JP2004263765A - Dynamic damper - Google Patents

Dynamic damper Download PDF

Info

Publication number
JP2004263765A
JP2004263765A JP2003053867A JP2003053867A JP2004263765A JP 2004263765 A JP2004263765 A JP 2004263765A JP 2003053867 A JP2003053867 A JP 2003053867A JP 2003053867 A JP2003053867 A JP 2003053867A JP 2004263765 A JP2004263765 A JP 2004263765A
Authority
JP
Japan
Prior art keywords
metal fitting
mass metal
mass
rubber elastic
dynamic damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003053867A
Other languages
Japanese (ja)
Other versions
JP4029338B2 (en
Inventor
Takashi Hayashi
貴志 林
Satoshi Umemura
聡 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2003053867A priority Critical patent/JP4029338B2/en
Publication of JP2004263765A publication Critical patent/JP2004263765A/en
Application granted granted Critical
Publication of JP4029338B2 publication Critical patent/JP4029338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic damper capable of reducing the cost without the need for rust prevention of a mass metal fitting. <P>SOLUTION: There are comprised of a pair of annular rubber elastic supports 1 and 1 which are axially attached to the outer perimeter of a rotating shaft at a distance, a cylindrical mass metal fitting 2 coaxially arranged outside the rotating shaft by supporting both shaft ends at a pair of the rubber elastic supports 1 and 1 at a distance, and a rubber coated layer 3 to coat the surface of the mass metal fitting 2 integrally formed with the rubber elastic supports 1 and 1 by vulcanizing with the mass metal fitting 2. The rubber coated layer 3 is vulcanized in the state that the mass metal fitting 2 is positioned at a positioning part where it is brought in contact with the inner perimeter of the mass metal fitting 2, so that the outer perimeter side of the mass metal fitting 2 is completely coated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のドライブシャフトやプロペラシャフト等の回転軸の外周に取付けられ、その回転軸に生じる有害振動を抑制するダイナミックダンパに関する。
【0002】
【従来の技術】
従来より、自動車のドライブシャフトやプロペラシャフト等の回転軸には、回転時の回転アンバランスによって生じる曲げ振動や捩じり振動等、本来発生しないのが望ましい有害振動を低減するために、ダイナミックダンパが用いられており、例えば特許文献1〜3等に開示されているように、種々のものが知られている。このようなダイナミックダンパとして、特許文献1等に開示されているように、回転軸の外周面に軸方向に距離を隔てて取付けられるリング状の一対のゴム弾性支持体と、一対の該ゴム弾性支持体に両軸端部を弾性支持されて前記回転軸の外側に距離を隔てて同軸的に配置される筒状のマス金具と、該マス金具の表面を被覆するゴム被覆層とからなるものが知られている。
【0003】
このダイナミックダンパのゴム被覆層とゴム弾性支持体は、加硫成形することにより一体に形成されている。即ち、ゴム被覆層及びゴム弾性支持体を加硫成形する成形型内にマス金具をインサートしてそのマス金具とともに加硫成形することにより、マス金具の表面を被覆するゴム被覆層とゴム弾性支持体が同じゴム材料で一体に形成されている。このとき、成形型内に配置されるマス金具は、成形型の型面に突設された位置決め部がマス金具の外周部に当接するようにして位置決めされ、その状態でゴム被覆層及びゴム弾性支持体の加硫成形が行われる。
【0004】
このようにして作製されたダイナミックダンパは、ドライブシャフト等の回転軸の外周面の所定部位に嵌合されて、一対のゴム弾性支持体の取付部が固定バンド等でそれぞれ固定されることにより取付けられる。そして、回転軸の回転に伴って有害振動が発生すると、ゴム弾性支持体の弾性変形(主に剪断変形)を介してマス金具が共振することによりその有害振動を減衰させる。
【0005】
【特許文献1】
特開2001−280420号公報
【特許文献2】
特公平7−47979号公報
【特許文献3】
実開平6−10642号公報
【0006】
【発明が解決しようとする課題】
ところで、上記従来のダイナミックダンパにおいては、ゴム弾性支持体及びゴム被覆層が加硫成形される際にマス金具が位置決め部で位置決めされるため、マス金具の外周部の位置決め部が当接する部分にはゴム被覆層が形成されず、その当接部の形状に対応してマス金具の露出部が形成される。このようにして形成されたマス金具の露出部が外気に晒されていると、その露出部に水分が付着して錆が発生してしまい、その結果、マス金具の質量が減少してダイナミックダンパの特性が変化してしまうという事態を招く。特に、自動車のドライブシャフト等のように路面に近いところに配設される回転軸にダイナミックダンパが使用される場合には、雨水等を被り易いため露出部から錆が発生し易い。
【0007】
そこで、従来では、ゴム被覆層の加硫成形を行う際に、形成されるゴム被覆層をマス金具に接着するための接着剤をマス金具の表面全体に塗布するようにしたり、あるいはゴム被覆層を形成した後、マス金具の露出部に塗料等を塗布したりする等の防錆処理を施すことで対処していた。しかし、このような防錆処理を施すと、製造工数が増加することから生産性が低下し、またそのための特別な設備機器も必要となるため、コストの大幅な上昇を免れない。
【0008】
本発明は上記実状に鑑みてなされたものであり、マス金具の防錆処理を必要とせず、コストの低廉化を図ることができるダイナミックダンパを提供することを解決すべき課題とするものである。
【0009】
【課題を解決するための手段、発明の作用及び効果】
上記課題を解決する請求項1記載の発明は、回転軸の外周面に軸方向に距離を隔てて取付けられるリング状の一対のゴム弾性支持体と、一対の該ゴム弾性支持体に両軸端部を弾性支持されて前記回転軸の外側に距離を隔てて同軸的に配置される筒状のマス金具と、該マス金具とともに加硫成形されることにより前記ゴム弾性支持体と一体に形成されて前記マス金具の表面を被覆するゴム被覆層と、からなるダイナミックダンパにおいて、前記ゴム被覆層は、前記マス金具の内周部に当接する位置決め部で前記マス金具が位置決めされた状態で加硫成形されることにより、前記マス金具の外周側を完全に覆うように形成されているという手段を採用している。
【0010】
本発明のダイナミックダンパにおいては、ゴム被覆層及びゴム弾性支持体が加硫成形される際に、成形型内にインサートされるマス金具がマス金具の内周部に当接する位置決め部により位置決めされた状態で加硫成形される。このとき、マス金具の外周部には位置決め部が当接しないようにされているので、マス金具の表面を被覆するように形成されるゴム被覆層は、マス金具の外周側を完全に覆うように形成される。そのため、マス金具の外周側にはマス金具の露出部は形成されない。なお、マス金具の内周部には、位置決め部が当接する部分にマス金具の露出部が形成されるが、この露出部は、ダイナミックダンパが回転軸に取付けられたときに外部に晒されないので、水等が直接付着する恐れがなく、特に防錆処理を施す必要はない。また、本発明のようにゴム被覆層が設けられていれば、マス金具自体が錆びることがないため、外部にマス金具が露出した場合、若しくは防錆処理を施した場合等に対して、マス金具の錆びに対する信頼性が向上する。
【0011】
したがって、本発明のダイナミックダンパによれば、マス金具の防錆処理を必要とせず、コストの低廉化を図ることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づき説明する。
【0013】
〔実施形態1〕
図1は本実施形態に係るダイナミックダンパの軸方向に沿う断面図であって図2におけるI−I線に相当する部分の断面図であり、図2はそのダイナミックダンパの軸方向から見た正面図である。
【0014】
