JP2004265178A - Building life cycle assessment system - Google Patents

Building life cycle assessment system Download PDF

Info

Publication number
JP2004265178A
JP2004265178A JP2003055304A JP2003055304A JP2004265178A JP 2004265178 A JP2004265178 A JP 2004265178A JP 2003055304 A JP2003055304 A JP 2003055304A JP 2003055304 A JP2003055304 A JP 2003055304A JP 2004265178 A JP2004265178 A JP 2004265178A
Authority
JP
Japan
Prior art keywords
processing means
building
life cycle
input
environmental load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055304A
Other languages
Japanese (ja)
Inventor
Michiya Suzuki
道哉 鈴木
Toshihiro Otsuka
俊裕 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003055304A priority Critical patent/JP2004265178A/en
Publication of JP2004265178A publication Critical patent/JP2004265178A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable the reflection of sense of values of local residents, persons concerned and the like on a building and facilitate the interpretation of its influence evaluation. <P>SOLUTION: The system comprises inputting means 1 to 6 which input respective specification data of outline, construction, structure, facilities and execution/destruction of a building; member integration processing means 7, 11 which integrate the numbers of respective members based on the respective specification data input by the inputting means; physical amount calculation processing means 8, 12 which calculate the amounts of a plurality of environmental loads based on the numbers of the respective members integrated by the member integration processing means; a normalization processing means 9, 13 which normalize the amounts of the plurality of the environmental loads calculated by the physical amount calculation processing means; unification processing means 10, 14 which subject the respective amounts of the environmental loads normalized by the normalization processing means to weighing coefficient processing; and an outputting means which outputs the respective processing data by the respective processing means. The system consistently performs a series of calculations from inventory analysis from influence evaluation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建物のライフサイクルにわたるインベントリ分析を行い影響評価を行う建物ライフサイクルアセスメントシステムに関する。
【0002】
【従来の技術】
地球環境問題への関心が高まる中、二酸化炭素排出量(CO)の増加とその影響が懸念されている。我が国の二酸化炭素排出量のうち、建物ライフサイクル(部材の製造から施工、運用、維持、保全、解体)にわたる二酸化炭素排出量は、その3分の1を占める大きなものである。この建物のライフサイクルにわたる二酸化炭素排出量は、計画時点においてほぼ決定付けられる。
【0003】
ライフサイクルアセスメント(LCA:JIS−Q14040、14041、14042)では、二酸化炭素排出量や窒素酸化物排出量(NO)、硫黄酸化物排出量(SO)などインベントリ分析の結果を用いてそれらの影響評価(Life Cycle Impact Assessment:LCIA)を行うが、エネルギー資源、地球温暖化、生態系への影響などインパクトカテゴリが多岐にわたる場合、それらの総合的な評価を瞬時に行うこと(判断すること)は困難である。現在では、その解決のためさまざまなLCIA手法が提案されており(例えば、特許文献1〜3参照)、その中の一部には統合指標を用いて、ひとつの指標(Single Index)として結果を集約することにより、その結果の解釈を容易とするなどの提案もみられる。
【0004】
【特許文献1】
特開2001−125983号公報
【0005】
【特許文献2】
特開2002−259628号公報
【0006】
【特許文献3】
特開2002−297698号公報
【0007】
【発明が解決しようとする課題】
しかし、上記従来のものは、大きな割合の環境負荷物理量を持つ建物にライフサイクルアセスメントを適用したものではなく、建物に関しその地域住民や関係者などの価値感を反映できるものとしては考慮されていない。従来、建物のライフサイクルアセスメントとしては、手計算レベルで行おうとすると、算出・計算までに1週間も要するものであった。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、建物についてその地域住民や関係者などの価値感を反映でき、その影響評価の解釈が容易にできるようにするものである。
