JP2004263663A - Starting operation method of premixed compression ignition engine and premixed compression ignition engine - Google Patents

Starting operation method of premixed compression ignition engine and premixed compression ignition engine Download PDF

Info

Publication number
JP2004263663A
JP2004263663A JP2003057093A JP2003057093A JP2004263663A JP 2004263663 A JP2004263663 A JP 2004263663A JP 2003057093 A JP2003057093 A JP 2003057093A JP 2003057093 A JP2003057093 A JP 2003057093A JP 2004263663 A JP2004263663 A JP 2004263663A
Authority
JP
Japan
Prior art keywords
combustion chamber
compression ignition
air
spark
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003057093A
Other languages
Japanese (ja)
Other versions
JP4225805B2 (en
Inventor
Takahiro Sako
孝弘 佐古
Norimasa Iida
訓正 飯田
Shunsaku Nakai
俊作 中井
Koji Moriya
浩二 守家
Shingo Yakushiji
新吾 薬師寺
Hironori Sato
裕紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003057093A priority Critical patent/JP4225805B2/en
Publication of JP2004263663A publication Critical patent/JP2004263663A/en
Application granted granted Critical
Publication of JP4225805B2 publication Critical patent/JP4225805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize technology of starting operation for keeping stable operating condition without remarkable lowering of equivalence ratio of mixture in a combustion chamber in transition to the premixed compression ignition operation after spark ignition operation of spark igniting the mixture in the combustion chamber in the starting operation of the premixed compression ignition engine adapted to perform self-ignition by compressing the mixture in the combustion chamber. <P>SOLUTION: After spark ignition operation is performed, the transition to increase exhaust gas recirculation quantity is performed to start the premixed compression ignition operation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼室において混合気を圧縮して自己着火させる予混合圧縮着火エンジンの起動時において、燃焼室において混合気を火花点火する火花点火運転を実行した後に予混合圧縮着火運転に移行する起動運転技術に関する。
【0002】
【従来の技術】
燃料を希薄状態で高圧縮して自己着火燃焼させることで高効率化及び低NOx化を実現可能なエンジンとして、燃料の自己着火を積極的に利用する予混合圧縮着火エンジンがある。
かかる予混合圧縮着火エンジンは、ディーゼルエンジンの様に圧縮空気中に燃料を噴射するのではなく、火花点火エンジンの様に空気と燃料との混合気を燃焼室に供給し、その混合気を高圧縮し混合気の発火点まで昇温させて、自己着火燃焼させるように構成されている。また、このような予混合圧縮着火エンジンは、ディーゼルエンジンの様に燃料を高圧縮して燃焼室に噴射する必要がないので、天然ガス等の気体燃料を用いたガスエンジンに簡単に適用することができる。
【0003】
また、予混合圧縮着火エンジンでは、燃焼室において混合気を圧縮することで発火点まで昇温させて自己着火させる所謂予混合圧縮着火運転を行うので、シリンダ等の温度が比較的低く、エンジンが未だ暖機されていない起動時等においては、混合気を圧縮しても十分に発火点まで昇温させることができず、失火等の発生により安定した予混合圧縮着火運転を維持することができないことがある。
【0004】
そこで、予混合圧縮着火エンジンの起動運転において、起動・暖機を良好に行うために、燃焼室に点火プラグを設け、エンジンが未暖機状態の期間には、過給機の過給圧可変機構により過給圧を低下させると共に、燃焼室に火花点火可能な当量比の混合気を供給し、燃焼室において混合気を点火プラグにより火花点火する所謂火花点火運転を行い、エンジンの暖機が完了した後に、過給圧を上昇させたり新気の加熱を開始したりして、燃焼室に形成される混合気の温度を上昇させて、前述の予混合圧縮着火運転に移行する場合がある(例えば、特許文献1−3参照。)。
ところで、火花点火運転と予混合圧縮着火運転との違いは、前者では、ノッキングを防止する為、燃焼室に形成される混合気温度を低くする必要があるのに対し、後者では、自己着火を促す為、高い混合気温度を必要とすることであるが、圧縮着火によっても温度が高すぎると過早着火となり、やはりうまく運転できない場合がある。また、予混合圧縮着火運転と火花点火運転では、必要当量比も異なる。
【0005】
【特許文献1】
特開2001−140681号公報
【特許文献2】
特開2001−271671号公報
【特許文献3】
特開2000−220484号公報
【0006】
【発明が解決しようとする課題】
しかし、前述の従来技術では、火花点火運転を行う際には、燃焼室において火花点火される混合気の当量比を、理論当量比付近の火花点火可能範囲内とする必要があるが、予混合圧縮着火運転を行う際には、過早着火によるノッキングの回避のために、自己着火する混合気の当量比を、上記火花点火範囲内よりも小さい希薄範囲内とする必要があった。よって、上記火花点火運転から上記予混合圧縮着火運転に移行する際に、燃焼室において混合気の自己着火が開始されると同時に、上記当量比を急激に低下させる必要があるが、初期の自己着火は安定したものでないので、当量比の急激な低下により混合気が自己着火しなくなり、運転を維持することができなくなることがある。
尚、燃焼室における当量比とは、理論空燃比を、燃焼室に形成される混合気の空燃比で割ったもので、それが1より小さい場合は空気過剰、1より大きい場合は燃料過剰である。
【0007】
従って、本発明は、上記の事情に鑑みて、予混合圧縮着火エンジンにおいて、火花点火運転を行った後に予混合圧縮着火運転に移行する際に、燃焼室における混合気の当量比を大幅に低下させる必要がなく、安定した運転状態を維持することができる起動運転の技術を実現することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するための本発明に係る予混合圧縮着火エンジンの起動運転方法は、燃焼室において混合気を火花点火可能、及び、排ガス再循環量を調整可能に構成された予混合圧縮着火エンジンの起動運転時において、
前記燃焼室において混合気を火花点火する火花点火運転を実行した後に、前記排ガス再循環量を増加させる移行操作を行って、前記燃焼室において混合気を圧縮して自己着火させる予混合圧縮着火運転を開始する点を特徴とする。
【0009】
また、上記予混合圧縮着火エンジンの起動運転方法を実行可能に構成され、上記目的を達成するための本発明に係る予混合圧縮着火の第一特徴構成は、燃焼室において混合気を火花点火可能な点火プラグと、排ガス再循環量を調整可能な排ガス再循環量調整手段とを備え、
起動運転時において、前記点火プラグを働かせて前記燃焼室において混合気を火花点火する火花点火運転を実行した後に、前記再循環量調整手段を働かせて前記排ガス再循環量を増加させる移行操作を行って、前記燃焼室において混合気を圧縮して自己着火させる予混合圧縮着火運転を開始する起動運転制御を実行する制御手段を備えた点にある。