本実施形態のダイナミックダンパは、図1及び図2に示すように、リング状に形成された一対のゴム弾性支持体1、1と、一対のゴム弾性支持体1、1に両軸端部を弾性支持された筒状のマス金具2と、マス金具2とともに加硫成形されることによりゴム弾性支持体1、1と一体に形成されてマス金具2の外周側を完全に覆うように形成されたゴム被覆層3と、から構成されている。
【0015】
ゴム弾性支持体1、1は、天然ゴム等のゴム材料を加硫成形することによりリング状に形成されており、軸方向に距離を隔てて対称に配置された一対のもので構成されている。このゴム弾性支持体1、1は、短い円筒状に形成され、回転軸の外周面に嵌着される取付部11、11と、取付部11、11の一端から軸方向内方に向かって径方向外方へ斜めに延出する支持部12、12とからなる。
【0016】
取付部11、11は、このダイナミックダンパが取付けられる回転軸の外径よりも少し小さい内径を有し、回転軸に取付けられたときに回転軸の外周面に圧接するようにされている。この取付部11、11の外周面には、固定バンド(図示せず)が装着されるリング状の凹溝11a、11aが設けられている。また、支持部12、12は、取付部11、11から遠ざかるに連れて次第に肉厚となるようにされて、略中空円錐台形状に形成されている。
【0017】
マス金具2は、鉄系金属により所定の質量を有する円筒状に形成されている。このマス金具2は、その両軸端面が各支持部12、12の大径側端面に固着されていることによって一対のゴム弾性支持体1、1に両軸端部が弾性支持されている。このマス金具2は、回転軸の外径よりも所定寸法大きい内径を有し、ダイナミックダンパが回転軸に取付けられたときに回転軸の外側に距離を隔てて同軸的に配置される。これにより、マス金具2は、支持部12、12の弾性変形を介して径方向において回転軸との相対変位が可能とされている。
【0018】
ゴム被覆層3は、マス金具2とともに天然ゴム等のゴム材料を加硫成形することによりゴム弾性支持体1、1と一体に形成されており、これによりマス金具2の表面を被覆するように形成されている。即ち、このゴム被覆層3が加硫成形される際には、図3に示すように、ゴム被覆層3及びゴム弾性支持体1、1を加硫成形する成形型内にマス金具2がインサートされてマス金具2とともに加硫成形されることにより、マス金具2の表面を被覆するゴム被覆層3とゴム弾性支持体1、1が一体に形成される。
【0019】
ここで使用される成形型4は、上下方向に二分割された上型41及び下型42と、略円柱状に形成されて上下方向(軸方向)に二分割された上中子43及び下中子44とからなるものである。上中子43及び下中子44の外周面の所定部位には、成形型4内にインサートされるマス金具2の内周面と軸端面とが交わる角部に当接してマス金具2の位置決めをする位置決め部43a、44aがそれぞれ設けられている。この位置決め部43a、44aは、マス金具2を3軸方向において位置決めするように周方向において略等間隔となる4箇所に設けられているが、3箇所以上に略等間隔となるように設けられていれば確実に位置決めすることができる。
【0020】
この成形型4内にインサートされるマス金具2は、その軸方向が上下方向となるように配置され、その状態で加硫成形が行われる。これにより、マス金具2の外周部には位置決め部43a、44aが当接しないようにされているので、ゴム被覆層3はマス金具2の外周側を完全に覆うように形成されている。なお、マス金具2の内周部の位置決め部43a、44aが当接する部分にはゴム被覆層3が形成されず、その当接部の形状に対応して露出部2aが形成されている(図1及び図2参照。)。
【0021】
以上のように構成された本実施形態のダイナミックダンパは、ドライブシャフト等の回転軸の外周面の所定部位に嵌合されて、一対のゴム弾性支持体1、1の取付部11、11が凹溝11a、11aに巻き付けられる固定バンド等でそれぞれ固定されることにより取付けられる。このようにダイナミックダンパが取付けられると、マス金具2の内周側に形成されている露出部2aは外部に晒されないので、水等が直接付着する恐れはない。そして、このダイナミックダンパは、回転軸の回転に伴って有害振動が発生すると、ゴム弾性支持体11、11の支持部12、12の弾性変形(主に剪断変形)を介してマス金具2が共振することによりその有害振動を効果的に減衰させる。
【0022】
以上のように、本実施形態のダイナミックダンパによれば、ゴム被覆層3は、マス金具2の内周部に当接する位置決め部43a、44aでマス金具2が位置決めされた状態で加硫成形されていることにより、マス金具2の外周側を完全に覆うように形成されているため、マス金具2の防錆処理を必要とせず、コストの低廉化を図ることができる。
【0023】
また、ゴム被覆層3で覆われていることからマス金具2自体が錆びることがないため、外部にマス金具2が露出した場合、若しくは防錆処理を施した場合等に対して、マス金具2の錆びに対する信頼性を向上させることができる。
【0024】
〔実施形態2〕
図4は本実施形態に係るダイナミックダンパの軸方向に沿う断面図であって図5におけるIV−IV線に相当する部分の断面図であり、図5はそのダイナミックダンパの軸方向から見た正面図である。
【0025】
本実施形態のダイナミックダンパは、図4及び図5に示すように、リング状に形成された一対のゴム弾性支持体5、5と、一対のゴム弾性支持体5、5に両軸端部を弾性支持された筒状のマス金具6と、マス金具6とともに加硫成形されることによりゴム弾性支持体5、5と一体に形成されてマス金具6の外周側を完全に覆うように形成されたゴム被覆層7と、から構成されている。
【0026】
本実施形態のダイナミックダンパは、実施形態1のダイナミックダンパと基本的構成が同じであって、ゴム被覆層7及びゴム弾性支持体5、5を加硫成形して形成する際に、実施形態1とは異なる成形型が使用される点でのみ異なる。よって、ゴム弾性支持体5、5やマス金具6、ゴム被覆層7の詳しい説明は省略し、異なる点を中心に説明する。
【0027】
本実施形態で使用される成形型8は、図6に示すように、上下方向に分割された上型81及び下型82と、略円柱状に形成されてマス金具6の内側に配置される一つの中子83とからなるものである。そして、中子83の外周面の軸方向一端側(下型82側)の所定部位には、成形型8内にインサートされるマス金具6の内周面と一方の軸端面とが交わる角部に当接してマス金具6の位置決めをする位置決め部83aが周方向において略等間隔となる4箇所に設けられている。 この位置決め部83aは、マス金具6の内周面に当接する部分が一方の軸端面から他方の軸端面近傍まで延びるように軸方向に長くされている。これにより、実施形態1では軸方向他端側(上型81側)に設けられていた位置決め部44aが省略されており、更には中子83を二分割にしなくても型抜きが可能となる。
【0028】
この成形型8を使用した場合には、マス金具6の内周部の位置決め部83aが当接する部分にはゴム被覆層7が形成されず、その当接部の形状に対応して露出部6aが形成される(図4及び図5参照。)。
【0029】
以上のようにして作製された本実施形態のダイナミックダンパは、実施形態1の場合と同様に、ゴム被覆層7がマス金具6の外周側を完全に覆うように形成されているため、マス金具6の防錆処理を必要とせず、コストの低廉化を図ることができる。また、ゴム被覆層7で覆われていることからマス金具6自体が錆びることがないため、マス金具6の錆びに対する信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態1に係るダイナミックダンパの軸方向に沿う断面図であって図2におけるI−I線に相当する部分の断面図である。
【図2】本発明の実施形態1に係るダイナミックダンパの軸方向から見た正面図である。
【図3】本発明の実施形態1に係るダイナミックダンパの加硫成形時の状態を示す断面図である。
【図4】本発明の実施形態2に係るダイナミックダンパの軸方向に沿う断面図であって図5におけるIV−IV線に相当する部分の断面図である。
【図5】本発明の実施形態2に係るダイナミックダンパの軸方向から見た正面図である。
【図6】本発明の実施形態2に係るダイナミックダンパの加硫成形時の状態を示す断面図である。
【符号の説明】
1、5…ゴム弾性支持体 2、6…マス金具
3、7…ゴム被覆層 4、8…成形型 11…取付部
11a…凹溝 12…支持部 41、81…上型
42、82…下型 43…上中子 44…下中子
43a、44a、83a…位置決め部 83…中子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dynamic damper that is attached to the outer periphery of a rotating shaft such as a drive shaft or a propeller shaft of an automobile, and suppresses harmful vibration generated on the rotating shaft.
[0002]
[Prior art]
Conventionally, dynamic dampers have been provided on rotating shafts such as drive shafts and propeller shafts of automobiles to reduce harmful vibrations that should not normally occur, such as bending vibrations and torsional vibrations caused by rotational imbalance during rotation. And various types are known, for example, as disclosed in Patent Documents 1 to 3. As such a dynamic damper, as disclosed in Patent Document 1 and the like, a pair of ring-shaped rubber elastic supports attached to an outer peripheral surface of a rotating shaft at a distance in an axial direction, and a pair of rubber elastic supports are provided. A cylindrical mass fitting which is coaxially arranged at a distance outside the rotary shaft with both shaft ends elastically supported by a support, and a rubber coating layer covering the surface of the mass fitting It has been known.