【0009】
そのために本発明は、建物のライフサイクルにわたるインベントリ分析を行い影響評価を行う建物ライフサイクルアセスメントシステムであって、建物の概要、建築、構造、設備、施工・解体の各仕様データを入力する入力手段と、前記入力手段より入力された各仕様データに基づき各部材の数量を積算する部材積算処理手段と、前記部材積算処理手段により積算された各部材の数量に基づき複数の環境負荷物理量を算出する物理量算出処理手段と、前記物理量算出処理手段により算出された複数の環境負荷物理量を正規化する正規化処理手段と、前記正規化処理手段により正規化された各環境負荷物理量に重み付け係数を処理して影響評価の指標を求める統合化処理手段と、前記各処理手段による各処理データを出力する出力手段とを備えたことを特徴とするものである。
【0010】
前記環境負荷物理量は、少なくともエネルギー消費量、二酸化炭素排出量、硫黄酸化物排出量、窒素酸化物排出量、化学的酸素要求量、廃棄物量を含み、前記正規化手段は、前記各環境負荷物理量につき国内全体で排出される総量を分母として正規化し、前記統合化処理手段は、合計を1として各インパクトカテゴリ毎に重み付け係数を割り当て、該重み付け係数を前記正規化した各環境負荷物理量に掛けて集計した値を前記影響評価の指標として求め、前記出力手段は、前記入力手段からの異なる仕様データの入力に対応して、それぞれの仕様データに基づく各処理データを比較して出力することを特徴とするものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係る建物ライフサイクルアセスメントシステムの実施の形態を示す図、図2は発生量テーブルの設定、登録内容の例を示す図、図3は重み付け係数テーブルの設定、登録内容の例を示す図である。図中、1は建物概要入力部、2は建築入力部、3は機械設備入力部、4は電気設備入力部、5は構造入力部、6は施工・解体入力部、7は部材積算処理部、8は環境負荷物理量算出処理部、9は正規化処理部、10は統合化処理部、11は部材積算テーブル、12は物理量算出テーブル、13は発生量テーブル、14は重み付け係数テーブル、15は出力部を示す。
【0012】
図1において、建物概要入力部1は、建物の建設地、用途、階数、敷地面積、建築面積、延べ床面積、施工床面積などに関する仕様データの入力、さらには、空調換気、照明・コンセント、給湯などの排出する環境負荷量(1次エネルギー消費量、CO排出量、SO排出量、NO排出量など)などに関する仕様データの入力を行うものである。
【0013】
建築入力部2は、建築の具体的な情報として、基準階床面積等(専用面積、共用面積、屋外階段、外廊下バルコニー、開口率、階高、専用部分室数)、外部仕上げ(屋根、外壁、サッシ、ガラス、外廊下バルコニー、屋外階段)、内部仕上げ(内装のグレード)、外構(舗装材料、舗装面積)、昇降機設備(エレベータ台数)、機械式駐車場設備(駐車方式、機械式駐車場駐車台数)などに関する仕様データの入力を行うものである。
【0014】
機械設備入力部3は、空調設備(熱源・蓄熱などの機器設備、配管設備、ダクト設備、換気設備、自動制御のグレード、排煙設備)や衛生設備(上水・雑用水の給水設備、給湯設備、屋内排水設備、屋外排水設備、衛生器具設備、消火設備、ガス設備、排水処理設備)などに関する仕様データの入力を行い、電気設備入力部4は、電気引き込み設備、受変電設備、自家発電設備その他の各種電気設備に関する仕様データの入力を行うものである。
【0015】
構造入力部5は、鉄筋コンクリート、型枠、鉄骨、耐火被覆などの仕様、数量などに関する仕様データの入力を行い、施工・解体入力部6は、基本情報、杭工事、山留め工事、土工事、架設工事、建設副産物処理、解体工事などに関する仕様データの入力を行うものである。
【0016】
部材積算処理部7は、上記建物概要や建築、設備などに関する仕様データの入力に基づき、部材積算テーブル11を参照して、コンクリート、鉄骨等それぞれの部材の数量を積算するものである。そのため部材積算テーブル11には、例えば各入力部(1〜6)から入力される各仕様データに基づき各部材の数量を算出するための式やパラメータが設定、登録されている。建築部材の数量積算では、例えば次のような略算式を用いて数量積算を行う。外部仕上げにおける陸屋根防水パラペット部長さを算定する場合には、平面形状係数と基準階専用面積と基準階共用面積に基づき次の[数1]を用い、
【0017】
【数1】

Figure 2004265178
【0018】
また、外部仕上げにおける窓面積を算定する場合には、上記の仕様データにさらに基準階高さ、基準階窓面積比、基準階階数を加えて次の[数2]を用いることができる。
【0019】
【数2】
Figure 2004265178
【0020】
環境負荷物理量算出処理部8は、部材積算処理部7で積算されたそれぞれの部材の数量に基づき、物理量算出テーブル12を参照して、一次エネルギー消費量、二酸化炭素排出量(CO)、窒素酸化物排出量(NO)、硫黄酸化物排出量(SO)、資源消費量、化学的酸素要求量(COD)、廃棄物量などの環境負荷物理量を算出するものである。そのため物理量算出テーブル12には、例えば各部材の単位数量当たりに対応するそれぞれの物理量が設定、登録されている。
【0021】
正規化処理部9は、算出された環境負荷物理量を、例えば日本国内の年間総発生量(総排出量)に基づき正規化するものであり、そのための参照データとして、発生量テーブル13には、各環境負荷物理量についての総発生量が設定、登録されている。つまり、日本国内の年間総発生量との相対的な比率により、どの程度の環境負荷物理量であるかが正規化された値として求められる。エネルギー、温暖化、酸性雨、大気汚染、資源(希少資源)、水質、廃棄物の各カテゴリーに対応する代表指標(一次エネルギー、CO、NO、SO、metals、COD、廃棄物量)、日本全体で年間に排出される環境負荷として発生量テーブル13に設定、登録されるそれらの総排出量の例を示したのが図2である。
【0022】
建物ライフサイクルアセスメントにおいて、それぞれ環境負荷物理量を日本国内の年間総発生量との相対的な比率の正規化された値により評価し、ある環境負荷物理量についてその数値を低減しようとして設計変更を試みたとき、その結果として他の環境負荷物理量の数値にも影響して増減として現れる。このような、設計変更に対して総合的な評価(影響評価LCIA:Life Cycle Impact Assessment)を行うため、それぞれの環境負荷物理量に対し重み付け係数を用いて1つの指標(Single Index)として、例えば次の[数3]により集約するのが統合化処理部10である。
【0023】
【数3】
Figure 2004265178
【0024】
