JP2004265624A - Connected long body and cable - Google Patents

Connected long body and cable Download PDF

Info

Publication number
JP2004265624A
JP2004265624A JP2003033738A JP2003033738A JP2004265624A JP 2004265624 A JP2004265624 A JP 2004265624A JP 2003033738 A JP2003033738 A JP 2003033738A JP 2003033738 A JP2003033738 A JP 2003033738A JP 2004265624 A JP2004265624 A JP 2004265624A
Authority
JP
Japan
Prior art keywords
cable
holding member
string
rfid
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033738A
Other languages
Japanese (ja)
Inventor
Masashi Hara
昌志 原
Kazunaga Kobayashi
和永 小林
Satoru Shiobara
悟 塩原
Takeshi Osato
健 大里
Osamu Koyasu
修 子安
Yukiaki Tanaka
志明 田中
Takeshi Honjo
武史 本庄
Keiji Ohashi
圭二 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003033738A priority Critical patent/JP2004265624A/en
Priority to TW093100706A priority patent/TW200423154A/en
Priority to PCT/JP2004/000768 priority patent/WO2004072989A1/en
Publication of JP2004265624A publication Critical patent/JP2004265624A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/34Apparatus or processes specially adapted for manufacturing conductors or cables for marking conductors or cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/56Processes for repairing optical cables
    • G02B6/562Processes for repairing optical cables locatable, e.g. using magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/36Insulated conductors or cables characterised by their form with distinguishing or length marks
    • H01B7/368Insulated conductors or cables characterised by their form with distinguishing or length marks being a sleeve, ferrule, tag, clip, label or short length strip