[0003]
The rubber covering layer and the rubber elastic support of the dynamic damper are integrally formed by vulcanization molding. That is, by inserting a mass metal fitting into a mold for vulcanizing and molding the rubber coating layer and the rubber elastic support, the rubber coating layer covering the surface of the mass metal fitting and the rubber elastic support are formed by vulcanization molding together with the mass metal fitting. The body is integrally formed of the same rubber material. At this time, the mass metal fitting arranged in the molding die is positioned so that the positioning portion protruding from the mold surface of the molding metal abuts on the outer peripheral portion of the mass metal fitting, and in that state, the rubber coating layer and the rubber elasticity are provided. The vulcanization molding of the support is performed.
[0004]
The dynamic damper manufactured in this manner is fitted to a predetermined portion of the outer peripheral surface of the rotary shaft such as a drive shaft, and is mounted by fixing the mounting portions of the pair of rubber elastic supports with a fixing band or the like. Can be When the harmful vibration is generated with the rotation of the rotating shaft, the harmful vibration is attenuated by the resonance of the mass metal fitting through the elastic deformation (mainly shearing deformation) of the rubber elastic support.
[0005]
[Patent Document 1]
JP 2001-280420A [Patent Document 2]
Japanese Patent Publication No. 7-47979 [Patent Document 3]
Japanese Utility Model Application Laid-open No. Hei 6-10642
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional dynamic damper, when the rubber elastic support and the rubber coating layer are vulcanized and molded, the mass metal fitting is positioned by the positioning portion. No rubber coating layer is formed, and an exposed portion of the mass metal fitting is formed corresponding to the shape of the contact portion. If the exposed part of the mass fitting thus formed is exposed to the outside air, moisture adheres to the exposed part and rust is generated. As a result, the mass of the mass fitting is reduced and the dynamic damper is reduced. Causes a change in the characteristics. In particular, when a dynamic damper is used for a rotating shaft disposed near a road surface, such as a drive shaft of an automobile, rust is likely to be generated from the exposed portion because it is likely to receive rainwater or the like.
[0007]
Therefore, conventionally, when performing vulcanization molding of the rubber coating layer, an adhesive for bonding the formed rubber coating layer to the mass metal fitting is applied to the entire surface of the mass metal fitting, or the rubber coating layer is formed. After the formation, the rust prevention treatment such as applying a paint or the like to the exposed portion of the mass metal fitting has been dealt with. However, when such a rust preventive treatment is performed, productivity is reduced due to an increase in the number of manufacturing steps, and special equipment for the reduction is required. Therefore, a significant increase in cost cannot be avoided.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dynamic damper that does not require rust prevention treatment of a mass metal fitting and that can reduce the cost. .
[0009]
Means for Solving the Problems, Functions and Effects of the Invention
The invention according to claim 1, which solves the above-mentioned problem, comprises a pair of ring-shaped rubber elastic supports attached to the outer peripheral surface of the rotating shaft at an axial distance, and a pair of rubber elastic supports attached to the pair of rubber elastic supports. A cylindrical mass metal fitting that is elastically supported on the portion and is disposed coaxially at a distance outside the rotation shaft, and is formed integrally with the rubber elastic support body by being vulcanized together with the mass metal fitting. And a rubber coating layer covering the surface of the mass metal fitting, wherein the rubber coating layer is vulcanized in a state where the mass metal fitting is positioned by a positioning portion abutting on an inner peripheral portion of the mass metal fitting. Means is employed in which the molding is formed so as to completely cover the outer peripheral side of the mass metal fitting.