重み付け係数テーブル14は、その重み付け係数が設定、登録され、その設定、登録内容の例を示したのが図3である。この重み係数は、合計が1になるそれぞれが1未満の値であり、建築物が特定の場所に固定されることから、例えば建物ライフサイクルアセスメントを行おうとする対象建物に関係する居住者、周囲・地域住民、関係者などの価値感を反映した重み付け係数を用いることにより、1つの指標として結果を集約することができる。図3に示す重み付け係数は、地球温暖化、オゾン層破壊、大気汚染に高い係数が設定され、鉱物資源、土地利用、富栄養化に比較的に低い係数が設定されている例を示している。
【0025】
出力部15は、建物概要入力部1、建築入力部2、機械設備入力部3、電気設備入力部4、構造入力部5、施工・解体入力部6からなる各入力部から各仕様データを入力するための入力画面、入力された各仕様データを表示したり、部材積算処理部7、環境負荷物理量算出処理部8、正規化処理部9、統合化処理部10からなる各処理部による各処理データを表示したり、印刷したりするものであり、また、異なる仕様データの入力に対応して、それぞれの仕様データに基づく各処理データを比較して出力する。
【0026】
さらに上記実施形態に係る建物ライフサイクルアセスメントシステムの評価の流れについて説明する。図4は建物ライフサイクルアセスメントの概要を説明するための図、図5は統合指標を求めるライフサイクルアセスメントによる評価の流れを説明するための図、図6はライフサイクルCOの比較出力画面の例を示す図である。
【0027】
上記実施形態に係る建物ライフサイクルアセスメントシステムは、図4に示すようにまず、建物の概要、建築仕様、機械設備、電機設備、構造、施工・解体に分けて情報の入力を行うことにより、LCIとして、これらの情報を基に建物の各部材の量を算出して積算(部材積算)し、この部材積算を行った後、原単位を基に、一次エネルギー消費量、二酸化炭素排出量(CO)、窒素酸化物排出量(NO)、硫黄酸化物排出量(SO)、資源消費量、化学的酸素要求量(COD)、廃棄物量などの環境負荷物理量を算出する。続いて、LCIAとして、環境負荷物理量からそれぞれを全体の中(総量)でどの程度の量かを特性化/正規化し、さらにそれぞれに重み付け係数をかけて統合化して、それぞれの処理データを出力することにより、客観性のある1つの指標として結果を集約し解釈を容易にしている。
【0028】
統合指標を求めるライフサイクルアセスメントによる評価の流れは、例えば図5に示すようなものであり、地球温暖化のインパクトカテゴリでは、負荷物質として二酸化炭素排出量(CO)を地球温暖化係数(GWP)で特性化してその日本の総排出量で正規化し、また、酸性化のインパクトカテゴリでは、負荷物質として硫黄酸化物排出量(SO)を酸性化係数で特性化してその日本の総排出量で正規化し、同様に、オゾン層破壊のインパクトカテゴリでは、オゾン層破壊係数(ODP)で特性化する。そして、重み係数として、アンケートなどで価値観を反映した数値を使って1つの統合指標(Single Index)を求める。
【0029】
上記のように本実施形態に係る建物ライフサイクルアセスメントシステムでは、建物の概要、建築、構造、設備、施工・解体の各仕様データを入力することにより、その建物で使用される各部材、排出される部材の数量を積算して、それらの部材の数量に基づき各種の環境負荷物理量を算出し、さらに正規化し、統合化して、それらの各処理データを出力するので、影響評価において、その建物の周辺・地域住民、関係者などの価値観を反映した重み付け係数を結果に反映できる。また、1つの指標として結果を集約できるため、解釈が容易になる。本実施形態に係る建物ライフサイクルアセスメントシステムでは、設計に基づく各仕様データを入力し、さらに設計変更に基づく各仕様データを入力して、例えば図6に示すようにそれら各処理データを比較して出力することができるので、指標のより小さい建物を設計するための建物の設計支援として活用することができる。
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、環境負荷物理量として、一次エネルギー消費量、二酸化炭素排出量(CO)、窒素酸化物排出量(NO)、硫黄酸化物排出量(SO)、資源消費量、化学的酸素要求量(COD)、廃棄物量を算出するものとして説明したが、併せてライフサイクルにわたるコストを把握し、評価できるようにしてもよい。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明によれば、建物の概要、建築、構造、設備、施工・解体の各仕様データを入力する入力手段と、入力手段より入力された各仕様データに基づき各部材の数量を積算する部材積算処理手段と、部材積算処理手段により積算された各部材の数量に基づき複数の環境負荷物理量を算出する物理量算出処理手段と、物理量算出処理手段により算出された複数の環境負荷物理量を正規化する正規化処理手段と、正規化処理手段により正規化された各環境負荷物理量に重み付け係数を処理して影響評価の指標を求める統合化処理手段と、各処理手段による各処理データを出力する出力手段とを備えたので、インベントリ分析から影響評価にいたる一連の計算を一貫して行うことができる。しかも、重み付け係数により地域住民や関係者などの価値感を反映でき、影響評価において、1つの指標として結果を集約できるため、その影響評価の解釈が容易にできる。
【図面の簡単な説明】
【図1】本発明に係る建物ライフサイクルアセスメントシステムの実施の形態を示す図である。
【図2】発生量テーブルの設定、登録内容の例を示す図である。
【図3】重み付け係数テーブルの設定、登録内容の例を示す図である。
【図4】建物ライフサイクルアセスメントの概要を説明するための図である。
【図5】統合指標を求めるライフサイクルアセスメントによる評価の流れを説明するための図である。
【図6】ライフサイクルCOの比較出力画面の例を示す図である。
【符号の説明】
1…建物概要入力部、2…建築入力部、3…機械設備入力部、4…電気設備入力部、5…構造入力部、6…施工・解体入力部、7…部材積算処理部、8…環境負荷物理量算出処理部、9…正規化処理部、10…統合化処理部、11…部材積算テーブル、12…物理量算出テーブル、13…発生量テーブル、14…重み付け係数テーブル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a building life cycle assessment system that performs inventory analysis over the life cycle of a building and performs an impact assessment.
[0002]
[Prior art]
Amid increasing interest in global environmental issues, there is a concern about an increase in carbon dioxide emissions (CO 2 ) and its effects. Of the carbon dioxide emissions in Japan, the carbon dioxide emissions over the building life cycle (manufacturing of components, construction, operation, maintenance, preservation, and demolition) account for one-third. The carbon dioxide emissions over the life cycle of this building are largely determined at the time of planning.
[0003]
Life Cycle Assessment (LCA: JIS-Q14040,14041,14042) in carbon dioxide emissions and nitrogen oxide emissions (NO x), sulfur oxides emissions (SO x) thereof using the results of the inventory analysis such as Life cycle impact assessment (LCIA) is performed. When impact categories such as energy resources, global warming, and effects on ecosystems are diverse, comprehensive evaluation of them should be performed instantaneously (judgment). It is difficult. At present, various LCIA methods have been proposed to solve the problem (see, for example, Patent Documents 1 to 3). Among them, an integrated index is used in part, and the result is obtained as one index (Single Index). There are also proposals such as making the interpretation of the results easier by consolidating.
[0004]
[Patent Document 1]
JP 2001125983 A
[Patent Document 2]
JP 2002-259628 A
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-297798
[Problems to be solved by the invention]
However, the above-mentioned conventional one does not apply a life cycle assessment to a building having a large percentage of environmental load physical quantity, and is not considered as being able to reflect the sense of value of the local residents and stakeholders regarding the building. . Conventionally, as for the life cycle assessment of a building, if it is attempted to perform it at the manual calculation level, it takes one week for calculation and calculation.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to be able to reflect the sense of value of a building, such as local residents and stakeholders, and to facilitate interpretation of the impact evaluation.
[0009]
For this purpose, the present invention is a building life cycle assessment system that performs an inventory analysis over the life cycle of a building and performs an impact assessment, and an input means for inputting each specification data of a building outline, a building, a structure, equipment, construction and demolition. Member integration processing means for integrating the number of each member based on each specification data input from the input means; and calculating a plurality of environmental load physical quantities based on the number of each member integrated by the member integration processing means. Physical quantity calculation processing means, normalization processing means for normalizing a plurality of environmental load physical quantities calculated by the physical quantity calculation processing means, and a weighting factor for each environmental load physical quantity normalized by the normalization processing means. Integrated processing means for obtaining an index of the impact evaluation, and output means for outputting each processing data by each processing means. It is characterized in.