Landscapes

  • Physics & Mathematics (AREA)
  • Insulated Conductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Cable Installation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous long body for a cable capable of storing a large amount of information related to the cable as compared with a conventional one, and hardly making the stored information out of recognition even when a long time elapses after installation. <P>SOLUTION: This continuous long body 1 has: a string-like holding member 3; and a plurality of RFID elements 5 held by the holding member 3 with spaces in the longitudinal direction of the holding member 3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数のRFID(Radio Frequency Identification)素子を、長く延びた部材の長手方向に、間隔をあけて設けて構成された連長体、その連長体が設けられたケーブルに係り、特に、上記長く延びた部材が紐状の部材であるものに関する。
【0002】
【従来の技術】
従来、たとえば、敷設されている多数のメタルケーブルや光ファイバケーブルの中から、目的とするケーブルのみを識別する方法として、上記各ケーブルの外皮(シース)表面に印字を施し、または上記各ケーブルにタグを取り付け、ケーブルを識別する方法が知られている。
【0003】
ここで、上記印字は、製造者名、製造年月日、ケーブルの品名、ケーブルの長さ等の情報を、インクや熱転写レーザ等で、上記ケーブルの外皮表面に施すことによって行われている。また、上記タグには、上記印字されているものとほぼ同様な情報が、たとえば刻印されている。そして、上記タグは上記ケーブルの外皮に貼り付けられ、または上記ケーブルにたとえば金属線を用いて吊り下げられている。
【0004】
ところで、ケーブル表面に印字をする場合、上記ケーブルの長手方向に沿って印字がされるため、文字数が多くなると、敷設されているケーブルを長い区間にわたって露出させる必要がある。しかし、上記ケーブルが、たとえば、トラフ内に敷設され、このトラフに蓋がされている場合、上記蓋を長い区間にわたって取り外す必要があり、さらに上記トラフが土砂の中に埋設されていると、上記土砂を長い区間にわたって取り除く必要があり、上記ケーブルを露出させるために多大な工数が必要になる。
【0005】
そこで、上記印字をする場合、上記ケーブルの長手方向に沿ってされる印字の長さを極力短くすることが望ましいが、このように印字の長さを制限すると、上記ケーブルに関して必要な情報の総てを、上記ケーブルの外皮に印字することが困難であるという問題がある。
【0006】
また、上記ケーブルの外皮表面に印字された文字や記号等の、上記ケーブルに関する情報は、長い期間の経過や、たとえばケーブル設置時の擦り等によって、かすれたり消えてしまい判読不可能になる場合があるという問題がある。
【0007】
さらに、タグを上記ケーブルに設ける場合、長尺のケーブルに一定の間隔で、タグを多数個設けなければならず、タグを設ける際の工数がかかり、また、上記印字をする場合と同様に、タグに多くの情報を書き込むことは困難であり、さらに、上記ケーブルに設けたタグがケーブルから離脱し、またはタグに記載されている情報が時間の経過とともに、かすれたり消えてしまい判読不可能になる場合があるという問題がある。
【0008】
そこで、上述のようなケーブル外皮表面への印字やタグに代えて、ケーブル外皮表面に、たとえば、QRコード(二次元バーコード)を貼り付けた構成のケーブルが開示されている(たとえば特許文献1)。
【0009】
【特許文献1】
特開2001−21730号公報
【0010】
【発明が解決しようとする課題】
ところで、上記特許文献1に示すケーブルによれば、このケーブルに関する情報がQRコード化されているので、上述のように印字やタグを使用する場合よりも、上記ケーブルに関する情報を大量に格納することができる。
【0011】
しかし、上記QRコード化された情報は、上記ケーブルの表面に設けられているので、上述のように印字をした場合と同様に、長い期間の経過や、たとえばケーブル設置時の擦り等によって、かすれたり消えてしまい、またはケーブル表面からはがれてしまい判読不可能になる場合があるという問題がある。
【0012】
本発明は、上記問題点に鑑みてなされたものであり、ケーブルに関する情報を従来よりも多量に格納可能であり、設置後長時間が経過しても上記格納している情報が判別不可能となるおそれが少ないケーブルおよびこのケーブルへの設置が容易な連長体を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1に記載の本発明は、紐状の保持部材と、上記紐状の保持部材の長手方向に間隔をあけて、上記紐状の保持部材に保持された複数のRFID素子とを有する連長体である。
【0014】
請求項2に記載の本発明は、請求項1に記載の連長体において、上記紐状の保持部材は、ケーブルの引き裂き紐で構成され、上記各RFID素子は、連続している上記紐状の保持部材の中間部に、接着剤を用いて固定されている連長体である。
【0015】
請求項3に記載の本発明は、ケーブルコアと、紐状の保持部材と、上記紐状の保持部材の長手方向に間隔をあけて、上記紐状の保持部材に保持された複数のRFID素子とを具備していると共に、上記ケーブルコアに一体化して設けられた連長体と、上記ケーブルコアと上記連長体とを被覆しているシースとを有するケーブルである。
【0016】
【発明の実施の形態】
図1は、本発明の実施の形態に係る連長体1の概略構成を示す斜視図である。
【0017】
連長体1は、紐状の保持部材3を備え、この紐状の保持部材3の長手方向に、たとえば一定の間隔をあけて、複数のRFID(Radio Frequency Identification)素子5が、上記紐状の保持部材3に保持されている。なお、上記各RFID素子5同士の各間隔は一定の値であってもよいし、上記各RFID素子5同士の各間隔の値が互いに異なっていてもよい。
【0018】
上記紐状の保持部材3は、たとえば、ケーブルに使用される引き裂き紐で構成され、上記各RFID素子5は、連続している上記紐状の保持部材3の中間部に、接着剤を用いて固定されている。なお、上記紐状の保持部材3として、上記引き裂き紐以外の紐、たとえばFRPで構成された、強度のある紐を用いてもよい。
【0019】
また、上記RFID素子5に格納されている情報は、たとえば電磁波を媒体にして、RFIDリーダで読み取り可能になっている。さらに、上記円柱状の各RFID素子5の外郭部は電磁波を通過させる硬質の部材(たとえば、ガラスやプラスチック)で構成され、上記円柱状の各RFID素子5の長手方向と上記紐状保持部材3の長手方向とがほぼ一致するように、上記円柱状の各RFID素子5が設けられている。
【0020】
図2は、上記連長体1を製造するための連長体製造装置7の概略構成を示す図である。
【0021】
連長体製造装置7は、長く伸びた紐状保持部材3の中間部に所定の間隔をあけて接着剤9を塗布し、この接着材が塗布された各部分に、RFID素子5を1つずつ設け、上記紐状保持部材3に各RFID素子5を配設するための装置である。
【0022】
ここで、連長体製造装置7は、基台11を備え、この基台11の上部側には、上記各RFID素子5が設けられる前の上記紐状保持部材3を格納自在な第1の格納手段15と、上記第1の格納手段15とは離隔して設けられ上記各RFID素子5が設けられた後の上記紐状保持部材(上記第1の格納手段15に格納されている紐状保持部材と一体的に連続している紐状保持部材)3を格納自在な第2の格納手段17とが、図示しない連結部材を介して設けられている。
【0023】
なお、上記第1の格納手段15と上記第2の格納手段17とは、巻き取ることによって上記紐状保持部材3を格納可能なドラムで形成され、互いがほぼ平行で、水平方向に延びた各回転軸15A、17Aを回転中心にして回転自在になっている。そして、上記第1の格納手段15と上記第2の格納手段17とが上記紐状保持部材3を格納した状態では、上記第1の格納手段15と上記第2の格納手段17との間で、水平方向で直線的に上記紐状保持部材3が延びており、この状態で、たとえば、上記第2の格納手段17を図示しないアクチュエータで回転すると、上記紐状保持部材3が巻き取られて矢印ARの方向に移動するようになっている。
【0024】
また、上記基台11の上部側であって、上記第1の格納手段15と上記第2の格納手段17との間で水平方向に長く延びている上記紐状保持部材3の上部側には、上記紐状保持部材3の長手方向に間隔をあけて、上記紐状保持部材3に接着剤を塗布するための接着剤塗布手段19が設けられている。なお、この接着剤塗布手段19は、上記紐状保持部材3の移動量を計測可能な移動量検出手段(図示せず)の検出値にしたがって、接着剤9を間歇的に塗出するものである。そして、上記紐状保持部材3の長手方向に間隔をあけて接着剤9が塗布される。
【0025】
また、上記第1の格納手段15と上記第2の格納手段17との間で水平方向に長く延びている上記紐状保持部材3の上部側であって、上記接着剤塗布手段19と上記第2の格納手段17との間には、上記各RFID素子5を格納自在なRFID素子格納手段13が設けられている。
【0026】
また、上記RFID素子格納手段13の下部側には、上記RFID素子格納手段13に格納されている各RFID素子5を上記紐状保持部材5に配置するための供給口13Aが設けられており、また、上記RFID素子格納手段13と上記供給口13Aとの間には、上記供給口13Aを介して、上記紐状保持部材3に上記各RFID素子5を間歇的に供給可能な供給手段21が設けられている。
【0027】
供給手段21は、RFID素子格納手段13と供給口13Aとの間の通路23内で、水平方向に延伸し水平方向に移動自在な平板状の各シャッタ21A、21Bを備え、上記各シャッタ21A、21Bは、シャッタ駆動部21Cに設けられているアクチュエータによって移動可能になっている。
【0028】
また、シャッタ21Aの上部側にシャッタ21Bが設けられており、シャッタ21Aとシャッタ21Bとで囲繞される通路23の空間内には、RFID素子5を1つだけ収納できるようになっている。
【0029】
そして、図2に示す状態、すなわち、シャッタ21Aとシャッタ21Bとの間に、1つのRFID素子5Aが存在し、シャッタ21Bの上部に多数のRFID素子5が存在し、シャッタ21Aとシャッタ21Bとが、通路23を塞いでいる状態から、シャッタ21Bで通路23を閉じたまま、シャッタ21Aが通路23を解放すると、供給口13Aを介して、RFID素子5Aが紐状保持部材3に供給され、続いて、シャッタ21Aで通路23を塞いで、シャッタ21Bが通路23を解放すると、RFID素子5Bが、シャッタ21Aとシャッタ21Bとの間に落下し、続いて、シャッタ21Bで通路23を塞ぐことによって、図2に示す状態と同様の状態になる。
【0030】
各シャッタ21A、21Bが上述の動作を繰り返すことによって、紐状保持部材3にRFID素子5を1つずつ供給できるようになっている。
【0031】
なお、供給手段21は、上記紐状保持部材3の移動量を計測可能な移動量検出手段(図示せず)の検出値にしたがって、RFID素子5を間歇的に供給し、上記紐状保持部材3の長手方向に間隔をあけて塗布された接着剤9の塗布位置に、RFID素子5を1つずつ供給可能になっている。そして、接着剤9の塗布位置に、RFID素子5が1つずつ接着される。
【0032】
次に、連長体1が設けられているケーブル25について説明する。
【0033】
図3は、連長体1が設けられているケーブル25の概略構成を示す断面図である。
【0034】
なお、上記断面図(図3)は、ケーブル25の軸方向に直角な平面でケーブル25を切断した場合の断面図である。
【0035】
ケーブル25は、内部にケーブルコア27を備え、このケーブルコア27の外側はシース29で覆われている。
【0036】
ケーブルコア21は、この中心部にケーブル25の長手方向に沿って長く設けられた抗張体28を備え、この抗張体28の周りを囲むように、断面が円形状のスロット31が、ケーブル25の長手方向に沿って長く設けられている。
【0037】
スロット31の外周にほぼ等角度で分配された位置には、ケーブル25の長手方向に沿って、複数の溝33A〜33Eが設けられている。そして、上記各溝33A〜33Eの総てには、たとえば4芯の光ファイバテープ35が適数個配設されており、上記各溝33A〜33Eが設けられている箇所以外の、スロット31の外周壁に接して、連長体1が設けられている。なお、連長体1はスロット31の外周壁に縦添えまたは横巻きされている。
【0038】
なお、上記各溝33A〜33Eおよび上記連長体1は、格納するためにケーブル25をドラムに巻いた場合、外側に位置する光ファイバテープ35のみが延びることを防いで、各光ファイバテープ35が、ほぼ均等に延びるようにするために、上記各溝33A〜33Eは、ケーブル25の長手方向に延伸する中心軸CLに対して、平行に直進しているのではなく(図3の紙面に直角に延びているのではなく)、僅かにねじれて長手方向に延伸している。つまり、図3の紙面に対して僅かに斜めに傾いて延びている。
【0039】
そして、連長体1と光ファイバテープ35が設けられているスロット31とを一体にして両者を覆うように、スロット31の外周と上記連長体1とには、上記連長体1と光ファイバテープ35とを押さえ込むための押え巻き37が横巻きされ、連長体1が、ケーブルコア27に一体化して設けられている。また、押え巻き37がされたケーブルコア27の外側は、長手方向の断面が円環状のシース29で被覆されている。なお、上記シース29は、たとえば、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ノンハロゲン難燃材、燃やした場合に有毒ガスを発生せず、またビニルとの分別が容易なエコ材等で構成されている。
【0040】
次に、ケーブル39について説明する。
【0041】
図4は、連長体1が設けられているケーブル39の概略構成を示す断面図である。
【0042】
なお、上記断面図(図4)は、ケーブル39の軸方向に直角な平面でケーブル39を切断した場合の断面図である。
【0043】
ケーブル39は、内部にケーブルコア41を備え、このケーブルコア41の外側はシース43で覆われている。
【0044】
ケーブルコア41は、この中心部にケーブル39の長手方向に沿って長く設けられた抗張体44を具備した、長手方向に垂直な断面が円形状のテンションメンバ45を備え、長手方向に垂直な断面が円形状である複数の光ファイバコード47のみで、テンションメンバ45の周りを囲んでいる。なお、上記各光ファイバコード47は、ケーブル39の長手方向に沿って長く設けられている。換言すれば、図4に示すケーブル39の断面図では、各光ファイバコード47が、テンションメンバ45の外周壁に接し、さらに、隣り合う各光ファイバコード47同士が互いに接している。
【0045】
そして、上記各光ファイバコード47を、上記テンションメンバ45に固定するために、上記各光ファイバコード47を覆うように押え巻き49が横巻きされている。
【0046】
さらに、横巻きされた押え巻き49の外壁に連長体1を接触させて配設し(縦添えまたは横巻きして、連長体1をケーブルコア41に設け)、この連長体1と押え巻き49がされたケーブルコア41とを一体化して両者を覆うように、押え巻き51が横巻きされている。また、押え巻き51がされたケーブルコア41の外側は、長手方向の断面が円環状のシース43で被覆されている。なお、上記シース43は、シース29とほぼ同様に、たとえば、ポリエチレン、ポリ塩化ビニル、ノンハロゲン難燃材、または、エコ材等で構成されている。
【0047】
また、上記各光ファイバコード47や上記連長体1は、ケーブル25の場合と同様に、ケーブル39の長手方向に僅かに捻れて延伸している。
【0048】
次に、ケーブル53について説明する。
【0049】
図5は、連長体1が設けられているケーブル53の概略構成を示す断面図である。
【0050】
なお、上記断面図(図5)は、ケーブル53の軸方向に直角な平面でケーブル53を切断した場合の断面図である。
【0051】
ケーブル53は、スロットに形成されている各溝のうちの1つに連長体1を配設している点が、ケーブル25とは異なり、その他の点はケーブル25とほぼ同様に構成されている。
【0052】
すなわち、ケーブル53は、内部にケーブルコア55を備え、このケーブルコア55の外側はシース57で覆われている。
【0053】
ケーブルコア55は、この中心部にケーブル53の長手方向に沿って長く設けられた抗張体59を備え、抗張体59の周りを囲むように、断面が円形状のスロット61が、ケーブル53の長手方向に沿って長く設けられている。
【0054】
スロット61の外周にほぼ等角度で分配された位置には、ケーブル53の長手方向に沿って、複数の溝63A〜63Fが設けられている。そして、上記各溝63A〜63Fのうちの1つの溝63F内に、ケーブル53の長手方向に沿って、連長体1が設けられている。また他の各溝63A〜63Eには、たとえば4芯の光ファイバテープ65が適数個設けられている。
【0055】
さらに、連長体1と光ファイバテープ65とが設けられているスロット61の外周には、上記連長体1と光ファイバテープ65とを押さえ込むための押え巻き67が横巻きされている。
【0056】
このようにして、連長体1は、ケーブルコア55に一体化されて設けられている。
【0057】
なお、各光ファイバテープ65や上記連長体1は、ケーブル25の場合と同様に、ケーブル53の長手方向に僅かに捻れて延伸している。
【0058】
また、押え巻き67がされたケーブルコア55の外側は、長手方向の断面が円環状のシース57で被覆されている。なお、上記シース57は、ケーブル25と同様に、たとえば、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ノンハロゲン難燃材、燃やした場合に有毒ガスを発生せず、またビニルとの分別が容易なエコ材等で構成されている。
【0059】
次に、ケーブル69について説明する。
【0060】
図6は、連長体1が設けられているケーブル69の概略構成を示す断面図である。
【0061】
なお、上記断面図(図6)は、ケーブル69の軸方向に直角な平面でケーブル69を切断した場合の断面図である。
【0062】
ケーブル69は、連長体と複数の光ファイバコードとを用いて、テンションメンバの周りを囲んでいる点が、ケーブル39とは異なり、その他の点はケーブル39とほぼ同様に構成されている。
【0063】
すなわち、ケーブル69は、内部にケーブルコア71を備え、このケーブルコア71はシース73覆われている。
【0064】