[0010]
In the dynamic damper of the present invention, when the rubber coating layer and the rubber elastic support are vulcanized and molded, the mass metal fitting inserted into the molding die is positioned by the positioning portion abutting on the inner peripheral portion of the mass metal fitting. It is vulcanized and molded in the state. At this time, since the positioning portion does not contact the outer peripheral portion of the mass metal fitting, the rubber coating layer formed so as to cover the surface of the mass metal fitting completely covers the outer peripheral side of the mass metal fitting. Formed. Therefore, the exposed portion of the mass metal fitting is not formed on the outer peripheral side of the mass metal fitting. In addition, an exposed portion of the mass metal fitting is formed at a portion where the positioning portion abuts on the inner peripheral portion of the mass metal fitting, but since this exposed portion is not exposed to the outside when the dynamic damper is attached to the rotating shaft. There is no danger of water or the like directly adhering, and it is not particularly necessary to perform rustproofing. Further, when the rubber coating layer is provided as in the present invention, the mass metal fitting itself does not rust, so that the mass metal fitting is exposed to the outside or the case where the rustproofing treatment is performed. The reliability against rust of metal fittings is improved.
[0011]
Therefore, according to the dynamic damper of the present invention, the cost reduction can be achieved without the need for the rust prevention treatment of the mass metal fitting.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
[Embodiment 1]
FIG. 1 is a cross-sectional view of the dynamic damper according to the present embodiment along the axial direction, and is a cross-sectional view of a portion corresponding to line II in FIG. 2, and FIG. 2 is a front view of the dynamic damper viewed from the axial direction. FIG.
[0014]
As shown in FIGS. 1 and 2, the dynamic damper of the present embodiment has a pair of rubber elastic supports 1, 1 formed in a ring shape, and a pair of rubber elastic supports 1, 1 with both shaft ends. An elastically supported cylindrical mass 2 and vulcanization molding together with the mass 2 are integrally formed with the rubber elastic supports 1 and 1 so as to completely cover the outer peripheral side of the mass 2. Rubber coating layer 3.
[0015]
The rubber elastic supports 1 and 1 are formed in a ring shape by vulcanizing and molding a rubber material such as natural rubber, and are constituted by a pair of members arranged symmetrically at a distance in the axial direction. . The rubber elastic supports 1, 1 are formed in a short cylindrical shape, and have mounting portions 11, 11 fitted on the outer peripheral surface of the rotating shaft, and have a diameter inward in the axial direction from one end of the mounting portions 11, 11. The support portions 12 and 12 extend obliquely outward in the direction.
[0016]
The mounting portions 11, 11 have an inner diameter slightly smaller than the outer diameter of the rotary shaft to which the dynamic damper is mounted, and are configured to press against the outer peripheral surface of the rotary shaft when mounted on the rotary shaft. Ring-shaped concave grooves 11a, 11a on which fixing bands (not shown) are mounted are provided on the outer peripheral surfaces of the mounting portions 11, 11, respectively. Further, the support portions 12, 12 are formed so as to become gradually thicker as they become distant from the attachment portions 11, 11, and are formed in a substantially hollow truncated cone shape.
[0017]
The mass metal fitting 2 is formed of a ferrous metal in a cylindrical shape having a predetermined mass. The two ends of the mass metal fitting 2 are elastically supported by a pair of rubber elastic supports 1 and 1 by fixing both ends of the shafts to the large-diameter end surfaces of the support portions 12 and 12. The mass metal fitting 2 has an inner diameter that is larger than the outer diameter of the rotating shaft by a predetermined dimension, and is coaxially arranged at a distance outside the rotating shaft when the dynamic damper is attached to the rotating shaft. Thereby, the mass metal fitting 2 can be displaced relative to the rotation axis in the radial direction through the elastic deformation of the support portions 12 and 12.
[0018]
The rubber coating layer 3 is integrally formed with the rubber elastic supports 1 and 1 by vulcanizing and molding a rubber material such as natural rubber together with the mass metal fitting 2 so as to cover the surface of the mass metal fitting 2. Is formed. That is, when the rubber coating layer 3 is vulcanized, as shown in FIG. 3, the mass metal fitting 2 is inserted into a mold for vulcanizing the rubber coating layer 3 and the rubber elastic supports 1 and 1. Then, the rubber coating layer 3 covering the surface of the mass metal fitting 2 and the rubber elastic supports 1 are integrally formed by vulcanization molding together with the mass metal fitting 2.
[0019]
The molding die 4 used here is composed of an upper die 41 and a lower die 42 that are divided into two in the vertical direction, and an upper core 43 and a lower die 42 that are formed in a substantially cylindrical shape and divided into two in the vertical direction (axial direction). And a core 44. A predetermined portion of the outer peripheral surface of the upper core 43 and the lower core 44 abuts on a corner where the inner peripheral surface of the mass metal fitting 2 inserted into the molding die 4 and the shaft end face intersect, thereby positioning the mass metal fitting 2. Positioning portions 43a and 44a are provided, respectively. The positioning portions 43a and 44a are provided at four locations at substantially equal intervals in the circumferential direction so as to position the mass metal fitting 2 in three axial directions, but are provided at three or more locations at substantially equal intervals. Position can be reliably determined.
[0020]
The mass metal fitting 2 inserted into the molding die 4 is arranged so that the axial direction thereof is the vertical direction, and vulcanization molding is performed in this state. Since the positioning portions 43a and 44a do not contact the outer peripheral portion of the mass metal fitting 2, the rubber coating layer 3 is formed to completely cover the outer peripheral side of the mass metal fitting 2. The rubber coating layer 3 is not formed on the inner peripheral portion of the mass metal fitting 2 where the positioning portions 43a and 44a abut, and the exposed portion 2a is formed corresponding to the shape of the abutting portion. 1 and FIG. 2).
[0021]
The dynamic damper of the present embodiment configured as described above is fitted to a predetermined portion of the outer peripheral surface of the rotation shaft such as a drive shaft, and the mounting portions 11 of the pair of rubber elastic supports 1 are recessed. It is attached by being fixed with a fixing band or the like wound around the grooves 11a. When the dynamic damper is attached in this manner, the exposed portion 2a formed on the inner peripheral side of the mass metal fitting 2 is not exposed to the outside, so that water or the like does not directly adhere. When the harmful vibration occurs with the rotation of the rotating shaft, the dynamic metal damper causes the mass metal fitting 2 to resonate through elastic deformation (mainly, shear deformation) of the rubber elastic supports 11, 11. By doing so, the harmful vibration is effectively attenuated.
[0022]
As described above, according to the dynamic damper of the present embodiment, the rubber coating layer 3 is vulcanized and formed in a state where the mass metal fitting 2 is positioned by the positioning portions 43a and 44a abutting on the inner peripheral portion of the mass metal fitting 2. Accordingly, since the outer peripheral side of the mass metal fitting 2 is completely covered, rust prevention treatment of the mass metal fitting 2 is not required, and the cost can be reduced.
[0023]
Further, since the mass metal fitting 2 itself is not rusted because it is covered with the rubber coating layer 3, the mass metal fitting 2 is not exposed when the mass metal fitting 2 is exposed to the outside or when a rustproofing process is performed. Can be improved with respect to rust.
[0024]
[Embodiment 2]
4 is a cross-sectional view of the dynamic damper according to the present embodiment along the axial direction, and is a cross-sectional view of a portion corresponding to the line IV-IV in FIG. 5, and FIG. 5 is a front view of the dynamic damper viewed from the axial direction. FIG.
[0025]
As shown in FIGS. 4 and 5, the dynamic damper of the present embodiment has a pair of rubber elastic supports 5, 5 formed in a ring shape, and a pair of rubber elastic supports 5, The elastically supported cylindrical mass metal member 6 and the rubber elastic support members 5 are integrally formed with the rubber elastic supports 5 by being vulcanized together with the mass metal member 6 so as to completely cover the outer peripheral side of the mass metal member 6. Rubber coating layer 7.
[0026]
The dynamic damper according to the present embodiment has the same basic configuration as the dynamic damper according to the first embodiment. When the rubber coating layer 7 and the rubber elastic supports 5 are formed by vulcanization molding, the dynamic damper according to the first embodiment is used. The only difference is that a different mold is used. Therefore, detailed description of the rubber elastic supports 5, 5, the metal fitting 6, and the rubber coating layer 7 will be omitted, and different points will be mainly described.
[0027]
As shown in FIG. 6, the forming die 8 used in the present embodiment is formed in a substantially cylindrical shape with an upper die 81 and a lower die 82 divided in a vertical direction, and arranged inside the mass metal fitting 6. It consists of one core 83. A corner portion where the inner peripheral surface of the mass metal fitting 6 to be inserted into the molding die 8 and one of the axial end surfaces intersect at a predetermined position on one axial end (lower die 82 side) of the outer peripheral surface of the core 83. Positioning portions 83a for abutting the positioning of the mass metal fittings 6 are provided at four locations at substantially equal intervals in the circumferential direction. The positioning portion 83a is elongated in the axial direction so that a portion abutting on the inner peripheral surface of the mass metal fitting 6 extends from one shaft end surface to the vicinity of the other shaft end surface. Accordingly, the positioning portion 44a provided on the other end side in the axial direction (the upper die 81 side) in the first embodiment is omitted, and the die can be removed without dividing the core 83 into two parts. .
[0028]
When the molding die 8 is used, the rubber coating layer 7 is not formed on the inner peripheral portion of the mass metal fitting 6 where the positioning portion 83a contacts, and the exposed portion 6a corresponds to the shape of the contact portion. Is formed (see FIGS. 4 and 5).
[0029]
In the dynamic damper of the present embodiment manufactured as described above, the rubber coating layer 7 is formed so as to completely cover the outer peripheral side of the mass metal fitting 6 as in the case of the first embodiment. The cost can be reduced without the need for the rust preventive treatment of No. 6. Further, since the mass metal fitting 6 itself is not rusted because it is covered with the rubber coating layer 7, the reliability of the mass metal fitting 6 against rust can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view taken along an axial direction of a dynamic damper according to a first embodiment of the present invention, and is a cross-sectional view of a portion corresponding to line II in FIG.
FIG. 2 is a front view of the dynamic damper according to the first embodiment of the present invention as viewed from an axial direction.
FIG. 3 is a cross-sectional view showing a state during vulcanization molding of the dynamic damper according to the first embodiment of the present invention.
4 is a cross-sectional view of a dynamic damper according to a second embodiment of the present invention along an axial direction, and is a cross-sectional view of a portion corresponding to line IV-IV in FIG.
FIG. 5 is a front view of a dynamic damper according to a second embodiment of the present invention as viewed from an axial direction.
FIG. 6 is a cross-sectional view showing a state during vulcanization molding of a dynamic damper according to Embodiment 2 of the present invention.
[Explanation of symbols]
1, 5 ... rubber elastic support 2, 6 ... mass metal fittings 3, 7 ... rubber coating layer 4, 8 ... molding die 11 ... mounting part 11a ... concave groove 12 ... support part 41, 81 ... upper die 42, 82 ... lower Mold 43 Upper core 44 Lower core 43a, 44a, 83a Positioning part 83 Core

Claims (1)

回転軸の外周面に軸方向に距離を隔てて取付けられるリング状の一対のゴム弾性支持体と、一対の該ゴム弾性支持体に両軸端部を弾性支持されて前記回転軸の外側に距離を隔てて同軸的に配置される筒状のマス金具と、該マス金具とともに加硫成形されることにより前記ゴム弾性支持体と一体に形成されて前記マス金具の表面を被覆するゴム被覆層と、からなるダイナミックダンパにおいて、
前記ゴム被覆層は、前記マス金具の内周部に当接する位置決め部で前記マス金具が位置決めされた状態で加硫成形されることにより、前記マス金具の外周側を完全に覆うように形成されていることを特徴とするダイナミックダンパ。
A pair of ring-shaped rubber elastic supports attached to the outer peripheral surface of the rotating shaft at a distance in the axial direction, and a pair of rubber elastic supports elastically supported at both shaft ends by the pair of rubber elastic supports; A cylindrical mass fitting coaxially disposed with a rubber coating layer formed integrally with the rubber elastic support by being vulcanized together with the mass fitting and covering the surface of the mass fitting; , A dynamic damper consisting of
The rubber coating layer is formed so as to completely cover the outer peripheral side of the mass metal fitting by being vulcanized and molded in a state where the mass metal fitting is positioned at a positioning portion abutting on the inner peripheral portion of the mass metal fitting. A dynamic damper characterized by:
JP2003053867A 2003-02-28 2003-02-28 Dynamic damper Expired - Fee Related JP4029338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053867A JP4029338B2 (en) 2003-02-28 2003-02-28 Dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053867A JP4029338B2 (en) 2003-02-28 2003-02-28 Dynamic damper

Publications (2)

Publication Number Publication Date
JP2004263765A true JP2004263765A (en) 2004-09-24
JP4029338B2 JP4029338B2 (en) 2008-01-09

Family

ID=33118360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053867A Expired - Fee Related JP4029338B2 (en) 2003-02-28 2003-02-28 Dynamic damper

Country Status (1)

Country Link
JP (1) JP4029338B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226521A (en) * 2005-01-20 2006-08-31 Tokai Rubber Ind Ltd Cylindrical dynamic damper
KR101303572B1 (en) * 2011-10-28 2013-09-09 주식회사 광덕에이앤티 Dynamic Damper
KR101840696B1 (en) * 2016-01-26 2018-03-22 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 Fixing device having functions of noise transfer elimination for cable system
US10302171B2 (en) 2016-01-18 2019-05-28 Hyundai Motor Company Dual mode tuning type dynamic damper and drive shaft device and vehicle thereby
CN110762211A (en) * 2019-11-22 2020-02-07 李国栋 Oil well is with thermal-insulated heat preservation abrasionproof oil pipe pin end sealing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226521A (en) * 2005-01-20 2006-08-31 Tokai Rubber Ind Ltd Cylindrical dynamic damper
JP4496488B2 (en) * 2005-01-20 2010-07-07 東海ゴム工業株式会社 Cylindrical dynamic damper
KR101303572B1 (en) * 2011-10-28 2013-09-09 주식회사 광덕에이앤티 Dynamic Damper
US10302171B2 (en) 2016-01-18 2019-05-28 Hyundai Motor Company Dual mode tuning type dynamic damper and drive shaft device and vehicle thereby
KR101840696B1 (en) * 2016-01-26 2018-03-22 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 Fixing device having functions of noise transfer elimination for cable system
CN110762211A (en) * 2019-11-22 2020-02-07 李国栋 Oil well is with thermal-insulated heat preservation abrasionproof oil pipe pin end sealing device
CN110762211B (en) * 2019-11-22 2024-06-11 李国栋 Heat-insulating wear-proof oil pipe pin end sealing device for oil well

Also Published As

Publication number Publication date
JP4029338B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
US6289572B1 (en) Sealing arrangement
US6682060B2 (en) Dynamic damper
JP2002098186A (en) Cylindrical dynamic damper
JP4029665B2 (en) Dynamic damper
JPH0747979B2 (en) Dynamic damper
JP2002098193A (en) Cylindrical dynamic damper
JP2004263765A (en) Dynamic damper
JP2004144288A (en) Dynamic damper
JP3649255B2 (en) damper
JP2011144891A (en) Vibration control bush and method for manufacturing the same
JP5293960B2 (en) Center bearing support
JP2005133917A (en) Isolation pulley
JPH0547306Y2 (en)
JP3632728B2 (en) damper
JP3076718B2 (en) Dynamic damper
JP2011133053A (en) Hub unit bearing
JPH1026183A (en) Manufacture of dynamic damper
JP7415449B2 (en) bearing device
JP2008002552A (en) Dynamic damper
JP2000329180A (en) Vibration isolating bush
JP2004251299A (en) Seal device
JP3550434B2 (en) Resin CVJ boots
JP2024021598A (en) torsional damper
JP4862538B2 (en) Damper pulley
JPH07158657A (en) Constant velocity joint boot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Effective date: 20070706

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Effective date: 20070829

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070920

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101026

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20121026

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees