JP2004263696A - Turbo high-speed rotary apparatus - Google Patents

Turbo high-speed rotary apparatus Download PDF

Info

Publication number
JP2004263696A
JP2004263696A JP2004032041A JP2004032041A JP2004263696A JP 2004263696 A JP2004263696 A JP 2004263696A JP 2004032041 A JP2004032041 A JP 2004032041A JP 2004032041 A JP2004032041 A JP 2004032041A JP 2004263696 A JP2004263696 A JP 2004263696A
Authority
JP
Japan
Prior art keywords
resin material
turbo
rotating shaft
rotary shaft
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004032041A
Other languages
Japanese (ja)
Inventor
Koji Horikawa
浩司 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004032041A priority Critical patent/JP2004263696A/en
Publication of JP2004263696A publication Critical patent/JP2004263696A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbo high-speed rotary apparatus that can always maintain a fine gap during an operation in a sealing mechanism between a gas compression chamber and a motor chamber. <P>SOLUTION: A flat and disk-like resin material 8 is added between a through hole 1A and a rotary shaft 4 to the rotary shaft 4 penetrating the through hole 1A punched in a partition wall 1S between the gas compression chamber and the motor chamber. A hole having a diameter slightly smaller than the outline of the rotary shaft 4 is formed in the central part of the resin material 8, and the central part of the resin material 8 contacts with the rotary shaft 4 and bends during assembling a pump. An electric heater is installed in or near the resin material. It is slid by rotation of the rotary shaft 4 and is deformed by heating or abrasion. As a result, a fine gap is formed between the rotary shaft 4 and the resin material 8. Therefore, there is no gap between the rotary shaft 4 and the resin material 8 during stopping of the pump or at an operation starting time, but a gap required for sealing is formed by operation. When a balancing test is performed after assembling, the material is heated by the electric heater and separates from the rotary shaft 4 to allow good balancing correction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、たとえば気体レーザ発振器装置におけるガス循環用の電動コンプレッサとしてのブロワ等に適用できるターボ形高速回転機器に関する。   The present invention relates to a turbo-type high-speed rotating device applicable to, for example, a blower or the like as an electric compressor for gas circulation in a gas laser oscillator device.

たとえばフロー型二酸化炭素ガスレーザ発振器装置の場合、炭酸ガスと他のガスの混合ガスを流しながら圧縮し、レーザ発振器に供給して共振させるようになっており、装置内にガス循環回路が構成されている。その循環回路の構成における一要素のブロワとしてターボ翼を高速で回転させてガスを圧縮し、レーザ発振器に供給するターボ形高速回転機器が使用されている。   For example, in the case of a flow type carbon dioxide gas laser oscillator device, a gas mixture of carbon dioxide gas and another gas is compressed while flowing, and supplied to the laser oscillator to resonate, and a gas circulation circuit is formed in the device. I have. As a blower of one element in the configuration of the circulation circuit, a turbo-type high-speed rotating device that compresses gas by rotating a turbo blade at high speed and supplies the gas to a laser oscillator is used.

この種のターボ形高速回転機器は、ハウジング内の上方にターボ翼が回転可能に配設され、ガスを圧縮して排出する機構を設けるとともに、下方にはこのターボ翼を高速回転駆動させるモータが配設されている。そして、このモータの回転子とターボ翼ならびに回転軸等からなる回転体は、機械的な軸受方式で軸受けされ、オイルによる潤滑手段が併設されている。そのため、オイルミストが発生するが、このオイルミストがガス圧縮とともに排出されないよう真空ポンプで排気する方式が採用されている(特許文献1参照)。   In this type of turbo-type high-speed rotating device, a turbo blade is rotatably disposed above the housing, a mechanism for compressing and discharging gas is provided, and a motor for driving the turbo blade at high speed is provided below. It is arranged. The rotating body of the motor, including the rotor, the turbo blades, the rotating shaft, and the like, is supported by a mechanical bearing system, and is provided with oil lubrication means. For this reason, oil mist is generated, but a method is employed in which the oil mist is exhausted by a vacuum pump so as not to be exhausted together with the gas compression (see Patent Document 1).

このターボ形高速回転機器の具体的な構成は、図13に示すとおりで、ハウジング1の内方でその上方にターボ翼7が回転可能に配設され、同じく下方にはこのターボ翼7を高速回転駆動させるモータ2が配設され、両者が回転軸4にて連結されている。このモータ2はハウジング1の側に固設された電極コイル2Kと、この電極コイル2Kに対応して回転軸4に固設された回転子2Mで構成され、電極コイル2Kにインバータ3から電気エネルギーが供給される。   The specific configuration of this turbo-type high-speed rotating device is as shown in FIG. 13, in which a turbo blade 7 is rotatably disposed inside the housing 1 above and above the turbo blade 7 at a high speed. A motor 2 for rotational driving is provided, and both are connected by a rotating shaft 4. The motor 2 includes an electrode coil 2K fixed to the housing 1 and a rotor 2M fixed to the rotating shaft 4 corresponding to the electrode coil 2K. Is supplied.

回転軸4は上部転がり軸受5と下部転がり軸受6を介してハウジング1に対し、回転可能に保持されているが、この回転軸4の上方に形成された取付軸4Sにターボ翼7が固設されている。このモータ2と回転子2Mおよび回転軸4からなる回転体が軸受機構を構成する上部転がり軸受5と下部転がり軸受6に保持されている。なお、この上部転がり軸受5と下部転がり軸受6はモータ室M内に配設されている
ターボ翼7がモータ2によって高速回転駆動されると、ガスは吸気口1Kから吸入され、圧縮されて排気口1Hより排出される。この吸気口1Kから排気口1Hまでがガス圧縮室Cを形成する。この排気口1Hからのガスは上記したようにガス循環回路(図示せず)を経てレーザ発振器(図示せず)に供給される。
The rotating shaft 4 is rotatably held in the housing 1 via an upper rolling bearing 5 and a lower rolling bearing 6, and a turbo blade 7 is fixed to a mounting shaft 4S formed above the rotating shaft 4. Have been. A rotating body composed of the motor 2, the rotor 2M and the rotating shaft 4 is held by an upper rolling bearing 5 and a lower rolling bearing 6 constituting a bearing mechanism. The upper rolling bearing 5 and the lower rolling bearing 6 are disposed in the motor chamber M. When the turbo blade 7 is driven to rotate at a high speed by the motor 2, the gas is sucked from the intake port 1K, compressed and exhausted. It is discharged from the mouth 1H. A gas compression chamber C is formed from the intake port 1K to the exhaust port 1H. The gas from the exhaust port 1H is supplied to the laser oscillator (not shown) through the gas circulation circuit (not shown) as described above.

