or the electrolytic solution, or the negative electrode and the electrolytic solution is 0.5 to 10 mass% in terms of titanium amount with respect to the graphite of the negative electrode,
2. The non-aqueous secondary battery according to claim 1, wherein the content of vinylene carbonate, a vinylene carbonate derivative, or vinylene carbonate and a vinylene carbonate derivative contained in the electrolyte is 0.5 to 5% by mass. 3. .
前記有機チタネートは、チタンラクテート、チタニウムメトキシド、チタニウムエトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタニウムブトキシド、チタニウムノニルオキシド、チタニウムステアリルオキシド、チタニウム2−エチルヘキシルオキシド、チタニウムジイソプロポキシドビス(2,4−ペンタンジオネート)、チタニウムビス(エチルアセトアセテート)ジイソプロポキシド、チタニウムジブトキシドビス(2,4−ペンタンジオネート)、チタニウムジイソプロポキシドビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオネート)から選択される一つまたは複数の物質を含むことを特徴とする請求項1または2に記載の非水二次電池。The organic titanate includes titanium lactate, titanium methoxide, titanium ethoxide, titanium propoxide, titanium isopropoxide, titanium butoxide, titanium nonyl oxide, titanium stearyl oxide, titanium 2-ethylhexyl oxide, and titanium diisopropoxide bis (2 , 4-pentanedionate), titanium bis (ethylacetoacetate) diisopropoxide, titanium dibutoxide bis (2,4-pentanedionate), titanium diisopropoxide bis (2,2,6,6-tetra The non-aqueous secondary battery according to claim 1, further comprising one or more substances selected from methyl-3,5-heptanedionate).
JP2003053652A 2003-02-28 2003-02-28 Nonaqueous secondary battery Pending JP2004265680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053652A JP2004265680A (en) 2003-02-28 2003-02-28 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053652A JP2004265680A (en) 2003-02-28 2003-02-28 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2004265680A true JP2004265680A (en) 2004-09-24

Family

ID=33118198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053652A Pending JP2004265680A (en) 2003-02-28 2003-02-28 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2004265680A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107796A (en) * 2004-09-30 2006-04-20 Sony Corp Electrolyte and battery
JP2007005242A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2009093843A (en) * 2007-10-04 2009-04-30 Sony Corp Nonaqueous electrolyte secondary battery
JP2010514140A (en) * 2006-12-21 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electrode binder composition and electrode for lithium ion battery and electric double layer capacitor
JP2010170774A (en) * 2009-01-21 2010-08-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US20110183217A1 (en) * 2010-01-27 2011-07-28 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
JP2013246992A (en) * 2012-05-28 2013-12-09 Hitachi Ltd Lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143747A (en) * 1999-11-15 2001-05-25 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary cell using the same
JP2002110227A (en) * 2000-09-29 2002-04-12 National Institute For Materials Science Method for manufacturing lithium ion conductive solid electrolyte thin film
JP2004520701A (en) * 2001-05-22 2004-07-08 エルジー ケミカル エルティーディー. Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143747A (en) * 1999-11-15 2001-05-25 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary cell using the same
JP2002110227A (en) * 2000-09-29 2002-04-12 National Institute For Materials Science Method for manufacturing lithium ion conductive solid electrolyte thin film
JP2004520701A (en) * 2001-05-22 2004-07-08 エルジー ケミカル エルティーディー. Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery containing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107796A (en) * 2004-09-30 2006-04-20 Sony Corp Electrolyte and battery
JP4674455B2 (en) * 2004-09-30 2011-04-20 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP2007005242A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2010514140A (en) * 2006-12-21 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electrode binder composition and electrode for lithium ion battery and electric double layer capacitor
JP2009093843A (en) * 2007-10-04 2009-04-30 Sony Corp Nonaqueous electrolyte secondary battery
JP2010170774A (en) * 2009-01-21 2010-08-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US20110183217A1 (en) * 2010-01-27 2011-07-28 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
US8999589B2 (en) * 2010-01-27 2015-04-07 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
JP2013246992A (en) * 2012-05-28 2013-12-09 Hitachi Ltd Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
CN106328996B (en) Lithium ion secondary battery
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5721334B2 (en) Nonaqueous electrolyte secondary battery
KR101829528B1 (en) Electrode, nonaqueous electrolyte battery and battery pack
JP5110817B2 (en) Non-aqueous electrolyte battery
CN104969407B (en) Method for manufacturing lithium ion secondary battery
JP5896024B2 (en) Charge control method and charge control device for secondary battery
TW200814398A (en) Secondary battery
CN106716684A (en) Negative electrode for nonaqueous electrolyte electricity storage elements, nonaqueous electrolyte electricity storage element, and electricity storage device
JP2018198131A (en) Lithium ion secondary battery
JP2013020835A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JPWO2014141930A1 (en) Lithium ion secondary battery and charging method thereof
CN104518242B (en) The manufacture method of rechargeable nonaqueous electrolytic battery
JP7435608B2 (en) Manufacturing method of positive electrode active material, positive electrode and secondary battery
CN103299452A (en) Separator for power storage device and power storage device
CN105706276A (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
JP2004265680A (en) Nonaqueous secondary battery
JP2012252951A (en) Nonaqueous electrolyte secondary battery
CN108365171A (en) Lithium ion secondary battery cathode and its manufacturing method and lithium rechargeable battery
JP6468191B2 (en) Nonaqueous electrolyte secondary battery
JP2008243643A (en) Lithium secondary battery
JP5880942B2 (en) Non-aqueous electrolyte secondary battery
CN103229333B (en) Non-aqueous electrolyte secondary battery
JP6399095B2 (en) Control method of non-aqueous electrolyte secondary battery
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021