ケーブルコア71は、この中心部にケーブル69の長手方向に沿って長く設けられた抗張体75を具備した、長手方向に垂直な断面が円形状のテンションメンバ77を備え、連長体1と、長手方向に垂直な断面が円形状である複数の光ファイバコード79とが、テンションメンバ77の周りを囲んで、ケーブル69の長手方向に沿って長く設けられている。換言すれば、図6に示すケーブル69の断面図では、各光ファイバコード79および連長体1(RFID5)が、テンションメンバ77の外周壁に接し、さらに、隣り合う各光ファイバコード79同士が互いに接し、連長体1が設けられている箇所では、この連長体1(RFID5)とこの連長体1(RFID5)と隣り合う光ファイバコード79とが互いに接している。
【0065】
さらに、図6の断面図において、連長体1の外周のうちで、テンションメンバ77から最も離れた部位と、各光ファイバコード79の各外周のうちで、テンションメンバ77から最も離れた部位とを、互いに結んだ包絡線に沿って、上記連長体1と光ファイバコード79とを押さえ込むための押え巻き81が横巻きされている。
【0066】
このようにして、連長体1は、ケーブルコア71に一体化されて設けられている。
【0067】
なお、上記各光ファイバコード79や上記連長体1は、ケーブル25の場合と同様に、ケーブル69の長手方向に僅かに捻れて延伸している。
【0068】
また、押え巻き81がされたケーブルコア71の外側は、長手方向の断面が円環状のシース73で被覆されている。なお、上記シース73は、シース29等とほぼ同様に、たとえば、ポリエチレン、ポリ塩化ビニル、ノンハロゲン難燃材、または、エコ材等で構成されている。
【0069】
なお、ケーブル25やケーブル39は、ケーブルコアの外形に対して連長体1の外形が十分に小さい場合の実施形態であり、ケーブルコアの外形に対して連長体1の外形が十分に小さくはない場合には、ケーブル53やケーブル69のような実施形態にすることが望ましい。
【0070】
連長体1によれば、紐状の保持部材3の長手方向に間隔をあけて、複数のRFID素子5が配置されて固定されており、連長体1が長く一体的に形成されているので、連長体1の長手方向とケーブルの長手方向とを互いにそろえて、連長体1を上記ケーブルのケーブルコアに一体化して設けることが容易になり、各RFID素子5を上記ケーブルの長手方向に間隔をあけて設けるときの作業が容易になる。
【0071】
また、連長体1によれば、ケーブルに一般的に使用されている引き裂き紐を保持部材として使用することができるので、連長体1を製造するために専用の保持部材を製造する必要がなく、さらに、上記引き裂き紐に接着剤で各RFID素子5を固定しているので、連長体1の製造が容易である。
【0072】
連長体1を備えたケーブル25によれば、ケーブル25に関する情報を記憶している記憶媒体としてRFID素子を採用しているので、ケーブル25の外皮(シースの外周面)への印字またはケーブル25へのタグの貼り付けやタグの吊り下げによって、ケーブル25に関する情報を格納(表示)するよりも、大量の情報を格納でき、しかも、ケーブル25の外皮を露出させずに、RFID素子5の情報を読み取り表示可能なRFIDリーダをケーブル25に近づけるだけで、RFID素子5に格納されている情報を上記RFIDリーダで読み取って表示することができる。つまり、ケーブル25に関する情報を容易に読み取って表示することができる。
【0073】
また、連長体1を備えたケーブル25によれば、ケーブル25に関する情報を記憶している記憶媒体としてRFID素子5を採用し、このRFID素子5を、ケーブル25のシース29が被覆しているので、ケーブル25敷設後の長い期間の経過や、ケーブル25を設置するときの擦り等によって、ケーブル25に関する情報がかすれたり消えたりして、判読不可能になることを回避することができる。また、RFID素子5が、シース29で被覆されているので、たとえばケーブル25を設置するときにこのケーブル25に外力がかかっても、この外力がシース29で緩和され、上記RFID素子5が破損しにくくなる。
【0074】
また、連長体1を備えたケーブル25によれば、パイプ状のシース29の肉厚部に、RFID素子5が埋め込まれていることはなく、シース29がこの長手方向にほぼ一様な形態になっているので、ケーブル25を、たとえば、設置や保守のために折り曲げても、シース29の肉厚部に応力集中が発生しにくく、したがって、上記設置や保守による折り曲げによって、ケーブル25のシース29が破損しにくくなる。
【0075】
また、RFID素子5を、シース29の肉厚部内に設置するとすれば、高温で溶融している状態の、シース29の構成部材中にRFID素子5を挿入しなければならず、このときに、上記高温によってRFID素子5の機能が阻害されるおそれがあるが、ケーブル25では、シース29でケーブルコア27を被覆する場合、押え巻き37が間に介在しているので、連長体1のRFID素子5が直接高温状態のシース29の構成部材にさらされることはなく、したがって、シース29を被覆するときにRFID素子5の機能が阻害されるおそれが少ない。
【0076】
また、ケーブルコア27にシース29を被覆する場合、断面がほぼ円形状のケーブルコア27に、断面が円環状のシース29を被覆すればよく、シース29の肉厚部内にRFID素子5を設ける必要がないので、上記被覆を容易に行うことができる。
【0077】
また、ケーブル25によれば、連長体1の長手方向に所定の間隔をあけて、各RFID素子5を設けているので、ケーブル25の長手方向の任意の位置で、ケーブル25に関する情報(たとえば、ケーブル25を識別するための方法)を取得することができる。そして、ケーブル25がたとえばトラフ内に敷設されこのトラフに蓋がされ、さらにこのトラフが土砂の中に埋設されている場合でも、上記土砂を長い区間にわたって取り除くことなく、土砂の一部を取り除くだけで、上記ケーブル25の情報を読み取ることができ、上記土砂を取り除く工数を削減することができる。
【0078】
なお、上記各RFID素子5の設置間隔は、RFID素子5に格納されている情報を、RFIDリーダが読み取り可能な距離に応じて決定すればよい。たとえば、上記読み取り可能な距離が1mである場合に、各RFID素子5の設置間隔を1mにすれば、ケーブル25から0.87m(1m÷2×√3≒0.87m)以内の距離にRFIDリーダを近づけると、RFID素子5に格納されている情報を、上記RFIDリーダで読み取ることができる。
【0079】
なお、上記各RFID素子5に格納されている、ケーブル25に関する情報は、連長体1の製造前に予め各RFID素子5に格納されていてもよいし、たとえば、図2に示す連長体製造装置7のRFID素子格納手段13と第2格納手段17との間に、RFID素子5に情報を書き込み可能なRFIDライターを設置し、または、連長体製造装置7の通路23の近傍にRFIDライターを設置して、連長体1を製造するときに、ケーブル25に関する情報を、各RFID素子5に書き込んでもよい。さらに、ケーブル25の敷設後、RFIDライターを用いて、各RFID素子5の情報を書き換えてもよい。
【0080】
連長体1を備えた各ケーブル39、53、69によれば、各ケーブル39、53、69に関する情報を大量に格納でき、しかも、各ケーブル39、53、69に関する情報を容易に読み取って表示することができる等、ケーブル25が備える効果とほぼ同様な効果を備える。
【0081】
また、各ケーブル39、53、69において、ケーブル25と同様に、連長体1の長手方向に所定の間隔をあけて、各RFID素子5を設けているので、各ケーブル39、53、69の長手方向の任意の位置で、各ケーブル39、53、69に関する情報を取得することができる。
【0082】
なお、上記各RFID素子5の設置間隔は、ケーブル25と同様に決定すればよい。
【0083】
また、上記各RFID素子5に格納されている、各ケーブル39、53、69に関する情報も、ケーブル25の場合と同様に書き込むことができる。
【0084】
また、上記各ケーブル39、53、69を、光ファイバケーブルではなくメタルケーブルにしてもよいし、光ファイバとメタル線とが混在しているケーブルにしてもよい。
【0085】
【発明の効果】
本発明によれば、ケーブルに関する情報を従来よりも多量に格納可能であり、設置後長時間が経過しても上記格納している情報が判別不可能となるおそれが少なく、設置や保守のために折り曲げても破損しにくいケーブルおよびこのケーブルへの設置が容易な連長体を提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る連長体の概略構成を示す斜視図である。
【図2】上記連長体を製造するための連長体製造装置の概略構成を示す図である。
【図3】連長体が設けられているケーブルの概略構成を示す断面図である。
【図4】連長体が設けられているケーブルの概略構成を示す断面図である。
【図5】連長体が設けられているケーブルの概略構成を示す断面図である。
【図6】連長体が設けられているケーブルの概略構成を示す断面図である。
【符号の説明】
1 連長体
3 紐状の保持部材
5 RFID素子
9 接着剤
25、39、53、69 ケーブル
27、41、55、71 ケーブルコア
29、43、57、73 シース
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous body formed by providing a plurality of RFID (Radio Frequency Identification) elements at intervals in a longitudinal direction of a long member, and a cable provided with the continuous body. , Wherein the elongated member is a string-shaped member.
[0002]
[Prior art]
Conventionally, for example, as a method of identifying only a target cable from among a large number of laid metal cables or optical fiber cables, printing is performed on the outer surface (sheath) of each cable, or Methods for attaching tags and identifying cables are known.
[0003]
Here, the printing is performed by applying information such as a manufacturer name, a manufacturing date, a cable product name, and a cable length to the outer surface of the cable with ink, a thermal transfer laser, or the like. Further, information substantially similar to the printed information is engraved on the tag, for example. Then, the tag is attached to an outer cover of the cable, or is suspended from the cable using, for example, a metal wire.
[0004]
By the way, when printing is performed on the cable surface, the printing is performed along the longitudinal direction of the cable. Therefore, when the number of characters increases, it is necessary to expose the laid cable over a long section. However, if the cable is, for example, laid in a trough and the trough is covered, it is necessary to remove the cover over a long section, and if the trough is buried in earth and sand, It is necessary to remove earth and sand over a long section, and a large number of steps are required to expose the cable.
[0005]
Therefore, when performing the above-described printing, it is desirable to minimize the length of the printing along the longitudinal direction of the cable. However, if the length of the printing is limited in this manner, the total information necessary for the cable is required. However, there is a problem that it is difficult to print on the outer sheath of the cable.
[0006]
In addition, information on the cable, such as characters and symbols printed on the outer surface of the cable, may be unreadable due to elapse of a long period of time or, for example, rubbing at the time of cable installation or the like. There is a problem.
[0007]
Further, when the tags are provided on the cable, a large number of tags must be provided at regular intervals on the long cable, which takes a lot of man-hours when providing the tags, and, like the case of printing, It is difficult to write a lot of information on the tag.Furthermore, the tag provided on the cable is detached from the cable, or the information written on the tag is faded or disappears over time and becomes unreadable. There is a problem that may be.
[0008]
Therefore, a cable having a configuration in which, for example, a QR code (two-dimensional barcode) is attached to the surface of the cable outer cover instead of the above-described printing or tag on the outer surface of the cable is disclosed (for example, Patent Document 1). ).
[0009]
[Patent Document 1]
JP 2001-21730 A
[Problems to be solved by the invention]
By the way, according to the cable disclosed in Patent Document 1, since the information about the cable is QR-coded, it is necessary to store a large amount of information about the cable as compared with the case of using a print or a tag as described above. Can be.
[0011]
However, since the QR-coded information is provided on the surface of the cable, as in the case of printing as described above, the information may be blurred due to the elapse of a long period of time or rubbing when installing the cable, for example. There is a problem that it may be lost or disappear, or it may come off from the cable surface and become unreadable.
[0012]
The present invention has been made in view of the above problems, and it is possible to store a large amount of information on a cable than before, and it is difficult to determine the stored information even after a long time has elapsed after installation. An object of the present invention is to provide a cable which is less likely to be formed and a continuous body which can be easily installed on the cable.
[0013]
[Means for Solving the Problems]
The present invention according to claim 1, wherein a string-shaped holding member and a plurality of RFID elements held by the string-shaped holding member at intervals in the longitudinal direction of the string-shaped holding member. It is a long body.
[0014]
According to a second aspect of the present invention, in the continuous body according to the first aspect, the string-shaped holding member is configured by a tear string of a cable, and each of the RFID elements is connected to the continuous string. Is an elongated body fixed to an intermediate portion of the holding member using an adhesive.
[0015]
The present invention according to claim 3, wherein the cable core, the string-shaped holding member, and the plurality of RFID elements held by the string-shaped holding member at intervals in the longitudinal direction of the string-shaped holding member. And a continuous body provided integrally with the cable core, and a sheath covering the cable core and the continuous body.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a perspective view showing a schematic configuration of an elongated body 1 according to an embodiment of the present invention.
[0017]
The continuous elongated body 1 includes a string-shaped holding member 3, and a plurality of RFID (Radio Frequency Identification) elements 5 are arranged in the longitudinal direction of the string-shaped holding member 3 at regular intervals, for example. Is held by the holding member 3. The intervals between the RFID elements 5 may be constant values, or the values of the intervals between the RFID elements 5 may be different from each other.
[0018]
The string-shaped holding member 3 is formed of, for example, a tear string used for a cable, and each of the RFID elements 5 is attached to an intermediate portion of the continuous string-shaped holding member 3 by using an adhesive. Fixed. Note that a string other than the tear string, for example, a strong string made of FRP may be used as the string-shaped holding member 3.
[0019]
The information stored in the RFID element 5 can be read by an RFID reader using, for example, an electromagnetic wave as a medium. Further, an outer portion of each of the cylindrical RFID elements 5 is formed of a hard member (for example, glass or plastic) that allows electromagnetic waves to pass through, and the longitudinal direction of each of the cylindrical RFID elements 5 and the string-shaped holding member 3 Each of the column-shaped RFID elements 5 is provided so that the longitudinal direction thereof substantially coincides with the longitudinal direction.
[0020]
FIG. 2 is a diagram showing a schematic configuration of a continuous body manufacturing apparatus 7 for manufacturing the continuous body 1.
[0021]
The continuous body manufacturing apparatus 7 applies an adhesive 9 to the intermediate portion of the long elongated cord-shaped holding member 3 at a predetermined interval, and attaches one RFID element 5 to each portion where the adhesive is applied. This is an apparatus for disposing each RFID element 5 on the string-shaped holding member 3.
[0022]
Here, the continuous body manufacturing apparatus 7 includes a base 11, and on the upper side of the base 11, the first string-shaped holding member 3 before the RFID elements 5 are provided can be stored. The storage means 15 and the first storage means 15 are provided separately from each other, and the string-shaped holding member (the string-shaped storage means stored in the first storage means 15) after the RFID elements 5 are provided. A second storage means 17 capable of storing the string-shaped holding member 3 integrally continuous with the holding member is provided via a connecting member (not shown).
[0023]
The first storage means 15 and the second storage means 17 are formed of a drum capable of storing the cord-shaped holding member 3 by winding, and are substantially parallel to each other and extend in the horizontal direction. It is rotatable around each of the rotation shafts 15A and 17A. Then, in a state where the first storage means 15 and the second storage means 17 store the string-shaped holding member 3, the first storage means 15 and the second storage means 17 The string-like holding member 3 extends linearly in the horizontal direction. In this state, for example, when the second storage means 17 is rotated by an actuator (not shown), the string-like holding member 3 is wound up. It moves in the direction of arrow AR.
[0024]
The upper side of the base 11 and the upper side of the cord-shaped holding member 3 extending horizontally in the horizontal direction between the first storage means 15 and the second storage means 17 are provided. Adhesive applying means 19 for applying an adhesive to the cord-shaped holding member 3 is provided at intervals in the longitudinal direction of the cord-shaped holding member 3. The adhesive applying means 19 intermittently applies the adhesive 9 in accordance with a detected value of a moving amount detecting means (not shown) capable of measuring the moving amount of the cord-shaped holding member 3. is there. Then, the adhesive 9 is applied at intervals in the longitudinal direction of the string-shaped holding member 3.
[0025]
The upper side of the cord-shaped holding member 3 extending horizontally in the horizontal direction between the first storage means 15 and the second storage means 17, and the adhesive application means 19 and the second An RFID element storage means 13 capable of storing the RFID elements 5 is provided between the storage means 17 and the second storage means 17.
[0026]
Further, a supply port 13A for disposing each RFID element 5 stored in the RFID element storage means 13 on the string-shaped holding member 5 is provided at a lower side of the RFID element storage means 13, Further, between the RFID element storage means 13 and the supply port 13A, a supply means 21 capable of intermittently supplying the RFID elements 5 to the string-shaped holding member 3 via the supply port 13A is provided. Is provided.
[0027]
The supply unit 21 includes, in a passage 23 between the RFID element storage unit 13 and the supply port 13A, flat plate-shaped shutters 21A and 21B that extend in the horizontal direction and are movable in the horizontal direction. 21B is movable by an actuator provided in the shutter drive unit 21C.
[0028]
Further, a shutter 21B is provided above the shutter 21A, and only one RFID element 5 can be accommodated in the space of the passage 23 surrounded by the shutter 21A and the shutter 21B.
[0029]
Then, one RFID element 5A exists between the shutter 21A and the shutter 21B, that is, a large number of RFID elements 5 exist above the shutter 21B, and the shutter 21A and the shutter 21B When the shutter 21A releases the passage 23 while closing the passage 23 with the shutter 21B from the state in which the passage 23 is closed, the RFID element 5A is supplied to the cord-like holding member 3 through the supply port 13A, When the shutter 21A closes the passage 23 with the shutter 21A and the shutter 21B releases the passage 23, the RFID element 5B drops between the shutter 21A and the shutter 21B, and then closes the passage 23 with the shutter 21B. The state is similar to the state shown in FIG.
[0030]
Each of the shutters 21 </ b> A and 21 </ b> B can supply the RFID elements 5 to the string-shaped holding member 3 one by one by repeating the above operation.
[0031]
The supply unit 21 intermittently supplies the RFID element 5 according to a detection value of a movement amount detection unit (not shown) capable of measuring the movement amount of the string-shaped holding member 3. The RFID elements 5 can be supplied one by one to the application position of the adhesive 9 applied at intervals in the longitudinal direction of the RFID tag 3. Then, the RFID elements 5 are adhered one by one to the application position of the adhesive 9.
[0032]
Next, the cable 25 provided with the elongated body 1 will be described.
[0033]
FIG. 3 is a cross-sectional view illustrating a schematic configuration of the cable 25 provided with the elongated body 1.
[0034]
The sectional view (FIG. 3) is a sectional view when the cable 25 is cut along a plane perpendicular to the axial direction of the cable 25.
[0035]
The cable 25 has a cable core 27 inside, and the outside of the cable core 27 is covered with a sheath 29.
[0036]
The cable core 21 has a tension member 28 provided at the center thereof along the longitudinal direction of the cable 25, and a slot 31 having a circular cross section is formed around the tension member 28 so as to surround the tension member 28. 25 are provided long along the longitudinal direction.
[0037]
A plurality of grooves 33 </ b> A to 33 </ b> E are provided along the longitudinal direction of the cable 25 at positions substantially equiangularly distributed on the outer periphery of the slot 31. In each of the grooves 33A to 33E, for example, an appropriate number of four-core optical fiber tapes 35 are provided, and the slots 31 other than where the grooves 33A to 33E are provided are provided. An elongated body 1 is provided in contact with the outer peripheral wall. The elongated body 1 is vertically or horizontally wound on the outer peripheral wall of the slot 31.