[0010]
The environmental load physical quantity includes at least energy consumption, carbon dioxide emission, sulfur oxide emission, nitrogen oxide emission, chemical oxygen demand, waste quantity, and the normalizing means, each of the environmental load physical quantities The integrated processing means assigns a weighting coefficient to each impact category with the total being 1, and multiplies the weighting coefficient by the normalized environmental load physical quantity. The summed value is obtained as an index of the impact evaluation, and the output unit compares and outputs each processing data based on the respective specification data in response to input of different specification data from the input unit. It is to be.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a building life cycle assessment system according to the present invention, FIG. 2 is a diagram showing an example of setting and registration contents of an occurrence amount table, and FIG. 3 is an example of setting and registration contents of a weighting coefficient table. FIG. In the figure, 1 is a building outline input section, 2 is a building input section, 3 is a mechanical equipment input section, 4 is an electrical equipment input section, 5 is a structure input section, 6 is a construction / demolition input section, and 7 is a member integration processing section. , 8 is an environmental load physical quantity calculation processing section, 9 is a normalization processing section, 10 is an integrated processing section, 11 is a member integration table, 12 is a physical quantity calculation table, 13 is an occurrence quantity table, 14 is a weighting coefficient table, and 15 is The output part is shown.
[0012]
In FIG. 1, a building outline input unit 1 is used for inputting specification data relating to a building construction site, a use, the number of floors, a site area, a building area, a total floor area, a construction floor area, and the like. This is for inputting specification data relating to the environmental load (e.g., primary energy consumption, CO 2 emission, SO 2 emission, NO 2 emission, etc.) emitted from hot water supply.
[0013]
The building input unit 2 includes, as specific information on the building, reference floor area, etc. (dedicated area, common area, outdoor stairs, exterior corridor balcony, opening ratio, floor height, number of dedicated partial rooms), external finishing (roof, Exterior wall, sash, glass, exterior corridor balcony, outdoor stairs, interior finish (interior grade), exterior (paving material, paving area), elevator equipment (number of elevators), mechanical parking facilities (parking method, mechanical type) The specification data relating to the number of parking lots (parking lots) is input.
[0014]
The mechanical equipment input unit 3 includes air-conditioning equipment (equipment equipment such as heat source and heat storage, piping equipment, duct equipment, ventilation equipment, automatic control grade, smoke exhaust equipment) and sanitary equipment (water supply / miscellaneous water supply equipment, hot water supply) Equipment, indoor drainage equipment, outdoor drainage equipment, sanitary fixture equipment, fire extinguishing equipment, gas equipment, wastewater treatment equipment), etc., and input the specification data. It is used to input specification data relating to equipment and various other electrical equipment.
[0015]
The structure input unit 5 inputs specification data relating to specifications and quantities of reinforced concrete, formwork, steel frames, fire-resistant coatings, etc., and the construction / demolition input unit 6 performs basic information, pile work, earth retaining work, earth work, and erection. It is used to input specification data relating to construction, construction by-product processing, demolition work, and the like.
[0016]
The member summation processing section 7 sums up the numbers of members such as concrete and steel frames based on the input of the specification data on the outline of the building, the architecture, the facilities, and the like, with reference to the member summation table 11. Therefore, in the member integration table 11, for example, formulas and parameters for calculating the quantity of each member based on each specification data input from each input unit (1 to 6) are set and registered. In the quantity integration of building members, the quantity integration is performed using, for example, the following approximate formula. When calculating the length of the waterproof roof parapet part for external finishing, use the following [Equation 1] based on the plane shape factor, the standard floor exclusive area and the standard floor common area,
[0017]
(Equation 1)
Figure 2004265178
[0018]
When calculating the window area in the external finishing, the following [Equation 2] can be used by further adding a reference floor height, a reference floor window area ratio, and a reference floor number to the above specification data.
[0019]
(Equation 2)
Figure 2004265178
[0020]
The environmental load physical quantity calculation processing unit 8 refers to the physical quantity calculation table 12 based on the quantity of each component integrated by the component integration processing unit 7 and refers to the primary energy consumption, carbon dioxide emission (CO 2 ), nitrogen It calculates environmental load physical quantities such as oxide emission (NO x ), sulfur oxide emission (SO x ), resource consumption, chemical oxygen demand (COD), and waste. Therefore, in the physical quantity calculation table 12, for example, respective physical quantities corresponding to the unit quantity of each member are set and registered.
[0021]
The normalization processing unit 9 normalizes the calculated environmental load physical quantity based on, for example, the annual total generation amount (total emission amount) in Japan. As the reference data therefor, the generation amount table 13 includes: The total generated amount for each environmental load physical quantity is set and registered. That is, based on the relative ratio to the annual total generation amount in Japan, the amount of the environmental load physical amount is obtained as a normalized value. Representative indexes (primary energy, CO 2 , NO x , SO x , metals, COD, waste amount) corresponding to each category of energy, warming, acid rain, air pollution, resources (rare resources), water quality, and waste FIG. 2 shows an example of the total emission amount set and registered in the generation amount table 13 as the environmental load emitted annually in Japan as a whole.
[0022]
In the building life cycle assessment, each of the environmental load physical quantities was evaluated by the normalized value of the relative ratio to the annual total amount generated in Japan, and a design change was attempted to reduce the numerical value for a certain environmental load physical quantity. Sometimes, as a result, it also affects other numerical values of environmental load physical quantities and appears as an increase or decrease. In order to perform a comprehensive evaluation (Influence Evaluation LCIA: Life Cycle Impact Assessment) on such a design change, a weighting coefficient is used for each environmental load physical quantity as one index (Single Index). The integration processing unit 10 collects the data according to [Equation 3].
[0023]
[Equation 3]
Figure 2004265178
[0024]
The weighting coefficient table 14 sets and registers the weighting coefficient, and FIG. 3 shows an example of the setting and registration contents. This weighting factor is a value that is less than 1 in each case where the sum is 1, and since the building is fixed to a specific place, for example, the occupants and surroundings related to the target building for which the building life cycle assessment is to be performed. -The results can be aggregated as one index by using a weighting coefficient that reflects the sense of value of the local residents and stakeholders. The weighting coefficients shown in FIG. 3 are examples in which high coefficients are set for global warming, ozone depletion, and air pollution, and relatively low coefficients are set for mineral resources, land use, and eutrophication. .
[0025]
The output unit 15 inputs each specification data from each input unit including the building outline input unit 1, the building input unit 2, the mechanical equipment input unit 3, the electric equipment input unit 4, the structure input unit 5, and the construction / demolition input unit 6. Input screen for displaying the input specification data, and processing by each processing unit including a member integration processing unit 7, an environmental load physical quantity calculation processing unit 8, a normalization processing unit 9, and an integrated processing unit 10. It displays and prints data, and, in response to input of different specification data, compares and outputs processing data based on each specification data.
[0026]
Further, a flow of evaluation of the building life cycle assessment system according to the above embodiment will be described. FIG. 4 is a diagram for explaining an outline of a building life cycle assessment, FIG. 5 is a diagram for explaining a flow of evaluation by life cycle assessment for obtaining an integrated index, and FIG. 6 is an example of a life cycle CO 2 comparison output screen. FIG.
[0027]
As shown in FIG. 4, the building life cycle assessment system according to the above-described embodiment firstly inputs information into the outline of the building, building specifications, mechanical equipment, electrical equipment, structure, construction / demolition, and performs LCI. Based on this information, the amount of each member of the building is calculated and integrated (member integration). After the member integration is performed, the primary energy consumption and the carbon dioxide emission (CO 2 ) Calculate environmental load physical quantities such as nitrogen oxide emission (NO x ), sulfur oxide emission (SO x ), resource consumption, chemical oxygen demand (COD), and waste. Subsequently, as the LCIA, the amount of each of the environmental load physical quantities in the whole (total amount) is characterized / normalized, further integrated by applying a weighting factor to each, and the respective processed data is output. As a result, the results are aggregated as one objective index and the interpretation is facilitated.
[0028]
The flow of the evaluation by the life cycle assessment for obtaining the integrated index is, for example, as shown in FIG. 5. In the impact category of global warming, the carbon dioxide emission (CO 2 ) as a load substance is calculated using the global warming potential (GWP). ) And normalized by its total emissions in Japan. In the impact category of acidification, sulfur oxide emissions (SO x ) as a load substance are characterized by acidification factors and their total emissions Similarly, the ozone depletion impact category is characterized by the ozone depletion potential (ODP). Then, one integrated index (Single Index) is obtained by using a numerical value that reflects values in a questionnaire or the like as a weighting factor.
[0029]
As described above, in the building life cycle assessment system according to the present embodiment, by inputting each specification data of the outline of the building, architecture, structure, equipment, construction and demolition, each member used in the building, emissions The physical quantities of various environmental impacts are calculated based on the quantities of the components, and are normalized, integrated, and output their respective processed data. Weighting factors that reflect the values of surrounding and local residents, stakeholders, etc. can be reflected in the results. In addition, since the results can be aggregated as one index, the interpretation is easy. In the building life cycle assessment system according to the present embodiment, each specification data based on the design is input, and further each specification data based on the design change is input. For example, as shown in FIG. Since it can be output, it can be used as building design support for designing a building with a smaller index.
Note that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the primary energy consumption, the carbon dioxide emission (CO 2 ), the nitrogen oxide emission (NO x ), the sulfur oxide emission (SO x ), the resource consumption, Although the description has been made on the assumption that the chemical oxygen demand (COD) and the waste amount are calculated, the cost over the life cycle may be grasped and evaluated.
[0030]
【The invention's effect】
As is apparent from the above description, according to the present invention, based on the input means for inputting the specification data of the outline of the building, the architecture, the structure, the facilities, and the construction and demolition, and based on the specification data input from the input means, Member integration processing means for integrating the quantity of each member, physical quantity calculation processing means for calculating a plurality of environmental load physical quantities based on the quantity of each member integrated by the component integration processing means, and a plurality of physical quantities calculated by the physical quantity calculation processing means Normalization processing means for normalizing the environmental load physical quantity, integrated processing means for processing a weighting coefficient for each environmental load physical quantity normalized by the normalization processing means to obtain an index of impact evaluation, Since output means for outputting each processing data is provided, a series of calculations from inventory analysis to impact evaluation can be performed consistently. In addition, the weighting factors can reflect the sense of value of local residents and related parties, and the results can be aggregated as one index in the impact assessment, so that the impact assessment can be easily interpreted.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a building life cycle assessment system according to the present invention.
FIG. 2 is a diagram showing an example of setting and registration contents of an occurrence amount table.
FIG. 3 is a diagram showing an example of setting and registration contents of a weighting coefficient table.
FIG. 4 is a diagram for explaining an outline of a building life cycle assessment.
FIG. 5 is a diagram illustrating a flow of evaluation by life cycle assessment for obtaining an integrated index.
FIG. 6 is a diagram illustrating an example of a life cycle CO 2 comparison output screen.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Building outline input part, 2 ... Construction input part, 3 ... Mechanical equipment input part, 4 ... Electrical equipment input part, 5 ... Structure input part, 6 ... Construction / demolition input part, 7 ... Member integration processing part, 8 ... Environmental load physical quantity calculation processing section, 9: normalization processing section, 10: integrated processing section, 11: member integration table, 12: physical quantity calculation table, 13: generation amount table, 14: weighting coefficient table

Claims (5)

建物のライフサイクルにわたるインベントリ分析を行い影響評価を行う建物ライフサイクルアセスメントシステムであって、
建物の概要、建築、構造、設備、施工・解体の各仕様データを入力する入力手段と、
前記入力手段より入力された各仕様データに基づき各部材の数量を積算する部材積算処理手段と、
前記部材積算処理手段により積算された各部材の数量に基づき複数の環境負荷物理量を算出する物理量算出処理手段と、
前記物理量算出処理手段により算出された複数の環境負荷物理量を正規化する正規化処理手段と、
前記正規化処理手段により正規化された各環境負荷物理量に重み付け係数を処理して影響評価の指標を求める統合化処理手段と、
前記各処理手段による各処理データを出力する出力手段と
を備えたことを特徴とする建物ライフサイクルアセスメントシステム。
A building life cycle assessment system that performs inventory analysis and impact assessment over the building life cycle,
An input means for inputting specification data of a building outline, architecture, structure, equipment, construction and demolition,
Member integration processing means for integrating the quantity of each member based on each specification data input from the input means,
Physical quantity calculation processing means for calculating a plurality of environmental load physical quantities based on the number of each member integrated by the member integration processing means,
Normalization processing means for normalizing a plurality of environmental load physical quantities calculated by the physical quantity calculation processing means,
Integrated processing means for processing a weighting coefficient for each environmental load physical quantity normalized by the normalization processing means to obtain an index of impact evaluation,
Output means for outputting each processing data by each of the processing means.
前記環境負荷物理量は、少なくともエネルギー消費量、二酸化炭素排出量、硫黄酸化物排出量、窒素酸化物排出量、化学的酸素要求量、廃棄物量を含むことを特徴とする請求項1記載の建物ライフサイクルアセスメントシステム。2. The building life according to claim 1, wherein the environmental load physical quantities include at least energy consumption, carbon dioxide emission, sulfur oxide emission, nitrogen oxide emission, chemical oxygen demand, and waste. Cycle assessment system. 前記正規化手段は、前記各環境負荷物理量につき国内全体で排出される総量を分母として正規化することを特徴とする請求項1又は2記載の建物ライフサイクルアセスメントシステム。3. The building life cycle assessment system according to claim 1, wherein the normalizing unit normalizes a total amount of the respective environmental load physical quantities discharged in Japan as a denominator. 4. 前記統合化処理手段は、合計を1として各インパクトカテゴリ毎に重み付け係数を割り当て、該重み付け係数を前記正規化した各環境負荷物理量に掛けて集計した値を前記影響評価の指標として求めることを特徴とする請求項1乃至3のいずれかに記載の建物ライフサイクルアセスメントシステム。The integrated processing means assigns a weighting coefficient to each impact category with the total being 1, multiplies the weighting coefficient by each of the normalized environmental load physical quantities, and obtains a totaled value as an index of the impact evaluation. The building life cycle assessment system according to any one of claims 1 to 3. 前記出力手段は、前記入力手段からの異なる仕様データの入力に対応して、それぞれの仕様データに基づく各処理データを比較して出力することを特徴とする請求項1乃至3のいずれかに記載の建物ライフサイクルアセスメントシステム。4. The apparatus according to claim 1, wherein the output unit compares and outputs each processing data based on each specification data in response to input of different specification data from the input unit. Building life cycle assessment system.
JP2003055304A 2003-03-03 2003-03-03 Building life cycle assessment system Pending JP2004265178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055304A JP2004265178A (en) 2003-03-03 2003-03-03 Building life cycle assessment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055304A JP2004265178A (en) 2003-03-03 2003-03-03 Building life cycle assessment system

Publications (1)

Publication Number Publication Date
JP2004265178A true JP2004265178A (en) 2004-09-24

Family

ID=33119353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055304A Pending JP2004265178A (en) 2003-03-03 2003-03-03 Building life cycle assessment system

Country Status (1)

Country Link
JP (1) JP2004265178A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009738A (en) * 2006-06-29 2008-01-17 Toshiba Corp Environmental impact assessment system and program
JP2010286941A (en) * 2009-06-10 2010-12-24 Taisei Corp Environmental performance evaluation system and environmental performance index calculation program
JP2011242853A (en) * 2010-05-14 2011-12-01 Nichiha Corp Timber simulation system
JP2012032861A (en) * 2010-07-28 2012-02-16 Taisei Corp Apparatus and program for estimating amount of carbon dioxide emission
US20130090972A1 (en) * 2011-01-17 2013-04-11 Sung Woo Shin System for assessing an environmental load of building during life cycle
JP2013518201A (en) * 2010-01-29 2013-05-20 スキッドモア オーウィングス アンド メリル リミテッド ライアビリティ パートナーシップ Emission estimation device
JP2015041117A (en) * 2013-08-20 2015-03-02 トヨタホーム株式会社 Environmental load calculation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009738A (en) * 2006-06-29 2008-01-17 Toshiba Corp Environmental impact assessment system and program
JP2010286941A (en) * 2009-06-10 2010-12-24 Taisei Corp Environmental performance evaluation system and environmental performance index calculation program
JP2013518201A (en) * 2010-01-29 2013-05-20 スキッドモア オーウィングス アンド メリル リミテッド ライアビリティ パートナーシップ Emission estimation device
JP2011242853A (en) * 2010-05-14 2011-12-01 Nichiha Corp Timber simulation system
JP2012032861A (en) * 2010-07-28 2012-02-16 Taisei Corp Apparatus and program for estimating amount of carbon dioxide emission
US20130090972A1 (en) * 2011-01-17 2013-04-11 Sung Woo Shin System for assessing an environmental load of building during life cycle
US8645183B2 (en) * 2011-01-17 2014-02-04 Industry—University Cooperation Foundation Hanyang University Erica Campus System for assessing an environmental load of building during life cycle
JP2015041117A (en) * 2013-08-20 2015-03-02 トヨタホーム株式会社 Environmental load calculation system

Similar Documents

Publication Publication Date Title
Marzouk et al. BIM-based approach for optimizing life cycle costs of sustainable buildings
Charette et al. UNIFORMAT II elemental classification for building specifications, cost estimating, and cost analysis
Merritt Building design and construction handbook
Merritt Building engineering and systems design
Chhabra et al. Probabilistic assessment of the life-cycle environmental performance and functional life of buildings due to seismic events
Gardezi et al. A multivariable regression tool for embodied carbon footprint prediction in housing habitat
Kumanayake et al. Life cycle carbon emission assessment of a multi-purpose university building: A case study of Sri Lanka
Simonen et al. Embodied carbon as a proxy for the environmental impact of earthquake damage repair
Gambatese et al. Green design & construction understanding the effects on construction worker safety and health
JP2004265178A (en) Building life cycle assessment system
Mohseni Deterioration prediction of community buildings in Australia
Marjaba et al. Sustainability framework for buildings via data analytics
Cole et al. GBTool user manual
Dowdell et al. New Zealand whole-building whole-of-life framework: An overview
Mehdizadeh et al. Sustainability rating systems
Balasbaneh et al. Life Cycle sustainability assessment study of conventional and prefabricated construction methods: MADM analysis
Radziejowska The assessment of the social performance of residential buildings
Azari Embodied decarbonization in North America: A paradigm shift
Krídlová Burdová et al. Prioritization of Sustainability Dimensions and Indicators for Office Buildings
Altaf Integrating occupational indoor air quality with building information modeling (BIM)
Ansah et al. Optimising the material emissions of single-dwelling residential buildings using the dynamic life cycle iteration protocols
Guerra Castrejón A probabilistic approach for estimating environmental impacts over the life cycle of buildings
Azari IN NORTH AMERICA
French Comparative study of modular construction methodologies within residential and commercial applications
Elmokadem et al. Quantifying CO2 Emissions Released from the Materialization Stage of a Traditional Building in Egypt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080702