【0010】
本願発明者らは、予混合圧縮着火エンジンにおいて、燃焼室に給気される新気に排ガスを再循環させ、その排ガス再循環量を新気に対して50%程度と高くすることで、燃焼室における混合気の当量比が例えば火花点火可能範囲付近であっても、燃焼室における自己着火後の燃焼を緩慢にして、ノッキングを回避した安定運転を維持することができることを見出し、それを、予混合圧縮着火エンジンの起動運転技術に応用し、本発明を完成した。
【0011】
即ち、本発明に係る予混合圧縮着火エンジン及びその起動運転方法によれば、予混合圧縮着火エンジンの起動時において火花点火運転を行った後に予混合圧縮着火運転に移行する際に、燃焼室における混合気の当量比を大幅に低下させる必要がなく、安定した運転状態を維持して、予混合圧縮着火運転に移行することができる。
【0012】
詳しくは、上記制御手段により、先ず、上記火花点火運転を実行してエンジンを暖機し、暖機が完了したと判断した時に、上記移行操作を実行する。そして、その移行操作において、燃焼室に形成される混合気温度が徐々に上昇されて、燃焼室における混合気の自己着火を誘起しながら、燃焼室へ再循環される排ガスの再循環量を上記混合気温度上昇に合わせて増加して、燃焼室における混合気の燃焼状態を徐々に緩慢な状態とする。すると、上記移行操作において、燃焼室における混合気の当量比が火花点火可能範囲付近であっても、ノッキングを回避して安定運転を維持したまま、予混合圧縮着火運転に移行することができる。
【0013】
本発明に係る予混合圧縮着火エンジンの第二特徴構成は、上記第一特徴構成に加えて、火花点火停止状態の前記点火プラグの電極間におけるイオン電流の発生状態に基づいて、前記燃焼室における燃焼状態を検出する燃焼状態検出手段を備え、
前記制御手段が、前記移行操作において、前記点火プラグを火花点火停止状態として前記燃焼状態検出手段により前記燃焼状態を検出し、前記検出した燃焼状態に基づいて、前記予混合圧縮着火運転への移行完了を判定する点にある。
【0014】
即ち、上記第二特徴構成によれば、上記燃焼状態検出手段により、燃焼室に設けられた点火プラグを火花点火停止状態において所謂イオンプローブとして利用して、電位差を与えた点火プラグの電極間に火炎が到達することで発生するイオン電流の発生状態に基づいて、燃焼室における燃焼状態を検出することができる。そして、上記制御手段により、予混合圧縮着火エンジンを、火花点火運転後の移行操作において、点火プラグを一旦火花点火停止状態として、上記燃焼状態検出手段により燃焼室における混合気の自己着火が安定して発生しているか否かを検出し、自己着火が安定していると検出した場合には、予混合圧縮着火運転への移行完了を判定して、速やかに予混合圧縮着火運転に移行することができ、逆に、自己着火が安定していないと検出した場合には、再度点火プラグを火花点火状態として、自己着火が安定するまで混合気の燃焼を維持することができる。
【0015】
本発明に係る予混合圧縮着火エンジンの第三特徴構成は、上記第一又は第二特徴構成に加えて、前記排ガス再循環量調整手段が、排気弁の閉時期の上死点に対する進角量の調整により、前記燃焼室に残留する排ガス量を調整して、前記排ガス再循環量を調整可能なバルブタイミング可変機構で構成されている点にある。
【0016】
即ち、上記第三特徴構成によれば、バルブタイミング可変機構により、排気行程における排気弁の閉時期を上死点よりも進角した時期(言い換えれば、上死点よりも早い時期)とすることで、燃焼室の高温の排ガス(燃焼ガス)の一部が、排気路に排出されずに燃焼室に残留し、その残留した排ガスが次の給気行程において燃焼室に給気される新気と混合し、所謂排ガス再循環を行うことができる。
よって、上記バルブタイミング可変機構により、排気弁の閉時期の上死点に対する進角量を調整することにより、燃焼室に残留する排ガス量を調整して、前記排ガス再循環量を調整することができ、バルブタイミング可変機構を、排ガス再循環量調整手段として機能させることができる。
更に、上記バルブタイミング可変機構を、排ガス再循環量調整手段として機能させて、予混合圧縮着火エンジンの火花点火運転後の移行操作において、上記排気弁の閉時期の上死点に対する進角量を徐々に増加させて、新気への高温排ガスの再循環量を増加させることで、同時に、燃焼室に形成される混合気温度を上昇させて、燃焼室における混合気の自己着火を誘起させることができる。
【0017】
【発明の実施の形態】
本発明に係る予混合圧縮着火エンジンの実施形態を、図面に基づいて説明する。
【0018】
図1に示す予混合圧縮着火エンジン100には、シリンダ5の内面とピストン3の頂面とで規定される燃焼室2と、燃焼室2に給気弁7を介して接続された給気路12と、燃焼室2に排気弁8を介して接続された排気路13とが設けられている。
【0019】
ピストン3は連結棒4に揺動自在に連結されており、ピストン3の往復動は連結棒4によって1つのクランク軸(図示せず)の回転運動として得られ、このような構成は通常のエンジンと変わるところが無い。
【0020】
給気路12を流通する空気A(新気)は、適宜過給機等により過給された後に、後述のアフタークーラ15を通過し、ミキサ18において天然ガス系都市ガスの燃料Gが供給されて混合気となり、燃焼室2に給気される。
【0021】
そして、予混合圧縮着火エンジン100は、燃焼室2に給気された混合気を、ピストン3の上昇により圧縮して発火点まで昇温させることで、混合気が自己着火して燃焼する所謂予混合圧縮着火運転を行って燃料を燃焼させるように構成されている。
【0022】
予混合圧縮着火エンジン100には、コンピュータからなるエンジン・コントロール・ユニット(以下、ECUと呼ぶ)30が設けられ、ECU30は、予混合圧縮着火エンジンの起動運転制御等の各種制御を行うように構成されている。
【0023】
給気路12に設けられたアフタークーラ15は、シリンダ5等を冷却して高温となった冷却水、又は、燃焼室2から排出された高温の排ガス等の温媒体Dとの熱交換により、給気路12を流通する空気Aを加熱可能に構成されている。
更に、温媒体量調整弁16は、アフタークーラ15への温媒体Dの供給量を調整して、給気路12を流通する空気Aの温度を調整し、燃焼室2に形成される混合気温度を調整可能な混合気温度調整手段Xとして機能する。
そして、ECU30は、給気路12の給気弁7近傍に設けられた温度センサ24の検出結果に基づいて、温媒体量調整弁16によりアフタークーラ15への温媒体Dの供給量を調整して、給気路12を流通する新気の温度が所定の目標温度となるように制御する。
【0024】
また、ミキサ18に供給される燃料Gは、燃料量調整弁19により流量調整可能に構成されている。そして、ECU30は、例えば、排気路13に設けられ、排ガスの酸素濃度を検出可能な酸素センサ25の検出結果に基づいて、燃料Gの供給量を調整して、燃焼室2における混合気の当量比を所定の目標当量比となるように制御する。
【0025】
予混合圧縮着火エンジン100には、排ガス再循環量調整手段Yとして、排気路13と給気路12とを接続し、排気路13の排ガスを給気路12に再循環させるためのEGR流路21と、その排ガスの再循環量を調整するためのEGR量調整弁22とが設けられている。そして、ECU30は、例えば、クランク軸の回転数により認識可能な燃焼室2への吸入新気量に基づいて、EGR量調整弁22の開度を調整して、新気に対する排ガスの再循環率を所定の再循環率となるように制御する。
【0026】
また、予混合圧縮着火エンジン100には、燃焼室2に給気された混合気を火花点火可能な点火プラグ26が設けられ、ECU30は、上記点火プラグ26による点火の開始及び停止、更には、点火時期の制御を行う。
【0027】
更に、予混合圧縮着火エンジン100には、火花点火停止状態とされた点火プラグ26の電極間におけるイオン電流の発生状態に基づいて、燃焼室2における燃焼状態を検出する燃焼状態検出手段27を備え、ECU30は、点火プラグ26を一旦火花点火停止状態とし、上記燃焼状態検出手段27の検出結果により、燃焼室2において混合気が安定して自己着火している否かを認識することができる。
【0028】
このような予混合圧縮着火エンジン100は、前述のように、燃焼室2において混合気を圧縮して自己着火させる予混合圧縮着火運転を行って燃料Gを燃焼させるため、例えば圧縮比を21程度と高く設定することができるため高効率であり、さらに混合気の当量比を例えば火炎伝播下限以下と希薄状態で燃焼させることができるため低NOxを実現することができる。
【0029】
しかし、このような予混合圧縮着火エンジン100は、起動運転時の未だ十分に暖機されていない時には、混合気を燃焼室2において圧縮しても充分に昇温させることができないので、自己着火のタイミングが変化したり、混合気を自己着火させたりすることができず、安定して予混合圧縮着火運転を行うことができない場合がある。
【0030】
そこで、予混合圧縮着火エンジン100のECU30は、上記起動運転時において、燃焼室2において混合気を点火プラグ26により火花点火する火花点火運転を実行し、暖機が完了してから、所定の移行操作を行って、燃焼室2において混合気を安定して自己着火させる予混合圧縮着火運転を開始する起動運転方法を実行する制御手段Zとして機能する。
【0031】
次に、上記予混合圧縮着火エンジン100の起動運転方法の詳細について、図2に基づいて説明する。
尚、図2は、予混合圧縮着火エンジン100の起動運転時における、排ガス再循環率、新気温度、及び、当量比の時間経過に対する変化状態を示す図である。
【0032】
上記ECU30は、上記火花点火運転から上記予混合圧縮着火運転への移行操作として、温媒体量調整弁16を働かせて燃焼室2に給気される新気温度を上昇させながら、EGR量調整弁22を働かせて、新気に対する排ガス再循環量を増加させる移行操作を実行する。
【0033】
即ち、ECU30は、予混合圧縮着火エンジン100の起動運転時において、先ず、点火プラグ26を働かせて燃焼室2の混合気を火花点火する火花点火運転を実行するに、EGR量調整弁22により排ガス再循環量を調整して、排ガス再循環率を所定の排ガス再循環率Eb(%)に設定すると共に、温媒体量調整弁16によりアフタークーラ15への温媒体の供給量を調整して、新気温度を所定の新気温度Tc(℃)に設定し、燃料量調整弁19によりミキサ18への燃料供給量を調整して、燃焼室2に給気される混合気の当量比を所定の当量比φaに設定する。尚、本実施形態において、火花点火運転時において設定される排ガス再循環率Eb(%)は0又はその近傍とされ、新気温度Tc(℃)は上記アフタークーラ15に温媒体を供給していないときの大気温度に近い比較的低い値とされ、当量比φaは、燃焼室2において火花点火可能な1又はその近傍の火花点火可能範囲内とされている。
【0034】
次に、ECU30は、上記火花点火運転を実行し、例えば、エンジン冷却水温度が上昇して所定の温度に到達したとき、又は、シリンダ5の温度が上昇して所定の温度に到達したときに、暖機が完了したと判断し、次の移行操作を実行する。
この移行操作においては、予混合圧縮着火エンジン100の排ガス再循環率がEb(%)から所定のEa(%)(例えば、50%)に徐々に上昇され、更に、新気温度がTc(℃)から所定のTa(℃)に徐々に上昇される。
すると、この移行操作中においては、新気温度が徐々に上昇されて、燃焼室2における混合気の自己着火が誘起されながら、燃焼室2への排ガスの再循環率が上記新気温度上昇に合わせて増加して、燃焼室2における混合気の燃焼状態が徐々に緩慢な状態とされる。よって、上記移行操作において、燃焼室2における混合気の当量比が比較的燃料が多い火花点火可能範囲付近であっても、ノッキングを回避して安定運転を維持することができる。また、移行操作において、ECU30は、点火プラグ26を1又は数サイクルの間の火花点火停止状態として、前述の燃焼状態検出手段27の検出結果により、燃焼室2において混合気が安定して自己着火している状態であると判断したときに、前述の予混合圧縮着火運転が開始したと判断することができる。また、上記点火プラグ26は、上記予混合圧縮着火運転が開始したと判断した時点で完全に停止しても構わないが、上記予混合圧縮着火運転が開始したと判断した後の例えば一定時間経過まで働かせておいても構わない。
【0035】
尚、上記移行操作において、燃焼室2における当量比は、上記排ガス再循環率の上昇に伴って、φaからφbに低下させても構わない。
【0036】
また、上記ECU30は、上記予混合圧縮着火運転に移行した後に、下記の新気温度低下操作及び当量比低下操作を実行するように構成されている。
即ち、ECU30は、先ず、排ガス再循環率を、ノッキングセンサ31でノッキングが検出されるまで低下させた後に、新気温度を所定量低下させるという新気温度低下操作を例えば新気温度が所定の温度Tb(℃)となるまで繰り返し実行する。更に、ECU30は、排ガス再循環率を、ノッキングセンサ31でノッキングが検出されるまで低下させた後に、当量比を所定量低下させるという当量比低下操作を例えば当量比が所定の当量比φcとなるまで繰り返し実行する。
このような新気温度低下操作及び当量比低下操作を行うことで、失火等を回避して安定した運転状態を維持しながら、新気温度が比較的低くても希薄混合気を自己着火させることができる予混合圧縮着火運転を実行することができ、更なる高効率化且つ低NOx化を図ることができる。
【0037】
〔別実施の形態〕
次に、本発明の別の実施の形態を図面に基づいて説明する。
【0038】
〈1〉上記実施の形態では、排ガス再循環量調整手段YとしてのEGR流路21及びEGR量調整弁22を設けると共に、混合気温度調整手段Xとしてのアフタークーラ15の温媒体量調整弁16により新気の温度を調整したが、別に、上記排ガス再循環量調整手段Y及び混合気温度調整手段Xを、バルブタイミング可変機構28で構成することもできる。
即ち、バルブタイミング可変機構28は、少なくとも排気弁8の開閉時期を調整可能に構成され、その排気弁8の閉時期の上死点に対する進角量の調整により、燃焼室2に残留する高温の排ガス量を調整し、前記排ガス再循環量及び前記混合気温度を調整することができる。そして、ECU30は、予混合圧縮着火エンジン100の火花点火運転から予混合圧縮着火運転への移行操作において、上記排気弁8の閉時期の上死点に対する進角量を徐々に増加させていくことで、簡単に、前記新気温度を上昇させながら、前記排ガス再循環量を増加させることができる。
【0039】
また、混合気温度調整手段Xを、過給機の動力を調整して、又は、給気路12に設けたバルブ開度を調整して、新気の圧縮端温度を調整することにより、燃焼室2に形成される混合気の温度を調整するように構成しても構わない。
【0040】
〈2〉上記実施の形態では、本発明に係る予混合圧縮着火エンジンを単気筒型に構成した例を説明したが、別に、多気筒型の予混合圧縮着火エンジンに対しても本発明を実施することができる。
また、多気筒型の予混合圧縮着火エンジンにおいては、複数の気筒の一部ずつを順に、前記火花点火運転から前記予混合圧縮着火運転に移行操作を介して移行させることが好ましい。即ち、一部の気筒の移行操作時において、移行前又は移行してから一定時間経過して安定した運転状態を維持している他の気筒により、移行操作中の気筒の運転状態が安定するまで、クランク軸の回転を安定したものに維持して、全ての気筒をスムーズに予混合圧縮着火運転に移行させることがでできる。
【図面の簡単な説明】
【図1】本発明に係る予混合圧縮着火エンジンの実施の形態を示す概略構成図
【図2】予混合圧縮着火エンジンの起動運転時における各種状態の変化傾向を示す図
【符号の説明】
2:燃焼室
7:給気弁
8:排気弁
12:給気路
13:排気路
15:アフタークーラ
16:温媒体量調整弁
18:ミキサ
19:燃料量調整弁
21:EGR流路
22:EGR量調整弁
26:点火プラグ
27:燃焼状態検出手段
28:バルブタイミング可変機構
30:エンジン・コントロール・ユニット(ECU)
100:予混合圧縮着火エンジン
A:空気(新気)
G:燃料
E:排ガス
H:温媒体
X:混合気温度調整手段
Y:排ガス再循環量調整手段
Z:制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, when starting the premixed compression ignition engine that compresses the air-fuel mixture in the combustion chamber and self-ignites, the operation proceeds to the premixed compression ignition operation after performing the spark ignition operation of spark-igniting the air-fuel mixture in the combustion chamber. Related to startup driving technology.
[0002]
[Prior art]
As an engine capable of realizing high efficiency and low NOx by highly compressing fuel in a lean state and performing self-ignition combustion, there is a homogeneous charge compression ignition engine that actively utilizes self-ignition of fuel.
Such a premixed compression ignition engine does not inject fuel into compressed air as in a diesel engine, but supplies a mixture of air and fuel to a combustion chamber like a spark ignition engine and increases the mixture. It is configured to compress and raise the temperature up to the ignition point of the air-fuel mixture to perform self-ignition combustion. In addition, such a homogeneous charge compression ignition engine does not need to highly compress fuel and inject it into a combustion chamber unlike a diesel engine, so that it can be easily applied to a gas engine using a gaseous fuel such as natural gas. Can be.