ところで、回転軸4には図13に示すとおり、軸芯上に中空孔4Hが形成されているが、この中空孔4Hの下方部は内孔が上方拡がりのテーパ状をなし、これらの下方部位が潤滑用のオイルL内に浸漬されている。したがって、中空孔4Hの下方域に侵入している潤滑用のオイルLは、回転軸4の回転による遠心力の作用を受けて中空孔4Hの内方を上方に移動し、この作用で中空孔4Hはポンプ機能を発揮する。こうして潤滑用のオイルLは順次上方へ送り出され、射出孔4Tより外方に放出されてモータ2の冷却や上部転がり軸受5と下部転がり軸受6の潤滑を行なう。潤滑や冷却を終えた潤滑用のオイルLは再び下方のオイル槽1Yに溜められ、再び吸い上げられて循環する。   As shown in FIG. 13, a hollow hole 4H is formed on the axis of the rotating shaft 4, and a lower portion of the hollow hole 4H has a tapered shape in which the inner hole expands upward. Is immersed in oil L for lubrication. Therefore, the lubricating oil L that has penetrated into the lower region of the hollow hole 4H moves upward in the hollow hole 4H under the action of the centrifugal force due to the rotation of the rotary shaft 4, and this action causes the hollow hole 4H to move upward. 4H exhibits a pump function. In this way, the lubricating oil L is sequentially sent upward, and is discharged outward from the injection hole 4T to cool the motor 2 and lubricate the upper rolling bearing 5 and the lower rolling bearing 6. After lubrication and cooling, the lubricating oil L is again stored in the lower oil tank 1Y, and is again sucked up and circulated.

このように潤滑用のオイルLは、循環して上部転がり軸受5や下部転がり軸受6の潤滑を行なうが、この潤滑によって特にモータ室M内には噴霧状のオイルL(オイルミスト)が存在し浮遊することになる。モータ室Mにおける噴霧状のオイルLの存在は、上部転がり軸受5と下部転がり軸受6等における潤滑を良好にするが、このオイルミストがガス圧縮室Cに流入するとレーザ発振器などに流入し、レーザの発振機能を低下させる。   As described above, the lubricating oil L circulates and lubricates the upper rolling bearing 5 and the lower rolling bearing 6, and due to this lubrication, a spray-like oil L (oil mist) is present particularly in the motor chamber M. It will float. The presence of the sprayed oil L in the motor chamber M improves the lubrication of the upper rolling bearing 5 and the lower rolling bearing 6 and the like. However, when the oil mist flows into the gas compression chamber C, it flows into a laser oscillator or the like, and the laser mist flows. Lowers the oscillation function.

このことからガス圧縮室Cとモータ室Mとは、シール部Sで遮断される。すなわち、ハウジング1には上部転がり軸受5の上方位置において回転軸4が非接触で貫通できる範囲の最小径の貫通孔1Aが穿設され、回転軸4と協働してシール部Sが形成される。このシール部Sはたとえば図示例に示すラビリンスシール等が適用される。このラビリンスシールによるシール部Sは、回転軸4と貫通孔1Aとの間隙は通常数10ミクロンに設定されている。ラビリンスシール以外にも、シールする摺動部にオイルLを介在させる気密(接触)シールする方法も採用される。この気密(接触)シールの場合は、周速度が毎秒10〜15メートル以下(ゴム系)、5〜15メートル以下(ポリテトラフルオロエチレン系)で使用する必要がある。   For this reason, the gas compression chamber C and the motor chamber M are shut off by the seal portion S. That is, the housing 1 is provided with a through hole 1A having a minimum diameter within a range in which the rotating shaft 4 can penetrate in a non-contact manner above the upper rolling bearing 5, and a seal portion S is formed in cooperation with the rotating shaft 4. You. As the seal portion S, for example, a labyrinth seal shown in the illustrated example is applied. In the seal portion S formed by the labyrinth seal, the gap between the rotating shaft 4 and the through hole 1A is usually set to several tens of microns. In addition to the labyrinth seal, a method of airtight (contact) sealing in which oil L is interposed in a sliding portion to be sealed is also adopted. In the case of this airtight (contact) seal, it is necessary to use a peripheral speed of 10 to 15 meters or less per second (rubber type) or 5 to 15 meters or less (polytetrafluoroethylene type).

他方、モータ室Mは排気パイプRを介して外設した真空ポンプVPにて真空に排気される。これは上記したように、モータ室Mが潤滑用のオイルLのミストが充満しており、シール部Sの小さい隙間からガス圧縮室Cに漏洩するのを防止すためである。
特開2000−209815号公報
On the other hand, the motor chamber M is evacuated to a vacuum by an externally provided vacuum pump VP via an exhaust pipe R. This is to prevent the motor chamber M from being filled with the mist of the lubricating oil L and leaking into the gas compression chamber C from a small gap in the seal portion S as described above.
JP 2000-209815 A

従来におけるシール機構は、つぎのような問題を有している。すなわち、ラビリンスシール方式の場合は、回転軸4の周面と貫通孔1Aの内周面またはこのいずれかの面に複数段の小さい凹凸を設ける必要があり、加工が困難であるとともにコストが嵩む問題を有している。また、ラビリンスシール方式では間隙が数10ミクロンであり、この間隙で回転軸4が偏心している場合には回転軸4の振動による接触や融着もしくはシール間隙からの漏れ量が増大する。そのために、ラビリンスシールの加工精度や組立精度を高める必要がある。   The conventional sealing mechanism has the following problems. That is, in the case of the labyrinth seal method, it is necessary to provide a plurality of small irregularities on the peripheral surface of the rotating shaft 4 and the inner peripheral surface of the through hole 1A, or any one of these surfaces, which makes the processing difficult and increases the cost. Have a problem. Further, in the labyrinth seal method, the gap is several tens of microns, and when the rotating shaft 4 is eccentric in this gap, the contact or fusion due to the vibration of the rotating shaft 4 or the amount of leakage from the sealing gap increases. Therefore, it is necessary to increase the processing accuracy and the assembly accuracy of the labyrinth seal.

他方、オイルLを介在させる気密(接触)シール方式の場合は、上述したように、周速度が毎秒5〜15メートル以下で使用することが条件であり、また潤滑油(オイルL)が常に摺動部に存在しなければならない。そのために給油に留意する必要がある。上述したように、たとえばブロワの場合、周速度が過大になり、潤滑油(オイルL)切れが生じた場合はシール部Sの周面が損傷し、この欠陥部からのガス漏れが激しく、多大の内部漏れが発生するという問題を有する。
さらに、このようなターボ形高速回転機器の製造過程においては、特に回転部がきわめて高速で回転駆動されるため少しの不釣合(アンバランス)の存在も許されないことに留意しなければならない。したがって、回転部(回転体全体)のバランスを保障するためにバランス試験が行われる。そして、アンバランスが存在した場合はその除去のための修正が行われる。バランス試験すなわち釣合試験は、回転体全体を高速回転させる試験機にて試験し測定するが、この場合シール部Sが回転軸4に接触しているとノイズが発生し、微少アンバランスの検知が不可能になる。このことは完全なバランスが得られない。
本発明はこのような問題を解決するターボ形高速回転機器を提供することを目的とする。
On the other hand, in the case of the air-tight (contact) sealing method in which the oil L is interposed, as described above, the peripheral speed must be 5 to 15 meters per second or less, and the lubricating oil (oil L) is always slid. Must be present in moving parts. Therefore, it is necessary to pay attention to refueling. As described above, for example, in the case of a blower, the peripheral speed becomes excessively large, and when the lubricating oil (oil L) runs out, the peripheral surface of the seal portion S is damaged, and gas leakage from this defective portion is severe, and Has a problem that internal leakage occurs.
Furthermore, in the manufacturing process of such a turbo-type high-speed rotating device, it should be noted that a slight unbalance is not allowed because the rotating portion is driven to rotate at a very high speed. Therefore, a balance test is performed to ensure the balance of the rotating part (entire rotating body). Then, if there is an imbalance, a correction for removing the imbalance is performed. The balance test, that is, the balance test, is performed by testing with a testing machine that rotates the entire rotating body at a high speed. Becomes impossible. This does not provide a perfect balance.
An object of the present invention is to provide a turbo-type high-speed rotating device that solves such a problem.

本発明が提供するターボ形高速回転機器は、上記課題を解決するために、ガス圧縮室とポンプ室との区画壁における貫通孔と回転軸との間のシール機構をつぎのように構成する。すなわち、貫通孔の全内周面側から回転軸の全周面に向けて樹脂材を付設する。そしてこの樹脂材は、ポンプ組立時には回転軸の全周面に接触し、ポンプ作動時は回転軸との摺接による発熱または摩耗によって変形し、回転軸との間にシール機能を有する間隙が形成される。   In order to solve the above-mentioned problems, a turbo-type high-speed rotating device provided by the present invention has a sealing mechanism between a rotating shaft and a through hole in a partition wall between a gas compression chamber and a pump chamber as follows. That is, a resin material is provided from the entire inner peripheral surface side of the through hole toward the entire peripheral surface of the rotating shaft. When the pump is assembled, the resin material comes into contact with the entire peripheral surface of the rotating shaft, and when the pump is operated, the resin material is deformed by heat or wear due to sliding contact with the rotating shaft, and a gap having a sealing function is formed between the resin and the rotating shaft. Is done.

さらに本発明は、貫通孔の内周面と回転軸の全周面との間に付設された樹脂材は、圧縮室側の圧力にてその回転軸に近い周辺がモータ室側に撓むことができる弾性を有する。具体的には樹脂材の中段から内方端までが曲折されて形成され、樹脂材にスプリング機能を有するよう構成される。
したがって、回転駆動によって樹脂材は変形し、回転軸の周囲にシール機能に適切な間隙が形成される。また、弾性を有するので、圧力差により樹脂材の中心部側が撓むことができる。
さらに本発明は、シール部材としての樹脂材の内方または近傍に電熱器を設けたものである。この電熱器の設置によって樹脂材が加熱昇温されることにより膨張し拡張することで回転軸から離反し、回転軸に対する非接触状態が得られる。
Further, according to the present invention, the resin material provided between the inner peripheral surface of the through hole and the entire peripheral surface of the rotating shaft is such that a portion close to the rotating shaft is bent toward the motor chamber due to the pressure on the compression chamber side. It has elasticity. More specifically, the resin material is formed by bending the middle to inner ends thereof so that the resin material has a spring function.
Therefore, the resin material is deformed by the rotation drive, and a gap suitable for the sealing function is formed around the rotation shaft. In addition, since it has elasticity, the central portion side of the resin material can be bent due to the pressure difference.
Further, in the present invention, an electric heater is provided inside or near a resin material as a seal member. By installing the electric heater, the resin material is heated and raised in temperature, so that the resin material expands and expands, thereby separating from the rotating shaft and obtaining a non-contact state with the rotating shaft.

本発明が提供するターボ形高速回転機器は以上詳述したとおりであるから、つぎの効果を有する。
(1)ポンプの静止時および動作開始時樹脂材と回転軸との接触、摺動が存在するものの運転中は非接触で長寿命のシール機構を提供する。
(2)樹脂材の弾性によるスプリング効果によって芯出しのための手段や作業が不要であり、コストの低減になる。
(3)摩耗量を押えることが可能であり、また発熱による樹脂材の拡張で高速回転時の摺動トルクを押えることができ、したがって摩耗劣化を抑制し且つ間隙を確保できて、摺動なしのシール機構を実現できる。
(4)従来の金属同士の構成によるシール機構では数ミクロンの間隙を実現することは不可能であるが、本発明によれば容易に微小間隙を実現でき、圧力損失の非常に大きい、シール機構を提供し、ガス消費量を削減することができる。
(5)樹脂材を円錐状に曲折する実施例の場合、スプリング効果をより充分に発揮でき、したがって製造におけるばらつきが存在しても初期の摺動トルクをこの円錐の角度変化で適切に緩和できる。
(6)製造工程におけるバランス修正作業においては、電熱器によって樹脂材を回転軸と非接触の状況をつくることができ、完全なバランス修正を行うことができる。
以上の諸特性により経済的でかつ性能の優れたターボ形高速回転機器を提供する。
The turbo type high-speed rotating device provided by the present invention is as described in detail above, and has the following effects.
(1) When the pump is stationary and when the operation starts, there is a contact and sliding between the resin material and the rotating shaft, but a non-contact and long-life sealing mechanism is provided during operation.
(2) Means and work for centering are not required due to the spring effect due to the elasticity of the resin material, and the cost is reduced.
(3) The amount of wear can be reduced, and the sliding torque during high-speed rotation can be suppressed by expanding the resin material due to heat generation. Therefore, wear deterioration can be suppressed and a gap can be secured, and there is no sliding. Can be realized.
(4) Although it is impossible to realize a gap of several microns with a conventional seal mechanism using a metal-to-metal structure, the seal mechanism according to the present invention can easily realize a minute gap and has a very large pressure loss. And gas consumption can be reduced.
(5) In the case of the embodiment in which the resin material is bent in a conical shape, the spring effect can be more sufficiently exerted, so that even if there is a variation in manufacturing, the initial sliding torque can be appropriately reduced by changing the angle of the cone. .
(6) In the balance correcting operation in the manufacturing process, the resin material can be made in a non-contact state with the rotating shaft by the electric heater, so that a complete balance correction can be performed.
The present invention provides a turbo-type high-speed rotating machine which is economical and excellent in performance due to the above characteristics.

本発明は、ガス圧縮を行なうターボ翼と、このターボ翼を高速回転駆動するモータと、この両者を連結する垂直に配設された回転軸と、この回転軸を回転自在に保持する軸受機構と、前記ターボ翼が配設されたガス圧縮室と前記軸受機構およびモータが配設されたモータ室を区画する区画壁を有し、この区画壁に前記回転軸を貫通させる貫通孔を穿設するとともにこの貫通孔と回転軸との間にシール機構が設けられ、前記ターボ翼の高速回転駆動によって吸気口からのガスを圧縮して排気口に排出する高速回転機器において、シール機構の改良に特徴を有している。このシール機構を貫通孔の全内周面から回転軸に向けて付設された樹脂材で構成したものである。この樹脂材はポンプ組立時には回転軸全周面に接触し、ポンプ作動時は回転軸との摺接による発熱または摩耗によって回転軸との間にシール機能を有する間隙が形成されるよう変形する。さらに、この樹脂材はたとえば製作工程の一時期に回転軸全周面との接触を解くように作動するように構成される。そのために樹脂材の内方または近傍たとえば樹脂材の取付具自体を加熱させる電熱器が設けられている。この加熱昇温によって膨張拡張し、回転軸全周面から樹脂材が離反する。電熱器を樹脂材の内方に設置すると構成が簡単となり理想的である。   The present invention relates to a turbo wing for performing gas compression, a motor for rotating the turbo wing at a high speed, a vertically arranged rotating shaft connecting the two, and a bearing mechanism for rotatably holding the rotating shaft. A partition wall for partitioning a gas compression chamber in which the turbo wings are disposed, and a motor chamber in which the bearing mechanism and the motor are disposed, and a through-hole for penetrating the rotary shaft is formed in the partition wall. In addition, a sealing mechanism is provided between the through hole and the rotating shaft, and in a high-speed rotating device that compresses gas from an intake port and discharges the gas to an exhaust port by high-speed rotation driving of the turbo blade, the sealing mechanism is characterized by improvement of the sealing mechanism. have. This seal mechanism is made of a resin material provided from the entire inner peripheral surface of the through hole toward the rotation shaft. When the pump is assembled, the resin material comes into contact with the entire peripheral surface of the rotating shaft, and when the pump is operated, the resin material is deformed so as to form a gap having a sealing function with the rotating shaft due to heat generation or wear caused by sliding contact with the rotating shaft. Further, the resin material is configured to operate so as to release contact with the entire peripheral surface of the rotating shaft, for example, at one time in the manufacturing process. For this purpose, an electric heater is provided for heating the inside of or near the resin material, for example, the fixture itself of the resin material. The resin material is separated from the entire peripheral surface of the rotating shaft by expansion and expansion due to the heating. When the electric heater is installed inside the resin material, the configuration becomes simple and ideal.

以下、図1に示す実施例にしたがって、本発明のターボ形高速回転機器の構成、作動を説明する。なお以下の説明では、ターボ形高速回転機器の説明については図13に示す構成とその符号をも用いて説明する。図1と図2は、ターボ形高速回転機器において、ハウジング1と回転軸4との間に構成されるシール機構の部分を拡大して示す断面図で、本発明の基本的な構成を説明する図である。区画壁1Sに穿設された貫通孔1Aの全内周面側から回転軸4の全外周面に向けて樹脂材8が付設される。具体的には樹脂材8は円盤状で中央部に孔が形成され、回転軸4が貫通された形とする。   Hereinafter, the configuration and operation of the turbo type high-speed rotating device of the present invention will be described with reference to the embodiment shown in FIG. In the following description, the turbo type high-speed rotating device will be described using the configuration shown in FIG. 1 and 2 are cross-sectional views showing, in an enlarged manner, a portion of a seal mechanism formed between a housing 1 and a rotating shaft 4 in a turbo-type high-speed rotating device, and explain a basic configuration of the present invention. FIG. A resin material 8 is provided from the entire inner peripheral surface side of the through hole 1A formed in the partition wall 1S to the entire outer peripheral surface of the rotating shaft 4. Specifically, the resin material 8 has a disk shape, a hole formed in the center, and a shape in which the rotating shaft 4 is penetrated.

図1は、貫通孔1Aの全内周面側から回転軸4の全外周面に向けて樹脂材8が付設された状態、すなわち樹脂材8を付設したポンプ組立時の状態を示す要部拡大図であり、図2は樹脂材8がポンプ作動により、変化しているときの状態を示す要部拡大図である。   FIG. 1 is an enlarged view of a main part showing a state in which a resin material 8 is attached from the entire inner peripheral surface side of the through hole 1A to the entire outer peripheral surface of the rotary shaft 4, that is, a state in assembling a pump with the resin material 8 attached. FIG. 2 is an enlarged view of a main part showing a state when the resin material 8 is changed by a pump operation.

一定の厚さを有する円盤状態の樹脂材8は、その外周部が区画壁1Sの上面に形成された段部1Dに載置され、さらに押え具9にて挟持され、貫通孔1Aの内周面に付設されている。この樹脂材8は、図面に示すように内方の孔の内径は回転軸4の外形より若干小さく設定され、ポンプ組立の時は、回転軸4に近い内方部すなわち中段から内方端は、図に示すように曲折し、且つその内方先端は回転軸4の外周面に接している。樹脂材8は材質が樹脂であるから弾性を有し、図面に示すように曲折可能になっている。なお、10は押え具9を区画壁1Sの上面の段部1Dに固定するための固定ねじである。   The disk-shaped resin material 8 having a certain thickness is placed on a step 1D having an outer peripheral portion formed on the upper surface of the partition wall 1S, and is further clamped by a holding member 9, thereby forming an inner peripheral portion of the through hole 1A. It is attached to the surface. As shown in the drawing, the inner diameter of the inner hole of the resin material 8 is set to be slightly smaller than the outer diameter of the rotary shaft 4. As shown in the figure, the bent portion is in contact with the outer peripheral surface of the rotating shaft 4. The resin material 8 has elasticity because the material is resin, and can be bent as shown in the drawing. Reference numeral 10 denotes a fixing screw for fixing the presser 9 to the step 1D on the upper surface of the partition wall 1S.

この樹脂材8は回転軸4との摺接により発熱または摩耗によって変形する性質を有する材質の材料として構成されている。したがって、ポンプ組立後、ポンプを作動させ、樹脂材8が回転軸4と摺接し、その時発生する発熱によりまたは摩耗して、図2に示すように変形する。この変形によって、樹脂材8の内方端は回転軸4の外周面から離脱し、回転軸4の外周面と樹脂材8の内方端との間に間隙CLが形成される。この間隙CLは数ミクロン程度で形成される。したがって、ポンプの作動によって、樹脂材8と回転軸4との間には自動的に適切な間隙CLが形成される。   The resin material 8 is configured as a material having a property of being deformed by heat generation or wear by sliding contact with the rotating shaft 4. Therefore, after assembling the pump, the pump is operated, and the resin material 8 comes into sliding contact with the rotating shaft 4 and is deformed as shown in FIG. Due to this deformation, the inner end of the resin material 8 is separated from the outer peripheral surface of the rotating shaft 4, and a gap CL is formed between the outer peripheral surface of the rotating shaft 4 and the inner end of the resin material 8. This gap CL is formed on the order of several microns. Therefore, an appropriate gap CL is automatically formed between the resin material 8 and the rotating shaft 4 by the operation of the pump.

図3と図4は、一定の厚さを有する円盤について、その中段から内方端までを曲折し円錐状に形成した樹脂材8Tを示している。図3は、樹脂材8Tを付設したポンプ組立時の状態を示す要部拡大図であり、図4はポンプを作動させて、樹脂材8Tを変化させたときの状態を示す要部拡大図である。   FIGS. 3 and 4 show a resin material 8T which is formed in a conical shape by bending a disk having a certain thickness from the middle to the inner end. FIG. 3 is an enlarged view of a main part showing a state at the time of assembling the pump provided with the resin material 8T, and FIG. 4 is an enlarged view of a main part showing a state when the pump is operated to change the resin material 8T. is there.

図に示すように、樹脂材8Tを付設するに際しては、その内方先端部は回転軸4の外周面に接触させる。この場合は、樹脂材8Tがスプリング効果を有し、バネ材としての機能が発揮されるように形成されている。したがって、樹脂材8Tが回転軸4と摺接し熱負荷が加わるときの応力集中を緩和することができ、回転軸4の外周面から離脱(逃げ)が容易になる。この樹脂材8Tは回転軸4と摺接し発熱するので、高温に曝されることから、材質としては、耐熱性の高い材料が使用されるのが望ましい。もちろんこの材質に限定されるものではない。このような構成であれば、例えばガス圧縮室Cが高圧となつた場合、その圧力を受け図4に示すように、樹脂材8Tの曲折部はさらに曲折してガスのモータ室側への放出を可能にする。図3に示す形状の樹脂材8Tの場合、スプリング効果を有しているので、締め代を調整できる。   As shown in the figure, when attaching the resin material 8T, the inner tip portion is brought into contact with the outer peripheral surface of the rotating shaft 4. In this case, the resin material 8T is formed so as to have a spring effect and exhibit a function as a spring material. Therefore, stress concentration when the resin material 8T is in sliding contact with the rotating shaft 4 and a thermal load is applied can be reduced, and detachment (escape) from the outer peripheral surface of the rotating shaft 4 becomes easy. Since the resin material 8T slides on the rotating shaft 4 and generates heat and is exposed to high temperatures, it is desirable to use a material having high heat resistance as the material. Of course, it is not limited to this material. With such a configuration, for example, when the gas compression chamber C is at a high pressure, the bent portion of the resin material 8T is further bent as shown in FIG. Enable. In the case of the resin material 8T having the shape shown in FIG. 3, the interference can be adjusted because it has a spring effect.

図5〜図7は、この円錐状に形成した樹脂材8T組み立てる場合、熱伝達の状況によって、締め代が異なる3つの例を示している。この図5〜図7の図は、開放状態を示す図(A)と組み立てて回転軸4の外周面に接触させた状態を示す図(B)およびポンプを作動させて樹脂材8Tに変化を与えた後の状態を示す図(C)の3つが組になっている。
まず図5は樹脂材8Tの締め代が、区画壁1Sからの伝熱によって内径が膨張する量をオーバーしている例(締め代大の例)を示している。摺動による急激な発熱で内径が膨張し、図(B)に示すように締め代がなくなり、締め代の値が零になった時点で区画壁1Sからの伝熱が主になることにより、図(C)に示すように樹脂材8Tの温度が低下して内径が収縮し摺動する。このような動作を繰り返すことによって定常運転では適切な間隙ができにくい例である。
FIGS. 5 to 7 show three examples in which the interference is different depending on the state of heat transfer when assembling the conical resin material 8T. FIGS. 5 to 7 show a state (A) showing an open state and a figure (B) showing a state where the resin material 8T is brought into contact with the outer peripheral surface of the rotating shaft 4 and change the resin material 8T by operating the pump. The three figures in FIG. (C) showing the state after the application are provided as a set.
First, FIG. 5 shows an example in which the interference of the resin material 8T exceeds the amount by which the inner diameter expands due to the heat transfer from the partition wall 1S (an example of a large interference). The inner diameter expands due to rapid heat generation due to the sliding, and the interference is eliminated as shown in FIG. (B), and the heat transfer from the partition wall 1S is mainly performed when the interference becomes zero. As shown in FIG. 7C, the temperature of the resin material 8T decreases, the inner diameter shrinks, and the resin material 8T slides. This is an example in which it is difficult to form an appropriate gap in a steady operation by repeating such an operation.

図6は樹脂材8Tの締め代が、区画壁1Sからの伝熱によって図(B)に示すように内径が膨張する量より微妙に少ない場合の例(締め代適正の例)を示している。摺動による急激な発熱で内径が膨張した後、区画壁1Sからの伝熱によって内径を膨張させ図(C)に示すように極微小な間隙を形成する。締め代は図2に示すような小さく適正な間隙CLが形成される例である。
図7は樹脂材8Tの締め代が、区画壁1Sからの伝熱によって内径が膨張する量が少ないかまたは零の場合の例(締め代小の例)を示している。運転開始後の区画壁1Sからの伝熱によって摺動による急激な発熱で内径が膨張した後、区画壁1Sからの伝熱によって図(C)に示すように内径を膨張させ間隙が形成される。図8はこれら締め代の異なる3つの例の違いを図解する図である。
FIG. 6 shows an example in which the interference of the resin material 8T is slightly smaller than the amount of expansion of the inner diameter due to the heat transfer from the partition wall 1S as shown in FIG. . After the inner diameter is expanded by rapid heat generation due to the sliding, the inner diameter is expanded by heat transfer from the partition wall 1S to form an extremely small gap as shown in FIG. The interference is an example in which a small and appropriate gap CL as shown in FIG. 2 is formed.
FIG. 7 shows an example (an example of a small interference) in which the interference of the resin material 8T has a small or zero expansion amount of the inner diameter due to the heat transfer from the partition wall 1S. After the inner diameter is expanded by rapid heat generated by sliding due to heat transfer from the partition wall 1S after the start of operation, the inner diameter is expanded by heat transfer from the partition wall 1S to form a gap as shown in FIG. . FIG. 8 is a diagram illustrating a difference between three examples having different interferences.

すなわち、図8は縦軸に運転時間をとり横軸に初期締め代の大きさを取っている。図から明らかなように、左方域は「運転中締め代小」であり、右方域は「運転中締め代大」そして、中間域は「運転中締め代適正」である。左方域の「運転中締め代小」では運転中、回転軸4と樹脂材8との間にすきまが生じている。他方、右方域の「運転中締め代大」では運転中、回転軸4と樹脂材8(樹脂材8Tも含む、以下同じ)とは摺動している。そして、中間域は「運転中締め代適正」では、運転中、回転軸4と樹脂材8との間隔は極微小すきまが生じ適正な運転が行なわれる。   That is, in FIG. 8, the vertical axis represents the operation time, and the horizontal axis represents the magnitude of the initial interference. As is apparent from the figure, the left area is “low operating margin”, the right area is “high operating margin”, and the middle area is “appropriate operating margin”. In the “close operation margin during operation” in the left region, a clearance is generated between the rotating shaft 4 and the resin material 8 during operation. On the other hand, in the right-hand area “Driving allowance during operation”, the rotating shaft 4 and the resin material 8 (including the resin material 8T, the same applies hereinafter) slide during operation. In the intermediate region, when "the interference during operation is appropriate", the interval between the rotating shaft 4 and the resin material 8 has an extremely small clearance during the operation, and the operation is properly performed.

なお、図8において初期締め代上限点は、初期組立て時の締め代過大により、摺動による押さえ付け力が過剰となり、長時間の運転中に損傷に至る地点を示し、初期締め代下限点は、初期組立て時の締め代小により、運転時の間隙が大きくなり、ガス漏れ量が過大になる状態が発生する地点を示している。
したがって、初期締め代の範囲は、この下限点と上限点との間に設定する必要がある。そして、この中間の地点での設定によって、長時間の運転中でも回転軸4と樹脂材8との間隔は極微小すきまが維持され、過度な押さえつけや過大なガス漏れは生じない。
In FIG. 8, the upper limit of the initial interference is a point at which the pressing force due to sliding becomes excessive due to excessive interference at the time of initial assembly and damage is caused during long-time operation. The figure shows a point where the gap during operation becomes large due to the small interference at the time of initial assembly, and the state where the amount of gas leakage becomes excessive occurs.
Therefore, it is necessary to set the range of the initial interference between the lower limit point and the upper limit point. By setting at the intermediate point, the clearance between the rotating shaft 4 and the resin material 8 is maintained at an extremely small clearance even during long-time operation, so that excessive pressing and excessive gas leakage do not occur.

図9〜図12は、樹脂材8Tが一時的に回転軸4との接触を解くことができるよう構成された実施例を示す。図9は、樹脂材8Tの取り付けを行うための押え具9の上方に電熱器11を設置したものである。電熱器11はリード線12から電気エネルギーの供給を受けると発熱し、樹脂材8Tは図10に示すように膨張拡張して回転軸4との接触が解かれ非接触状態となる。
図11は樹脂材8K自体に電熱線13を埋設した例を示す。この電熱線13は樹脂材8Kに埋設させる関係で曲折形で示すが、面状の電熱線でもよい。リード線14からの電気エネルギーの供給を受けることにより電熱線13は加熱され、樹脂材8Kが膨張、拡張する。すると図12に示すように回転軸4との接触が解かれる。電気エネルギーの供給はスイッチ(図示せず)のON、OFFによって行われるが、これらの作動機器はたとえば釣合試験機に設置される。なお、これら図9〜図12に示される符号で図1〜図4までの符号と同一の符号はこれら図1〜図4と同一のものであり、これらの詳細な説明は省略する。
FIG. 9 to FIG. 12 show an embodiment in which the resin material 8 </ b> T can be temporarily released from contact with the rotating shaft 4. FIG. 9 shows a state in which an electric heater 11 is installed above a retainer 9 for attaching the resin material 8T. The electric heater 11 generates heat when supplied with electric energy from the lead wire 12, and the resin material 8T expands and expands as shown in FIG.
FIG. 11 shows an example in which the heating wire 13 is embedded in the resin material 8K itself. The heating wire 13 is shown in a bent shape because it is embedded in the resin material 8K, but may be a planar heating wire. The heating wire 13 is heated by receiving the supply of electric energy from the lead wire 14, and the resin material 8K expands and expands. Then, the contact with the rotating shaft 4 is released as shown in FIG. The supply of electric energy is performed by turning on and off a switch (not shown), and these operating devices are installed in, for example, a balance testing machine. The same reference numerals in FIGS. 9 to 12 as those in FIGS. 1 to 4 are the same as those in FIGS. 1 to 4, and the detailed description thereof will be omitted.

本発明が提供する高速回転機器は以上詳述したとおりであるが、発明の構成は上記あるいは図示例に示される構成に限定されるものではなく、種々の変形例をも包含する。
まず、樹脂材8や樹脂材8Tの形状について、図示例では平板の円盤状の形をした例であるが、平板状に限定されるものではなく、均一な厚さを有しない樹脂体たとえば不均一な塊状の樹脂材を貫通孔1Aの内周面に付設したものでもよい。また、回転軸4に対して垂直方向に樹脂材8を展設させ、貫通孔1Aを封じる形とする樹脂材でもよい。そして、ポンプ作動による発熱や摩耗によって貫通孔1Aを封じた樹脂材8が変形し、回転軸4との間に微小で適正な間隙CLを形成する例も本発明は包含する。ただ、本発明においては、実施例に示すように、板状にしてバネ機能を持たせる例が適切な間隙が形成されやすく有益である。
Although the high-speed rotating device provided by the present invention has been described in detail above, the configuration of the invention is not limited to the configuration described above or shown in the illustrated examples, but includes various modifications.
First, the shape of the resin material 8 or the resin material 8T is a flat disk shape in the illustrated example. However, the shape is not limited to a flat plate shape. A uniform lump of resin material may be provided on the inner peripheral surface of the through hole 1A. Alternatively, a resin material in which the resin material 8 is extended in a direction perpendicular to the rotation shaft 4 to seal the through hole 1A may be used. The present invention also includes an example in which the resin material 8 that seals the through hole 1A is deformed due to heat generation and wear caused by the operation of the pump, and a minute and appropriate gap CL is formed between the resin material 8 and the rotating shaft 4. However, in the present invention, as shown in the embodiment, an example in which a plate-shaped spring function is provided is advantageous because an appropriate gap is easily formed.

つぎに、樹脂材8や樹脂材8Tを貫通孔1Aの内周面に付設する方法であるが、図示例のように挟持式に保持する構成には限定されない。貫通孔1Aの内周面に大きな凹凸を形成して樹脂材8を射出させて付着させることも可能である。或いは溶着させる方法でもよい。また、この樹脂材8の材質についてはゴム系やポリテトラフルオロエチレン系の材料に限定されず、弾性の性質を保有し、スプリング効果を発揮するあらゆる樹脂材8や樹脂材8Tが適用可能である。区画壁1Sの構成についても必ずしもハウジング1と一体でなくてもよく、ハウジング1に異質の材料を介在させて、ハウジング1とその部材にて区画壁1Sを形成してもよい。   Next, a method of attaching the resin material 8 or the resin material 8T to the inner peripheral surface of the through-hole 1A is not limited to a configuration in which the resin material 8 or the resin material 8T is held in a sandwiching manner as in the illustrated example. It is also possible to form a large unevenness on the inner peripheral surface of the through hole 1A and inject and adhere the resin material 8. Alternatively, a welding method may be used. Further, the material of the resin material 8 is not limited to a rubber-based or polytetrafluoroethylene-based material, and any resin material 8 or 8T having an elastic property and exhibiting a spring effect can be applied. . The configuration of the partition wall 1S is not necessarily integral with the housing 1, and the housing 1 and its members may form the partition wall 1S with a foreign material interposed in the housing 1.

本発明の基本的な構成の要部を拡大して示す縦断面図である。1 is an enlarged longitudinal sectional view showing a main part of a basic configuration of the present invention. 本発明の基本的な構成の要部を拡大して示す縦断面図である。1 is an enlarged longitudinal sectional view showing a main part of a basic configuration of the present invention. 本発明の具体的な構成の要部を拡大して示す縦断面図である。FIG. 3 is an enlarged longitudinal sectional view showing a main part of a specific configuration of the present invention. 本発明の具体的な構成の要部を拡大して示す縦断面図である。FIG. 3 is an enlarged longitudinal sectional view showing a main part of a specific configuration of the present invention. 本発明の構成を説明するため要部を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a main part for describing the configuration of the present invention. 本発明の構成を説明するため要部を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a main part for describing the configuration of the present invention. 本発明の構成を説明するため要部を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a main part for describing the configuration of the present invention. 本発明の特性を図解するための図である。It is a figure for illustrating the characteristic of the present invention. 本発明の要部の構成を示す縦断面図である。It is a longitudinal section showing the composition of the important section of the present invention. 本発明の要部の作動を示す図である。It is a figure showing operation of an important section of the present invention. 本発明の要部の構成を示す縦断面図である。It is a longitudinal section showing the composition of the important section of the present invention. 本発明の要部の作動を示す図である。It is a figure showing operation of an important section of the present invention. 従来における高速回転機器の構成を示す縦断面図である。It is a longitudinal section showing the composition of the conventional high-speed rotating device.

符号の説明Explanation of reference numerals

1 ハウジング
1A 貫通孔
1H 排気口
1K 吸気口
1Y オイル槽
1D 段部
2 モータ
2K 電極コイル
2M 回転子
3 インバータ
4 回転軸
4S 取付軸
4H 中空孔
4T 射出孔
5 上部転がり軸受
6 下部転がり軸受
7 ターボ翼
8 樹脂材
8K 樹脂材
8T 樹脂材
9 押え具
10 固定ねじ
11 電熱器
13 電熱線
12 リード線
14 リード線
R 排気パイプ
VP 真空ポンプ
C ガス圧縮室
M モータ室
S シール部
L オイル
1S 区画壁
CL 間隙
DESCRIPTION OF SYMBOLS 1 Housing 1A Through-hole 1H Exhaust port 1K Intake port 1Y Oil tank 1D Step part 2 Motor 2K Electrode coil 2M Rotor 3 Inverter 4 Rotating shaft 4S Mounting shaft 4H Hollow hole 4T Injection hole 5 Upper rolling bearing 6 Lower rolling bearing 7 Turbo blade Reference Signs List 8 resin material 8K resin material 8T resin material 9 retainer 10 fixing screw 11 electric heater 13 electric heating wire 12 lead wire 14 lead wire R exhaust pipe VP vacuum pump C gas compression chamber M motor chamber S seal portion L oil 1S partition wall CL gap

Claims (4)

ガス圧縮を行なうターボ翼と、このターボ翼を高速回転駆動するモータと、この両者を連結する垂直に配設された回転軸と、この回転軸を回転自在に保持する軸受機構と、前記ターボ翼が配設されたガス圧縮室と前記軸受機構およびモータが配設されたモータ室を区画する区画壁を有し、この区画壁に前記回転軸を貫通させる貫通孔を穿設するとともにこの貫通孔と回転軸との間にシール機構が設けられ、前記ターボ翼の高速回転駆動によって吸気口からのガスを圧縮して排気口に排出する高速回転機器において、前記シール機構は、前記貫通孔の全内周面から回転軸に向けて付設された樹脂材で構成され、この樹脂材はポンプ組立時には回転軸全周面に接触し、ポンプ作動時は回転軸との摺接による発熱または摩耗によって回転軸との間にシール機能を有する間隙が形成されるよう変形することを特徴とするターボ形高速回転機器。   A turbo-blade for performing gas compression, a motor for rotating the turbo-blade at a high speed, a vertically arranged rotating shaft connecting the two, a bearing mechanism for rotatably holding the rotating shaft, and the turbo-blade And a partition wall for partitioning the motor chamber in which the gas compression chamber and the bearing mechanism and the motor are disposed, and a through-hole for penetrating the rotary shaft is formed in the partition wall. And a rotary shaft, a seal mechanism is provided, and high-speed rotating equipment that compresses a gas from an intake port and discharges the gas to an exhaust port by high-speed rotation driving of the turbo blade, wherein the seal mechanism includes the entirety of the through hole. It is composed of a resin material attached from the inner peripheral surface to the rotating shaft, and this resin material contacts the entire peripheral surface of the rotating shaft when assembling the pump, and rotates due to heat or wear caused by sliding contact with the rotating shaft when the pump is operating. Between the axis Turbo-type high-speed rotating equipment, characterized by deformed to a gap having Lumpur function is formed. 樹脂材は、一定の厚さを有しかつその中段から内方端までが圧縮室側の圧力によって撓むことができる弾性を有することを特徴とする請求項1記載のターボ形高速回転機器。   2. The turbo-type high-speed rotating device according to claim 1, wherein the resin material has a constant thickness and has elasticity such that a portion from a middle stage to an inner end thereof can be bent by a pressure on the compression chamber side. 樹脂材は、その中段から内方端までが曲折され円錐状をなしていることを特徴とする請求項1記載のターボ形高速回転機器。   2. The turbo-type high-speed rotating device according to claim 1, wherein the resin material has a conical shape bent from a middle stage to an inner end thereof. 樹脂材の内方または近傍に電熱器を設けたことを特徴とする請求項2または請求項3記載のターボ形高速回転機器。   The turbo-type high-speed rotating device according to claim 2 or 3, wherein an electric heater is provided inside or near the resin material.
JP2004032041A 2003-02-14 2004-02-09 Turbo high-speed rotary apparatus Pending JP2004263696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032041A JP2004263696A (en) 2003-02-14 2004-02-09 Turbo high-speed rotary apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003037280 2003-02-14
JP2004032041A JP2004263696A (en) 2003-02-14 2004-02-09 Turbo high-speed rotary apparatus

Publications (1)

Publication Number Publication Date
JP2004263696A true JP2004263696A (en) 2004-09-24

Family

ID=33133998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032041A Pending JP2004263696A (en) 2003-02-14 2004-02-09 Turbo high-speed rotary apparatus

Country Status (1)

Country Link
JP (1) JP2004263696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040115A (en) * 2005-08-01 2007-02-15 Shimadzu Corp Turbo type rotating apparatus
JP2018194104A (en) * 2017-05-18 2018-12-06 株式会社ディスコ Rotary joint and manufacturing method of rotary joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040115A (en) * 2005-08-01 2007-02-15 Shimadzu Corp Turbo type rotating apparatus
JP2018194104A (en) * 2017-05-18 2018-12-06 株式会社ディスコ Rotary joint and manufacturing method of rotary joint

Similar Documents

Publication Publication Date Title
US7063519B2 (en) Motor driven centrifugal compressor/blower
US11067080B2 (en) Low cost scroll compressor or vacuum pump
US6786488B2 (en) Seal structure, turbine having the same, and leak-preventing seal system for rotating shaft
JP2006097585A (en) Mounting structure for air separator and gas turbine provided with the same
JP2004197741A (en) Method and apparatus for sealing variable vane assembly of gas turbine engine
CN205370973U (en) Scroll compressor and air conditioner
RU2342540C2 (en) Guiding unit for blade with adjustable setting angle
US11441487B2 (en) Turbomachine with internal bearing and rotor-spline interface cooling and systems incorporating the same
US6887038B2 (en) Methods and apparatus to facilitate sealing between rotating turbine shafts
JP2004263696A (en) Turbo high-speed rotary apparatus
JP2006214341A (en) Turbo rotating equipment
JP4639666B2 (en) Turbo type high speed rotating equipment
CN218444466U (en) Accelerated verification testing machine for service life of shaft seal
CN216382245U (en) Gas bearing assembly and gas turbine
CN105822569B (en) Compressor diffuser and shield for motor driven compressor
JPH06346749A (en) Exhaust turbo-supercharger
EP2434159A2 (en) Scroll compressor with a check valve
CN208294693U (en) A kind of main shaft with fan suitable for accumulation of energy unit
JP2007064139A (en) High speed rotation device
KR20020038511A (en) Compressor having a seal member for supporting a shaft during assembly
JP2004150372A (en) High-speed rotating machine
US20230167849A1 (en) Turbo fluid machine
KR100431413B1 (en) Sealing structure of motor having dynamic pressure bearing
KR20130074780A (en) Turbo blower&#39;s sealing connection
CN114923682B (en) Shaft seal service life acceleration verification testing machine and testing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303