[0038]
When the cable 25 is wound around a drum for storage, the grooves 33A to 33E and the continuous body 1 prevent the optical fiber tape 35 located only on the outside from extending. However, in order to extend almost equally, each of the grooves 33A to 33E does not go straight in parallel to the central axis CL extending in the longitudinal direction of the cable 25 (see FIG. 3). Rather than extending at a right angle), it extends slightly longitudinally. That is, they extend slightly obliquely with respect to the paper surface of FIG.
[0039]
The outer circumference of the slot 31 and the elongated body 1 are connected to the elongated body 1 and the slot 31 provided with the optical fiber tape 35 so as to cover the two. A holding roll 37 for holding down the fiber tape 35 is wound horizontally, and the continuous body 1 is provided integrally with the cable core 27. Further, the outside of the cable core 27 on which the presser winding 37 is wound is covered with a sheath 29 having an annular cross section in the longitudinal direction. The sheath 29 is made of, for example, polyethylene (PE), polyvinyl chloride (PVC), a non-halogen flame-retardant material, an eco-friendly material that does not generate toxic gas when burned, and is easily separated from vinyl. Have been.
[0040]
Next, the cable 39 will be described.
[0041]
FIG. 4 is a cross-sectional view illustrating a schematic configuration of the cable 39 provided with the elongated body 1.
[0042]
The sectional view (FIG. 4) is a sectional view when the cable 39 is cut along a plane perpendicular to the axial direction of the cable 39.
[0043]
The cable 39 includes a cable core 41 inside, and the outside of the cable core 41 is covered with a sheath 43.
[0044]
The cable core 41 is provided with a tension member 45 having a tensile member 44 provided in the center thereof along the longitudinal direction of the cable 39 and having a circular cross section perpendicular to the longitudinal direction. Only the plurality of optical fiber cords 47 having a circular cross section surround the tension member 45. Each of the optical fiber cords 47 is provided long along the longitudinal direction of the cable 39. In other words, in the cross-sectional view of the cable 39 shown in FIG. 4, each optical fiber cord 47 is in contact with the outer peripheral wall of the tension member 45, and each adjacent optical fiber cord 47 is in contact with each other.
[0045]
In order to fix each of the optical fiber cords 47 to the tension member 45, a presser winding 49 is wound so as to cover each of the optical fiber cords 47.
[0046]
Further, the continuous body 1 is disposed in contact with the outer wall of the horizontally wound presser winding 49 (the continuous body 1 is provided on the cable core 41 by vertically attaching or horizontally winding). A holding roll 51 is wound horizontally so as to integrate the cable core 41 with the holding roll 49 and cover both. The outside of the cable core 41 on which the presser winding 51 is wound is covered with a sheath 43 having a longitudinal section in an annular shape. The sheath 43 is made of, for example, polyethylene, polyvinyl chloride, a non-halogen flame retardant, or an eco-friendly material, similarly to the sheath 29.
[0047]
Each of the optical fiber cords 47 and the elongated body 1 is slightly twisted and extended in the longitudinal direction of the cable 39, as in the case of the cable 25.
[0048]
Next, the cable 53 will be described.
[0049]
FIG. 5 is a cross-sectional view illustrating a schematic configuration of the cable 53 provided with the elongated body 1.
[0050]
The cross-sectional view (FIG. 5) is a cross-sectional view when the cable 53 is cut along a plane perpendicular to the axial direction of the cable 53.
[0051]
The cable 53 is different from the cable 25 in that the continuous body 1 is provided in one of the grooves formed in the slot, and the other points are substantially the same as the cable 25. I have.
[0052]
That is, the cable 53 includes the cable core 55 inside, and the outside of the cable core 55 is covered with the sheath 57.
[0053]
The cable core 55 has a tension member 59 provided at the center thereof along the longitudinal direction of the cable 53, and a slot 61 having a circular cross section is formed around the tension member 59 so as to surround the tension member 59. Are provided long along the longitudinal direction.
[0054]
A plurality of grooves 63 </ b> A to 63 </ b> F are provided along the longitudinal direction of the cable 53 at positions distributed at substantially equal angles on the outer periphery of the slot 61. The continuous body 1 is provided in one of the grooves 63A to 63F along the longitudinal direction of the cable 53. In each of the other grooves 63A to 63E, for example, an appropriate number of four-core optical fiber tapes 65 are provided.
[0055]
Further, on the outer periphery of the slot 61 in which the elongated body 1 and the optical fiber tape 65 are provided, a holding roll 67 for holding down the elongated body 1 and the optical fiber tape 65 is wound horizontally.
[0056]
Thus, the elongated body 1 is provided integrally with the cable core 55.
[0057]
Each optical fiber tape 65 and the continuous body 1 are slightly twisted in the longitudinal direction of the cable 53 and extend in the same manner as in the case of the cable 25.
[0058]
The outside of the cable core 55 on which the presser winding 67 is wound is covered with a sheath 57 whose longitudinal section is annular. The sheath 57 is made of, for example, polyethylene (PE), polyvinyl chloride (PVC), a non-halogen flame retardant, does not generate toxic gas when burned, and is easily separated from vinyl, similarly to the cable 25. It is made of eco-friendly materials.
[0059]
Next, the cable 69 will be described.
[0060]
FIG. 6 is a cross-sectional view illustrating a schematic configuration of the cable 69 provided with the elongated body 1.
[0061]
The above sectional view (FIG. 6) is a sectional view when the cable 69 is cut along a plane perpendicular to the axial direction of the cable 69.
[0062]
The cable 69 is different from the cable 39 in that it surrounds the tension member using a continuous body and a plurality of optical fiber cords, and the other points are substantially the same as the cable 39.
[0063]
That is, the cable 69 includes a cable core 71 inside, and the cable core 71 is covered with the sheath 73.
[0064]
The cable core 71 includes a tension member 77 having a tensile member 75 provided in the center thereof along the longitudinal direction of the cable 69 and having a circular cross section perpendicular to the longitudinal direction. A plurality of optical fiber cords 79 having a circular cross section perpendicular to the longitudinal direction are provided along the longitudinal direction of the cable 69 so as to surround the tension member 77. In other words, in the cross-sectional view of the cable 69 shown in FIG. 6, each of the optical fiber cords 79 and the elongated body 1 (RFID 5) are in contact with the outer peripheral wall of the tension member 77, and each of the adjacent optical fiber cords 79 is connected to each other. At a position where the continuous body 1 is provided and the continuous body 1 is provided, the continuous body 1 (RFID5) and the optical fiber cord 79 adjacent to the continuous body 1 (RFID5) are in contact with each other.
[0065]
Further, in the cross-sectional view of FIG. 6, a portion of the outer circumference of the elongated body 1 that is farthest from the tension member 77 and a portion of each outer circumference of each optical fiber cord 79 that is farthest from the tension member 77. A presser winding 81 for holding down the continuous body 1 and the optical fiber cord 79 is wound horizontally along an envelope connecting the two.
[0066]
Thus, the elongated body 1 is provided integrally with the cable core 71.
[0067]
The optical fiber cord 79 and the elongated body 1 are slightly twisted in the longitudinal direction of the cable 69 and extend in the same manner as the cable 25.
[0068]
Further, the outside of the cable core 71 on which the presser winding 81 is wound is covered with a sheath 73 whose cross section in the longitudinal direction is annular. Note that the sheath 73 is made of, for example, polyethylene, polyvinyl chloride, a non-halogen flame retardant, or an eco-friendly material in substantially the same manner as the sheath 29 and the like.
[0069]
The cable 25 and the cable 39 are embodiments in which the outer shape of the elongated body 1 is sufficiently smaller than the outer shape of the cable core, and the outer shape of the elongated body 1 is sufficiently smaller than the outer shape of the cable core. If not, it is desirable to use an embodiment like the cable 53 or the cable 69.
[0070]
According to the elongated body 1, the plurality of RFID elements 5 are arranged and fixed at intervals in the longitudinal direction of the string-shaped holding member 3, and the elongated body 1 is formed integrally long. Therefore, the longitudinal direction of the elongated body 1 and the longitudinal direction of the cable are aligned with each other, and the elongated body 1 is easily integrated with the cable core of the cable. This facilitates the work of providing the gaps in the directions.
[0071]
Further, according to the elongated body 1, a tear string generally used for a cable can be used as a holding member. Therefore, it is necessary to manufacture a dedicated holding member for manufacturing the elongated body 1. Further, since the RFID elements 5 are fixed to the tear string with an adhesive, the production of the elongated body 1 is easy.
[0072]
According to the cable 25 provided with the elongated body 1, since the RFID element is employed as a storage medium for storing information on the cable 25, printing on the outer cover (outer peripheral surface of the sheath) of the cable 25 or the cable 25 is performed. By attaching the tag to the tag or hanging the tag, a larger amount of information can be stored than storing (displaying) the information on the cable 25, and the information on the RFID element 5 can be stored without exposing the outer sheath of the cable 25. The information stored in the RFID element 5 can be read and displayed by the RFID reader only by bringing the RFID reader capable of reading and displaying the information close to the cable 25. That is, information on the cable 25 can be easily read and displayed.
[0073]
Further, according to the cable 25 provided with the elongated body 1, the RFID element 5 is employed as a storage medium for storing information on the cable 25, and the RFID element 5 is covered with the sheath 29 of the cable 25. Therefore, it is possible to prevent the information about the cable 25 from being blurred or lost due to the elapse of a long period of time after the cable 25 is laid, the rubbing when the cable 25 is installed, or the like, and the information being unreadable. Further, since the RFID element 5 is covered with the sheath 29, even when an external force is applied to the cable 25 when the cable 25 is installed, for example, the external force is reduced by the sheath 29, and the RFID element 5 is damaged. It becomes difficult.
[0074]
Further, according to the cable 25 provided with the elongated body 1, the RFID element 5 is not embedded in the thick portion of the pipe-shaped sheath 29, and the sheath 29 is substantially uniform in the longitudinal direction. Therefore, even if the cable 25 is bent for installation or maintenance, for example, stress concentration hardly occurs in the thick portion of the sheath 29. Therefore, the sheath of the cable 25 is bent by the above-described installation or maintenance. 29 is less likely to be damaged.
[0075]
Further, if the RFID element 5 is installed in the thick part of the sheath 29, the RFID element 5 must be inserted into the constituent member of the sheath 29 in a state of being melted at a high temperature. Although the function of the RFID element 5 may be hindered by the high temperature, when the cable 25 covers the cable core 27 with the sheath 29, since the presser winding 37 is interposed therebetween, the RFID The element 5 is not directly exposed to the components of the sheath 29 in a high-temperature state, and therefore, there is little possibility that the function of the RFID element 5 is hindered when the sheath 29 is covered.
[0076]
When covering the cable core 27 with the sheath 29, the cable core 27 having a substantially circular cross section may be covered with the sheath 29 having a circular cross section, and it is necessary to provide the RFID element 5 in the thick portion of the sheath 29. , The coating can be easily performed.
[0077]
Further, according to the cable 25, since the respective RFID elements 5 are provided at predetermined intervals in the longitudinal direction of the elongated body 1, information on the cable 25 (for example, at an arbitrary position in the longitudinal direction of the cable 25). , A method for identifying the cable 25). And even if the cable 25 is laid in a trough and this trough is covered, and this trough is buried in the earth and sand, it is only necessary to remove a part of the earth and sand without removing the earth and sand over a long section. Thus, the information of the cable 25 can be read, and the number of steps for removing the earth and sand can be reduced.
[0078]
Note that the installation interval of each of the RFID elements 5 may be determined according to the distance at which the information stored in the RFID element 5 can be read by the RFID reader. For example, if the readable distance is 1 m and the interval between the RFID elements 5 is set to 1 m, the RFID is positioned within 0.87 m (1 m ÷ 2 × √3 ≒ 0.87 m) from the cable 25. When the reader is brought closer, the information stored in the RFID element 5 can be read by the RFID reader.
[0079]
Note that the information on the cable 25 stored in each of the RFID elements 5 may be stored in advance in each of the RFID elements 5 before the manufacture of the continuous body 1, or, for example, the continuous body shown in FIG. An RFID writer capable of writing information to the RFID element 5 is installed between the RFID element storage means 13 and the second storage means 17 of the manufacturing apparatus 7, or an RFID writer is provided near the passage 23 of the continuous body manufacturing apparatus 7. When a lighter is installed and the elongated body 1 is manufactured, information on the cable 25 may be written to each RFID element 5. Furthermore, after laying the cable 25, the information of each RFID element 5 may be rewritten using an RFID writer.
[0080]
According to each of the cables 39, 53, and 69 provided with the elongated body 1, a large amount of information about each of the cables 39, 53, and 69 can be stored, and information about each of the cables 39, 53, and 69 can be easily read and displayed. For example, the same effects as those provided by the cable 25 are provided.
[0081]
In addition, in each of the cables 39, 53, and 69, as in the case of the cable 25, each RFID element 5 is provided at a predetermined interval in the longitudinal direction of the continuous elongated body 1, so that each of the cables 39, 53, and 69 Information about each cable 39, 53, 69 can be obtained at any position in the longitudinal direction.
[0082]
The installation intervals of the RFID elements 5 may be determined in the same manner as the cable 25.
[0083]
Further, information on each of the cables 39, 53, and 69 stored in each of the RFID elements 5 can be written similarly to the case of the cable 25.
[0084]
Further, the cables 39, 53, and 69 may be metal cables instead of optical fiber cables, or cables in which optical fibers and metal wires are mixed.
[0085]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the information regarding a cable can be stored in a larger amount than before, and even if a long time passes after installation, there is little possibility that the stored information cannot be determined. This provides an effect that it is possible to provide a cable that is not easily damaged even when bent into a bent shape and a continuous body that can be easily installed on the cable.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a continuous body according to an embodiment of the present invention.
FIG. 2 is a view showing a schematic configuration of a continuous body manufacturing apparatus for manufacturing the continuous body.
FIG. 3 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 4 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 5 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
FIG. 6 is a cross-sectional view illustrating a schematic configuration of a cable provided with a continuous body.
[Explanation of symbols]
DESCRIPTION OF REFERENCE NUMERALS 1 Run-length body 3 String-shaped holding member 5 RFID element 9 Adhesive 25, 39, 53, 69 Cable 27, 41, 55, 71 Cable core 29, 43, 57, 73 Sheath

Claims (3)

紐状の保持部材と;
上記紐状の保持部材の長手方向に間隔をあけて、上記紐状の保持部材に保持された複数のRFID素子と;
を有することを特徴とする連長体。
A string-shaped holding member;
A plurality of RFID elements held by the string-shaped holding member at intervals in the longitudinal direction of the string-shaped holding member;
A prolonged body characterized by having:
請求項1に記載の連長体において、
上記紐状の保持部材は、ケーブルの引き裂き紐で構成され、上記各RFID素子は、連続している上記紐状の保持部材の中間部に、接着剤を用いて固定されていることを特徴とする連長体。
The elongate body according to claim 1,
The string-shaped holding member is configured by a tear cord of a cable, and each of the RFID elements is fixed to an intermediate portion of the continuous string-shaped holding member using an adhesive. A run-length body.
ケーブルコアと;
紐状の保持部材と、上記紐状の保持部材の長手方向に間隔をあけて、上記紐状の保持部材に保持された複数のRFID素子とを具備していると共に、上記ケーブルコアに一体化して設けられた連長体と;
上記ケーブルコアと上記連長体とを被覆しているシースと;
を有することを特徴とするケーブル。
A cable core;
A string-shaped holding member and a plurality of RFID elements held by the string-shaped holding member at intervals in the longitudinal direction of the string-shaped holding member, and integrated with the cable core. A prolonged body provided;
A sheath covering the cable core and the elongated body;
A cable comprising:
JP2003033738A 2003-02-12 2003-02-12 Connected long body and cable Pending JP2004265624A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003033738A JP2004265624A (en) 2003-02-12 2003-02-12 Connected long body and cable
TW093100706A TW200423154A (en) 2003-02-12 2004-01-12 Continuous long body and cable
PCT/JP2004/000768 WO2004072989A1 (en) 2003-02-12 2004-01-28 Continuous long body and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033738A JP2004265624A (en) 2003-02-12 2003-02-12 Connected long body and cable

Publications (1)

Publication Number Publication Date
JP2004265624A true JP2004265624A (en) 2004-09-24

Family

ID=32866243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033738A Pending JP2004265624A (en) 2003-02-12 2003-02-12 Connected long body and cable

Country Status (3)

Country Link
JP (1) JP2004265624A (en)
TW (1) TW200423154A (en)
WO (1) WO2004072989A1 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064772A1 (en) * 2007-11-13 2009-05-22 Southwire Company Traceable and theft deterrent reclaimable product
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9040825B2 (en) 2007-11-13 2015-05-26 Southwire Company, Llc Conductors and metal-covered cable with coded information and method of applying coded information
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9053841B2 (en) 2007-11-13 2015-06-09 Southwire Company, Llc Traceable and theft deterrent reclaimable product
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9818508B2 (en) 2007-11-13 2017-11-14 Southwire Company, Llc Traceable and theft deterrent reclaimable product
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10102461B2 (en) 2007-11-13 2018-10-16 Southwire Company, Llc Traceable and theft deterrent reclaimable product
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US20210110950A1 (en) * 2019-08-02 2021-04-15 Nexans Power cable equipped with an electronic device for radiofrequency identification
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197214B2 (en) 2004-05-24 2007-03-27 Corning Cable Systems Llc Methods and apparatus for facilitating cable locating
EP3772067A1 (en) * 2019-08-02 2021-02-03 Nexans Power cable provided with an electronic device for identification by radiofrequency

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0188908U (en) * 1987-12-04 1989-06-12
JPH0373903U (en) * 1989-11-22 1991-07-25
JPH0439483A (en) * 1990-06-04 1992-02-10 Kubota Corp Underground buried pipe
JPH10104476A (en) * 1996-09-27 1998-04-24 Furukawa Electric Co Ltd:The Optical fiber unit
JP3319506B2 (en) * 1998-06-12 2002-09-03 三菱マテリアル株式会社 RFID element for metal body and apparatus for identifying metal body using the same
JP4225654B2 (en) * 1999-09-30 2009-02-18 三菱マテリアル株式会社 Object embedded position detection method and apparatus
JP2002350695A (en) * 2001-05-29 2002-12-04 Showa Electric Wire & Cable Co Ltd Optical cable
JP2003004998A (en) * 2001-06-22 2003-01-08 Sumitomo Electric Ind Ltd Optical fiber unit
JP2003012020A (en) * 2001-06-28 2003-01-15 Toppan Printing Co Ltd Tying band with ic tag
JP4523740B2 (en) * 2001-07-23 2010-08-11 フジテコム株式会社 Method for editing and managing location information of underground objects and recording medium recording program therefor
JP4043761B2 (en) * 2001-11-08 2008-02-06 古河電気工業株式会社 Detecting elongate body and method for detecting pipeline information

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009064772A1 (en) * 2007-11-13 2009-05-22 Southwire Company Traceable and theft deterrent reclaimable product
EP2605224A1 (en) * 2007-11-13 2013-06-19 Southwire Company Traceable and theft deterrent reclaimable product
US9818508B2 (en) 2007-11-13 2017-11-14 Southwire Company, Llc Traceable and theft deterrent reclaimable product
US9887023B2 (en) 2007-11-13 2018-02-06 Southwire Company, Llc Traceable and theft deterrent reclaimable product
US8234304B2 (en) 2007-11-13 2012-07-31 Southwire Company Traceable and theft deterrent reclaimable product
US9040825B2 (en) 2007-11-13 2015-05-26 Southwire Company, Llc Conductors and metal-covered cable with coded information and method of applying coded information
US10102461B2 (en) 2007-11-13 2018-10-16 Southwire Company, Llc Traceable and theft deterrent reclaimable product
US9053841B2 (en) 2007-11-13 2015-06-09 Southwire Company, Llc Traceable and theft deterrent reclaimable product
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US9058529B2 (en) 2008-08-28 2015-06-16 Corning Optical Communications LLC RFID-based systems and methods for collecting telecommunications network information
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8333518B2 (en) 2010-05-06 2012-12-18 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US20210110950A1 (en) * 2019-08-02 2021-04-15 Nexans Power cable equipped with an electronic device for radiofrequency identification

Also Published As

Publication number Publication date
WO2004072989A1 (en) 2004-08-26
TW200423154A (en) 2004-11-01

Similar Documents

Publication Publication Date Title
JP2004265624A (en) Connected long body and cable
JP2004247090A (en) Lengthy body, manufacturing method of the same, and cable
JP2004264901A (en) Successively patterned body, its manufacturing method, and cable
JP2004245963A (en) Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body
JP2004245958A (en) Optical fiber cable and method and apparatus for manufacturing optical fiber cable
US8111163B2 (en) Methods for manufacturing and application of RFID built-in cable, and dedicated RFID reading systems
US20080204235A1 (en) Fiber optic cable with integral radio frequency identification system
KR100919509B1 (en) Cable tie with RFID tag
JP5263196B2 (en) Long body, long body manufacturing method, and long body reader
JP2010044359A (en) Optical cable and method of intermediate branching of the same
JP7354618B2 (en) print control device
JP4469622B2 (en) RFID continuous body and cable
JP2009288382A (en) Optical wiring member and method of wiring using optical wiring member
JP2006232449A (en) Paper pipe with ic tag
KR20000023391A (en) Optical cable and manufacturing method thereof
WO2004072988A1 (en) Rf id prolonged body and cable
US11561741B2 (en) Computer-readable medium, apparatus, printing apparatus and printing system
WO2004073129A1 (en) Rfid-equipped identification member and method of producing the same, and optical fiber cable using identification member
JP2004139535A (en) Information storing device and string length body equipped with the same
JP2004247134A (en) Rfid length body and cable
JP4698148B2 (en) Cable and RFID continuous body
JP3006601B1 (en) Optical cable
JP2005347137A (en) Cable with identification information, and method of applying identification information to cable
JP4323338B2 (en) cable
JP4522173B2 (en) Optical cable