[0003]
Further, in the premixed compression ignition engine, a so-called premixed compression ignition operation in which the mixture is compressed in the combustion chamber to raise the temperature to the ignition point and self-ignite is performed. During start-up, etc., which has not yet been warmed up, even if the air-fuel mixture is compressed, the temperature cannot be sufficiently raised to the ignition point, and a stable premixed compression ignition operation cannot be maintained due to the occurrence of misfire or the like. Sometimes.
[0004]
Therefore, in the starting operation of the homogeneous charge compression ignition engine, an ignition plug is provided in the combustion chamber in order to satisfactorily start and warm up the engine, and when the engine is not warmed up, the supercharging pressure of the supercharger is changed. While reducing the supercharging pressure by the mechanism, the mixture is supplied to the combustion chamber at an equivalence ratio capable of spark ignition, and a so-called spark ignition operation is performed in which the mixture is spark-ignited by a spark plug in the combustion chamber. After completion, the supercharging pressure may be increased or the heating of fresh air may be started to raise the temperature of the air-fuel mixture formed in the combustion chamber, and the operation may shift to the premixed compression ignition operation described above. (For example, refer to Patent Documents 1-3.)
By the way, the difference between the spark ignition operation and the homogeneous charge compression ignition operation is that in the former, it is necessary to lower the temperature of the air-fuel mixture formed in the combustion chamber in order to prevent knocking, whereas in the latter, self-ignition is required. In order to promote this, a high mixture temperature is required. However, if the temperature is too high even by compression ignition, premature ignition may occur, and operation may not be performed well. Further, the required equivalence ratio differs between the premixed compression ignition operation and the spark ignition operation.
[0005]
[Patent Document 1]
JP 2001-140681 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-271671 [Patent Document 3]
JP 2000-220484 A
[Problems to be solved by the invention]
However, in the above-described prior art, when performing the spark ignition operation, the equivalent ratio of the air-fuel mixture to be spark ignited in the combustion chamber needs to be within a spark ignitable range near the stoichiometric equivalent ratio. When performing the compression ignition operation, the equivalent ratio of the air-fuel mixture to be self-ignited needs to be within a lean range smaller than the spark ignition range in order to avoid knocking due to premature ignition. Therefore, when shifting from the spark ignition operation to the premixed compression ignition operation, the self-ignition of the air-fuel mixture is started in the combustion chamber, and at the same time, it is necessary to rapidly decrease the equivalent ratio. Since the ignition is not stable, the mixture may not self-ignite due to a sharp decrease in the equivalent ratio, and the operation may not be maintained.
Note that the equivalence ratio in the combustion chamber is obtained by dividing the stoichiometric air-fuel ratio by the air-fuel ratio of the air-fuel mixture formed in the combustion chamber. is there.
[0007]
Therefore, in view of the above circumstances, the present invention significantly reduces the equivalence ratio of the air-fuel mixture in the combustion chamber when shifting to the homogeneous charge compression ignition operation after performing the spark ignition operation in the homogeneous charge compression ignition engine. An object of the present invention is to realize a startup operation technique that does not need to be performed and can maintain a stable operation state.
[0008]
[Means for Solving the Problems]
A starting operation method of a premixed compression ignition engine according to the present invention for achieving the above object is a premixed compression ignition engine configured to be capable of spark ignition of an air-fuel mixture in a combustion chamber and capable of adjusting an exhaust gas recirculation amount. During startup operation of
After performing the spark ignition operation of spark-igniting the air-fuel mixture in the combustion chamber, a transition operation for increasing the exhaust gas recirculation amount is performed, and the premix compression ignition operation in which the air-fuel mixture is compressed and self-ignited in the combustion chamber. Is characterized by the fact that
[0009]
Further, the starting operation method of the homogeneous charge compression ignition engine is configured to be executable, and the first characteristic configuration of the homogeneous charge compression ignition according to the present invention for achieving the above object is that a mixture can be spark-ignited in a combustion chamber. An ignition plug and exhaust gas recirculation amount adjusting means capable of adjusting the exhaust gas recirculation amount,
At the time of the start-up operation, after performing the spark ignition operation of spark-igniting the air-fuel mixture in the combustion chamber by operating the spark plug, a transition operation for increasing the exhaust gas recirculation amount by operating the recirculation amount adjusting unit is performed. And a control means for executing a start-up operation control for starting a premixed compression ignition operation for compressing the air-fuel mixture in the combustion chamber for self-ignition.
[0010]
In the premixed compression ignition engine, the present inventors recirculate exhaust gas to fresh air supplied to the combustion chamber, and increase the amount of exhaust gas recirculation to about 50% of the fresh air to achieve combustion. Even when the equivalence ratio of the air-fuel mixture in the combustion chamber is, for example, in the vicinity of a spark ignitable range, it has been found that combustion after self-ignition in the combustion chamber can be slowed to maintain stable operation avoiding knocking. The present invention has been completed by applying the technology to the starting operation of a homogeneous charge compression ignition engine.
[0011]
That is, according to the homogeneous charge compression ignition engine and the start-up operation method thereof according to the present invention, when the homogeneous charge compression ignition engine is started, the spark ignition operation is performed and then the transition to the homogeneous charge compression ignition operation is performed. There is no need to significantly reduce the equivalent ratio of the air-fuel mixture, and the operation can be shifted to the premix compression ignition operation while maintaining a stable operation state.
[0012]
More specifically, the control unit executes the spark ignition operation to warm up the engine, and executes the shift operation when it is determined that the warm-up is completed. Then, in the shift operation, the temperature of the air-fuel mixture formed in the combustion chamber is gradually increased, and while the self-ignition of the air-fuel mixture in the combustion chamber is induced, the amount of the exhaust gas recirculated to the combustion chamber is reduced. The combustion state of the air-fuel mixture in the combustion chamber gradually becomes slower as the air-fuel mixture temperature rises. Then, in the above transition operation, even if the equivalent ratio of the air-fuel mixture in the combustion chamber is near the spark ignitable range, it is possible to transition to the premix compression ignition operation while avoiding knocking and maintaining stable operation.
[0013]
A second characteristic configuration of the premixed compression ignition engine according to the present invention further includes, in addition to the first characteristic configuration, a configuration in the combustion chamber based on an ion current generation state between the electrodes of the spark plug in a spark ignition stopped state. A combustion state detecting means for detecting a combustion state,
In the shift operation, the control means sets the spark plug to a spark ignition stop state, detects the combustion state by the combustion state detection means, and shifts to the premix compression ignition operation based on the detected combustion state. The point is to determine completion.
[0014]
That is, according to the second characteristic configuration, by the combustion state detecting means, the spark plug provided in the combustion chamber is used as a so-called ion probe in a spark ignition stop state, and is applied between the electrodes of the ignition plug that gives a potential difference. The combustion state in the combustion chamber can be detected based on the generation state of the ion current generated by the arrival of the flame. The control means causes the homogeneous charge compression ignition engine to temporarily stop the spark plug in the transition operation after the spark ignition operation, and the self-ignition of the air-fuel mixture in the combustion chamber is stabilized by the combustion state detecting means. If it is detected that self-ignition is stable, it is determined that the transition to homogeneous charge compression ignition has been completed, and the transition to homogeneous charge compression ignition must be made immediately. On the contrary, if it is detected that the self-ignition is not stable, the ignition plug is again set to the spark ignition state, and the combustion of the air-fuel mixture can be maintained until the self-ignition is stabilized.
[0015]
A third characteristic configuration of the homogeneous charge compression ignition engine according to the present invention is the above-described first or second characteristic configuration, in which the exhaust gas recirculation amount adjusting means includes an advance amount with respect to a top dead center of an exhaust valve closing timing. By adjusting the amount of exhaust gas remaining in the combustion chamber by adjusting the amount of exhaust gas, the variable valve timing mechanism is capable of adjusting the amount of exhaust gas recirculation.
[0016]
That is, according to the third characteristic configuration, the closing timing of the exhaust valve in the exhaust stroke is set to a timing advanced from the top dead center (in other words, a timing earlier than the top dead center) by the variable valve timing mechanism. Then, part of the high temperature exhaust gas (combustion gas) of the combustion chamber remains in the combustion chamber without being discharged to the exhaust passage, and the remaining exhaust gas is supplied to the combustion chamber in the next air supply stroke. And so-called exhaust gas recirculation.
Therefore, by adjusting the amount of advance of the closing timing of the exhaust valve with respect to the top dead center by the variable valve timing mechanism, the amount of exhaust gas remaining in the combustion chamber can be adjusted, and the amount of exhaust gas recirculation can be adjusted. Thus, the variable valve timing mechanism can function as the exhaust gas recirculation amount adjusting means.
Further, the variable valve timing mechanism functions as exhaust gas recirculation amount adjusting means, and in the transition operation after the spark ignition operation of the premixed compression ignition engine, the advance amount of the closing timing of the exhaust valve with respect to the top dead center is determined. Increasing the temperature of the air-fuel mixture formed in the combustion chamber at the same time by increasing the amount of high-temperature exhaust gas recirculated to the fresh air by gradually increasing it, thereby inducing self-ignition of the air-fuel mixture in the combustion chamber Can be.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a homogeneous charge compression ignition engine according to the present invention will be described with reference to the drawings.
[0018]
In the homogeneous charge compression ignition engine 100 shown in FIG. 1, a combustion chamber 2 defined by an inner surface of a cylinder 5 and a top surface of a piston 3, and an air supply passage connected to the combustion chamber 2 via an air supply valve 7. 12 and an exhaust passage 13 connected to the combustion chamber 2 via the exhaust valve 8.
[0019]
The piston 3 is swingably connected to the connecting rod 4, and the reciprocating motion of the piston 3 is obtained by the connecting rod 4 as a rotating motion of one crankshaft (not shown). There is no change.
[0020]
The air A (fresh air) flowing through the air supply passage 12 is appropriately supercharged by a supercharger or the like, and then passes through an aftercooler 15 described later, and the fuel G of the natural gas-based city gas is supplied to the mixer 18. As a result, the air-fuel mixture is supplied to the combustion chamber 2.
[0021]
The premixed compression ignition engine 100 compresses the air-fuel mixture supplied to the combustion chamber 2 by raising the piston 3 and raises the temperature to the ignition point, so that the air-fuel mixture self-ignites and burns. The fuel is burned by performing the mixed compression ignition operation.
[0022]
The homogeneous charge compression ignition engine 100 is provided with an engine control unit (hereinafter, referred to as an ECU) 30 including a computer. The ECU 30 is configured to perform various controls such as start-up operation control of the homogeneous charge compression ignition engine. Have been.
[0023]
The aftercooler 15 provided in the air supply passage 12 exchanges heat with cooling medium that has cooled the cylinder 5 and the like and has a high temperature, or with a warm medium D such as a high-temperature exhaust gas discharged from the combustion chamber 2. The air A flowing through the air supply passage 12 can be heated.
Further, the heating medium amount adjusting valve 16 adjusts the supply amount of the heating medium D to the aftercooler 15 to adjust the temperature of the air A flowing through the air supply passage 12, and adjusts the air-fuel mixture formed in the combustion chamber 2. It functions as air-fuel mixture temperature adjusting means X capable of adjusting the temperature.
Then, the ECU 30 adjusts the supply amount of the warm medium D to the aftercooler 15 by the warm medium amount adjusting valve 16 based on the detection result of the temperature sensor 24 provided near the air supply valve 7 in the air supply passage 12. Thus, the temperature of the fresh air flowing through the air supply passage 12 is controlled to be a predetermined target temperature.
[0024]
The flow rate of the fuel G supplied to the mixer 18 can be adjusted by a fuel amount adjusting valve 19. The ECU 30 adjusts the supply amount of the fuel G based on the detection result of the oxygen sensor 25 provided in the exhaust passage 13 and capable of detecting the oxygen concentration of the exhaust gas, for example, so that the equivalent amount of the air-fuel mixture in the combustion chamber 2 is adjusted. The ratio is controlled so as to be a predetermined target equivalent ratio.
[0025]
An exhaust gas recirculation amount adjusting means Y connects the exhaust path 13 and the air supply path 12 to the homogeneous charge compression ignition engine 100, and an EGR flow path for recirculating exhaust gas in the exhaust path 13 to the air supply path 12. 21 and an EGR amount adjusting valve 22 for adjusting the recirculation amount of the exhaust gas. Then, the ECU 30 adjusts the opening degree of the EGR amount adjustment valve 22 based on, for example, the amount of fresh air taken into the combustion chamber 2 that can be recognized based on the number of revolutions of the crankshaft, and recirculates the exhaust gas with respect to the fresh air. Is controlled to have a predetermined recirculation rate.
[0026]
Further, the premixed compression ignition engine 100 is provided with an ignition plug 26 capable of spark-igniting the air-fuel mixture supplied to the combustion chamber 2. The ECU 30 starts and stops ignition by the ignition plug 26, Control ignition timing.
[0027]
Further, the homogeneous charge compression ignition engine 100 is provided with a combustion state detecting means 27 for detecting a combustion state in the combustion chamber 2 based on a state of generation of an ion current between the electrodes of the spark plug 26 in which the spark ignition has been stopped. The ECU 30 temporarily stops the spark plug 26 in the spark ignition state, and can recognize whether or not the air-fuel mixture is stably self-ignited in the combustion chamber 2 based on the detection result of the combustion state detecting means 27.
[0028]
As described above, the premixed compression ignition engine 100 performs the premixed compression ignition operation in which the air-fuel mixture is compressed and self-ignited in the combustion chamber 2 to burn the fuel G. For example, the compression ratio is about 21. Therefore, it is possible to achieve high efficiency because the fuel gas can be set at a high value, and it is possible to burn the mixture in a lean state with the equivalent ratio of the air-fuel mixture being equal to or lower than the flame propagation lower limit, for example, thereby realizing low NOx.
[0029]
However, when the premixed compression ignition engine 100 has not been sufficiently warmed up during the start-up operation, the temperature of the mixture cannot be sufficiently raised even if the air-fuel mixture is compressed in the combustion chamber 2. May not be able to change, or the air-fuel mixture may not self-ignite, and the premixed compression ignition operation may not be stably performed.
[0030]
Therefore, the ECU 30 of the premixed compression ignition engine 100 performs the spark ignition operation of spark-igniting the air-fuel mixture in the combustion chamber 2 by the ignition plug 26 in the above-described start-up operation. By performing the operation, it functions as the control means Z for executing the start-up operation method for starting the premix compression ignition operation for stably igniting the air-fuel mixture in the combustion chamber 2.
[0031]
Next, the details of the startup operation method of the homogeneous charge compression ignition engine 100 will be described with reference to FIG.
FIG. 2 is a diagram showing how the exhaust gas recirculation rate, the fresh air temperature, and the equivalence ratio change over time during the startup operation of the homogeneous charge compression ignition engine 100.
[0032]
The ECU 30 controls the EGR amount adjustment valve while operating the heating medium amount adjustment valve 16 to increase the temperature of fresh air supplied to the combustion chamber 2 as a transition operation from the spark ignition operation to the premix compression ignition operation. 22 is operated to execute a transition operation for increasing the amount of exhaust gas recirculation for fresh air.
[0033]
That is, during the start-up operation of the premixed compression ignition engine 100, the ECU 30 first operates the spark plug 26 to perform the spark ignition operation of spark-igniting the air-fuel mixture in the combustion chamber 2 so that the EGR amount adjustment valve 22 controls the exhaust gas. The recirculation amount is adjusted to set the exhaust gas recirculation rate to a predetermined exhaust gas recirculation rate Eb (%), and the supply amount of the warm medium to the aftercooler 15 is adjusted by the warm medium amount adjusting valve 16. The fresh air temperature is set to a predetermined fresh air temperature Tc (° C.), the amount of fuel supplied to the mixer 18 is adjusted by the fuel amount adjusting valve 19, and the equivalent ratio of the air-fuel mixture supplied to the combustion chamber 2 is determined. Is set to the equivalent ratio φa. In the present embodiment, the exhaust gas recirculation rate Eb (%) set at the time of the spark ignition operation is set at or near 0, and the fresh air temperature Tc (° C.) supplies a heating medium to the aftercooler 15. The equivalent ratio φa is set to a relatively low value close to the atmospheric temperature when there is no temperature, and the equivalent ratio φa is set to 1 in which spark ignition is possible in the combustion chamber 2 or within a spark ignitable range in the vicinity thereof.
[0034]
Next, the ECU 30 performs the spark ignition operation, for example, when the engine coolant temperature rises and reaches a predetermined temperature, or when the temperature of the cylinder 5 rises and reaches a predetermined temperature. Then, it is determined that the warm-up is completed, and the next shift operation is performed.
In this transition operation, the exhaust gas recirculation rate of the homogeneous charge compression ignition engine 100 is gradually increased from Eb (%) to a predetermined Ea (%) (for example, 50%), and further, the fresh air temperature is raised to Tc (° C). )) To a predetermined Ta (° C.).
Then, during this transition operation, the fresh air temperature is gradually increased, and while the self-ignition of the air-fuel mixture in the combustion chamber 2 is induced, the recirculation rate of the exhaust gas to the combustion chamber 2 increases to the above-described fresh air temperature increase. The combustion state of the air-fuel mixture in the combustion chamber 2 is gradually increased. Therefore, in the above shifting operation, even if the equivalent ratio of the air-fuel mixture in the combustion chamber 2 is near the spark ignitable range where the fuel is relatively large, knocking can be avoided and stable operation can be maintained. In the transition operation, the ECU 30 sets the spark plug 26 to the spark ignition stop state for one or several cycles, and the air-fuel mixture stably self-ignites in the combustion chamber 2 based on the detection result of the combustion state detecting means 27 described above. When it is determined that the ignition operation is being performed, it can be determined that the above-described homogeneous charge compression ignition operation has started. The spark plug 26 may be completely stopped when it is determined that the premixed compression ignition operation has started. However, for example, after a lapse of a predetermined time after it is determined that the premixed compression ignition operation has started, You can keep working.
[0035]
Note that, in the transfer operation, the equivalence ratio in the combustion chamber 2 may be reduced from φa to φb as the exhaust gas recirculation rate increases.
[0036]
Further, the ECU 30 is configured to execute the following fresh air temperature lowering operation and equivalent ratio lowering operation after shifting to the premix compression ignition operation.
That is, the ECU 30 first performs a fresh air temperature lowering operation of lowering the fresh air temperature by a predetermined amount after reducing the exhaust gas recirculation rate until knocking is detected by the knocking sensor 31, for example. The process is repeated until the temperature reaches Tb (° C.). Further, the ECU 30 performs an equivalence ratio lowering operation of reducing the equivalence ratio by a predetermined amount after reducing the exhaust gas recirculation rate until knocking is detected by the knocking sensor 31, for example, the equivalence ratio becomes a predetermined equivalence ratio φc. Repeat until
By performing such a fresh air temperature lowering operation and an equivalent ratio lowering operation, self-ignition of a lean air-fuel mixture even when the fresh air temperature is relatively low while maintaining a stable operation state by avoiding a misfire or the like. , The premixed compression ignition operation can be performed, and further higher efficiency and lower NOx can be achieved.
[0037]
[Another embodiment]
Next, another embodiment of the present invention will be described with reference to the drawings.
[0038]
<1> In the above embodiment, the EGR flow path 21 and the EGR amount adjusting valve 22 as the exhaust gas recirculation amount adjusting means Y are provided, and the hot medium amount adjusting valve 16 of the aftercooler 15 as the air-fuel mixture temperature adjusting means X is provided. Although the temperature of the fresh air is adjusted by the above, the exhaust gas recirculation amount adjusting means Y and the air-fuel mixture temperature adjusting means X may be separately constituted by the variable valve timing mechanism 28.
That is, the variable valve timing mechanism 28 is configured to be able to adjust at least the opening / closing timing of the exhaust valve 8, and by adjusting the advance amount of the closing timing of the exhaust valve 8 with respect to the top dead center, the high temperature remaining in the combustion chamber 2 is adjusted. The exhaust gas amount can be adjusted to adjust the exhaust gas recirculation amount and the mixture temperature. Then, the ECU 30 gradually increases the amount of advance of the closing timing of the exhaust valve 8 with respect to the top dead center in the transition operation from the spark ignition operation of the homogeneous charge compression ignition engine 100 to the homogeneous charge compression ignition operation. Thus, the amount of exhaust gas recirculation can be easily increased while increasing the fresh air temperature.
[0039]
Further, by adjusting the air-fuel mixture temperature adjusting means X by adjusting the power of the supercharger or by adjusting the valve opening provided in the air supply passage 12 to adjust the compression end temperature of the fresh air, combustion is performed. The temperature of the air-fuel mixture formed in the chamber 2 may be adjusted.
[0040]
<2> In the above embodiment, an example was described in which the homogeneous charge compression ignition engine according to the present invention was configured as a single cylinder type. However, the present invention is also applied to a multi-cylinder homogeneous charge compression ignition engine. can do.
In the multi-cylinder homogeneous charge compression ignition engine, it is preferable that a part of the plurality of cylinders is sequentially shifted from the spark ignition operation to the homogeneous charge compression ignition operation through a shift operation. That is, at the time of the transition operation of some cylinders, until the operation state of the cylinder during the transition operation is stabilized by another cylinder that maintains a stable operation state after a predetermined time has elapsed before or after the transition. In addition, it is possible to smoothly shift all cylinders to the premix compression ignition operation while maintaining stable rotation of the crankshaft.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a homogeneous charge compression ignition engine according to the present invention; FIG. 2 is a diagram showing a change tendency of various states during startup operation of the homogeneous charge compression ignition engine;
2: Combustion chamber 7: Air supply valve 8: Exhaust valve 12: Air supply path 13: Exhaust path 15: Aftercooler 16: Heat medium amount adjusting valve 18: Mixer 19: Fuel amount adjusting valve 21: EGR passage 22: EGR Amount adjusting valve 26: Spark plug 27: Combustion state detecting means 28: Variable valve timing mechanism 30: Engine control unit (ECU)
100: Premixed compression ignition engine A: Air (fresh air)
G: Fuel E: Exhaust gas H: Hot medium X: Air-fuel mixture temperature adjusting means Y: Exhaust gas recirculation amount adjusting means Z: Control means

Claims (4)

燃焼室において混合気を火花点火可能、及び、排ガス再循環量を調整可能に構成された予混合圧縮着火エンジンの起動運転時において、
前記燃焼室において混合気を火花点火する火花点火運転を実行した後に、前記排ガス再循環量を増加させる移行操作を行って、前記燃焼室において混合気を圧縮して自己着火させる予混合圧縮着火運転を開始する予混合圧縮着火エンジンの起動運転方法。
In the startup operation of the premixed compression ignition engine configured to be capable of spark ignition of the air-fuel mixture in the combustion chamber, and capable of adjusting the exhaust gas recirculation amount,
After performing a spark ignition operation of spark-igniting the air-fuel mixture in the combustion chamber, a transition operation for increasing the exhaust gas recirculation amount is performed, and a premix compression ignition operation in which the air-fuel mixture is compressed and self-ignited in the combustion chamber. To start the premixed compression ignition engine starting operation method.
燃焼室において混合気を火花点火可能な点火プラグと、排ガス再循環量を調整可能な排ガス再循環量調整手段とを備え、
起動運転時において、前記点火プラグを働かせて前記燃焼室において混合気を火花点火する火花点火運転を実行した後に、前記再循環量調整手段を働かせて前記排ガス再循環量を増加させる移行操作を行って、前記燃焼室において混合気を圧縮して自己着火させる予混合圧縮着火運転を開始する起動運転制御を実行する制御手段を備えた予混合圧縮着火エンジン。
An ignition plug capable of spark ignition of the air-fuel mixture in the combustion chamber, and an exhaust gas recirculation amount adjusting means capable of adjusting an exhaust gas recirculation amount,
At the time of the start-up operation, after performing the spark ignition operation of spark-igniting the air-fuel mixture in the combustion chamber by operating the spark plug, a transition operation for increasing the exhaust gas recirculation amount by operating the recirculation amount adjusting unit is performed. A premixed compression ignition engine comprising control means for executing start-up operation control for starting a premixed compression ignition operation in which the air-fuel mixture is compressed and self-ignited in the combustion chamber.
火花点火停止状態の前記点火プラグの電極間におけるイオン電流の発生状態に基づいて、前記燃焼室における燃焼状態を検出する燃焼状態検出手段を備え、
前記制御手段が、前記移行操作において、前記点火プラグを火花点火停止状態として前記燃焼状態検出手段により前記燃焼状態を検出し、前記検出した燃焼状態に基づいて、前記予混合圧縮着火運転への移行完了を判定する請求項2に記載の予混合圧縮着火エンジン。
Combustion state detection means for detecting a combustion state in the combustion chamber based on a state of generation of an ion current between electrodes of the spark plug in a spark ignition stopped state,
In the shift operation, the control means sets the spark plug to a spark ignition stop state, detects the combustion state by the combustion state detection means, and shifts to the premix compression ignition operation based on the detected combustion state. The homogeneous charge compression ignition engine according to claim 2, wherein completion is determined.
前記排ガス再循環量調整手段が、排気弁の閉時期の上死点に対する進角量の調整により、前記燃焼室に残留する排ガス量を調整して、前記排ガス再循環量を調整可能なバルブタイミング可変機構で構成されている請求項2又は3に記載の予混合圧縮着火エンジン。The exhaust gas recirculation amount adjusting means adjusts the amount of exhaust gas remaining in the combustion chamber by adjusting the advance amount with respect to the top dead center of the closing timing of the exhaust valve, so that the exhaust gas recirculation amount can be adjusted. The homogeneous charge compression ignition engine according to claim 2 or 3, wherein the engine is configured by a variable mechanism.
JP2003057093A 2003-03-04 2003-03-04 Start-up operation method of premixed compression ignition engine and premixed compression ignition engine Expired - Fee Related JP4225805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057093A JP4225805B2 (en) 2003-03-04 2003-03-04 Start-up operation method of premixed compression ignition engine and premixed compression ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057093A JP4225805B2 (en) 2003-03-04 2003-03-04 Start-up operation method of premixed compression ignition engine and premixed compression ignition engine

Publications (2)

Publication Number Publication Date
JP2004263663A true JP2004263663A (en) 2004-09-24
JP4225805B2 JP4225805B2 (en) 2009-02-18

Family

ID=33120601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057093A Expired - Fee Related JP4225805B2 (en) 2003-03-04 2003-03-04 Start-up operation method of premixed compression ignition engine and premixed compression ignition engine

Country Status (1)

Country Link
JP (1) JP4225805B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205181A (en) * 2006-01-31 2007-08-16 Honda Motor Co Ltd Four cycle internal combustion engine
JP2008045520A (en) * 2006-08-21 2008-02-28 Honda Motor Co Ltd Control device for internal combustion engine
JP2009097416A (en) * 2007-10-16 2009-05-07 Toyota Industries Corp Premixed compression self-ignition engine
JP2009115025A (en) * 2007-11-08 2009-05-28 Hitachi Ltd Apparatus and method for controlling compression self-ignited internal combustion engine
JP2013133815A (en) * 2011-12-27 2013-07-08 Honda Motor Co Ltd Control device for compression-ignition internal combustion engine
JP2015071998A (en) * 2013-10-04 2015-04-16 本田技研工業株式会社 Compression ignition internal combustion engine
JP2020029788A (en) * 2018-08-21 2020-02-27 日立オートモティブシステムズ株式会社 Control device of internal combustion engine and control method of internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205181A (en) * 2006-01-31 2007-08-16 Honda Motor Co Ltd Four cycle internal combustion engine
JP2008045520A (en) * 2006-08-21 2008-02-28 Honda Motor Co Ltd Control device for internal combustion engine
JP4649383B2 (en) * 2006-08-21 2011-03-09 本田技研工業株式会社 Control device for internal combustion engine
JP2009097416A (en) * 2007-10-16 2009-05-07 Toyota Industries Corp Premixed compression self-ignition engine
JP2009115025A (en) * 2007-11-08 2009-05-28 Hitachi Ltd Apparatus and method for controlling compression self-ignited internal combustion engine
JP2013133815A (en) * 2011-12-27 2013-07-08 Honda Motor Co Ltd Control device for compression-ignition internal combustion engine
JP2015071998A (en) * 2013-10-04 2015-04-16 本田技研工業株式会社 Compression ignition internal combustion engine
JP2020029788A (en) * 2018-08-21 2020-02-27 日立オートモティブシステムズ株式会社 Control device of internal combustion engine and control method of internal combustion engine
WO2020040014A1 (en) * 2018-08-21 2020-02-27 日立オートモティブシステムズ株式会社 Internal combustion engine control device and internal combustion engine control method
JP7145006B2 (en) 2018-08-21 2022-09-30 日立Astemo株式会社 CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
JP4225805B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
US6983730B2 (en) Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
US6640773B2 (en) Method and apparatus for gaseous fuel introduction and controlling combustion in an internal combustion engine
US8459021B2 (en) Method and apparatus for controlling supercharged engine
JP4180278B2 (en) Multi-mode internal combustion engine and method of operating internal combustion engine
EP1559886A2 (en) Method and apparatus for gaseous fuel introduction and controlling combustion in an internal combustion engine
EP1445461A2 (en) Combustion control device and method for engine
EP1953375A1 (en) Method and computer program product of operating an internal combustion engine as well as engine operating system
GB2418744A (en) An internal combustion engine having a system for internal and external exhaust gas recirculation control for use in an auto ignition mode.
JP2010236496A (en) Method and device for controlling internal combustion engine
KR20160041010A (en) Method for operating a compression ignition engine
JP4075219B2 (en) Compression self-ignition gasoline internal combustion engine
JP2000213384A (en) Compression self ignition engine
JP4225805B2 (en) Start-up operation method of premixed compression ignition engine and premixed compression ignition engine
JP2003343313A (en) Control device for internal combustion engine
US7475668B2 (en) Spark ignition to compression ignition transition in an internal combustion engine
JP2005069097A (en) Premixed compression self-ignition type gas engine
JP4225672B2 (en) Premixed compression auto-ignition engine
JP4225809B2 (en) Engine and operation method thereof
JP5881478B2 (en) Engine and control method thereof
JP2004278428A (en) Diesel engine and its operation method
JP2003269201A (en) Engine and its operating method
KR100783925B1 (en) Control method for controlled auto ignition of engine
JP2004316593A (en) Premix, compression and self-ignition type internal combustion engine
JP2005105944A (en) Premixed compression ignition engine and method of controlling operation thereof
JP4408561B2 (en) Premixed compression self-ignition engine and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees