JP2004262991A - Antibacterial, highly damping resin molding - Google Patents

Antibacterial, highly damping resin molding Download PDF

Info

Publication number
JP2004262991A
JP2004262991A JP2003052502A JP2003052502A JP2004262991A JP 2004262991 A JP2004262991 A JP 2004262991A JP 2003052502 A JP2003052502 A JP 2003052502A JP 2003052502 A JP2003052502 A JP 2003052502A JP 2004262991 A JP2004262991 A JP 2004262991A
Authority
JP
Japan
Prior art keywords
antibacterial
molded product
resin molded
iodine
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003052502A
Other languages
Japanese (ja)
Other versions
JP3738306B2 (en
Inventor
Mitsuo Hori
光雄 堀
Ai Ishihara
愛 石原
Hiroshi Minoshima
浩 蓑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCI Corp
Original Assignee
CCI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCI Corp filed Critical CCI Corp
Priority to JP2003052502A priority Critical patent/JP3738306B2/en
Publication of JP2004262991A publication Critical patent/JP2004262991A/en
Application granted granted Critical
Publication of JP3738306B2 publication Critical patent/JP3738306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antibacterial, highly damping resin molding useful for a wide range of applications and having excellent antibacterial properties and high damping properties. <P>SOLUTION: The antibacterial, highly damping resin molding is produced by incorporating an iodine composite and a low-molecular-weight organic material having a high dipole moment into a base resin. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、例えば靴、インナーソール、スリッパなどの衣料品、ラケットやバットのグリップバンド、グローブ用手袋などのスポーツ用品、カーペット、キッチンマット、バスマットなどの生活用品、壁紙、壁材、天井材、床材などの建築材料、便座、便器、浴槽などの住宅設備機器、洗濯機、掃除機、冷蔵庫、食器洗浄機などの家電製品、カメラ、ビデオ、ラジオ、ステレオ、コンピュータなどの電機機器など、広範な用途に適用可能な抗菌性高減衰性樹脂成形物に関する。詳細には、優れた抗菌性と高減衰性とを兼備した抗菌性高減衰性樹脂成形物に関する。
【0002】
【従来の技術】
ヨウ素は、ハロゲン系抗菌剤に匹敵する優れた抗菌性を有し、かつその抗菌効果がその環境のpH値に無関係であり、さらに広い範囲のバクテリアおよびウイルスに対して活性のある広抗菌スペクトルを有する抗菌物質として知られている。さらにヨウ素は、人体に対して比較的安全であり、安全性に優れているという利点もある。
【0003】
ところが、ヨウ素は揮発性であり、高い固体蒸気圧を有し、時間とともに速やかに抗菌効果を喪失するという性質があり、特に高温に暴露される場合は著しい。
【0004】
このようなヨウ素の性質から、樹脂成形物に適用するためには様々な工夫がなされていた。
【0005】
例えばヨウ素を有機担体または無機担体に担持、吸蔵させて複合化することで、ヨウ素の放出速度を制御したヨウ素複合体もその例である。ヨウ素に複合化する有機担体としては、例えばポリビニルピロリドン、ポリエーテルグリコール、ポリアクリル酸類、ポリアミド類、ポリオキシアルキレン類、澱粉類、およびポリビニルアルコールなどが知られている。無機担体としては、活性炭、ゼオライト、珪藻土、ケイ酸カルシウムなどを挙げることができる。
【0006】
この複合化の技術を応用し、ヨウ素を複合化した抗菌性樹脂成形物が提案されるに至っている。例えばヨウ素と複合化したポリアセタール化したポリビニルアルコール(PVA/I複合体)を含む抗菌性樹脂成形物がある。
【0007】
この抗菌性樹脂成形物は、ヨウ素と複合化したポリアセタール化したポリビニルアルコールをフォーム、シート、フィルムなどに成形され、該成形物が水または水蒸気と接触することでヨウ素イオンが遊離して放出され、抗菌性が発揮されるようになっている(例えば特許文献1参照)。
【0008】
【特許文献1】
特開平2−299662号公報(特許請求の範囲、第4〜20頁)
【0009】
【発明が解決しようとする課題】
ところが、上記のようなヨウ素複合体を成形品の樹脂材料として汎用されているポリエチレン、ポリプロピレン、硬質ポリ塩化ビニル、ポリスチレンなどのベース樹脂中に配合して成形した場合、それらの成形温度は200℃以上と高いために、成形時にヨウ素が放出してしまい、十分な有効ヨウ素量を確保できないという不具合があった。
【0010】
このため、ヨウ素複合体を使用して成形できる抗菌性樹脂成形物のベース樹脂の種類は、成形温度が低い樹脂に限定され、従って、その用途も狭く限られたものであった。
【0011】
本発明者は、ヨウ素複合体を用いた抗菌性樹脂成形物を研究する過程で、ベース樹脂中に高双極子能率を有する有機低分子材料を含ませることで、ベース樹脂の成形温度を下げることができ、かつ該成形物に高減衰性を付与することができることを発見し、この知見に基づいて本発明を完成させた。
【0012】
本発明は、上記技術的課題に鑑みなされたものであり、広範な用途に適用可能であり、かつ優れた抗菌性と高減衰性とを兼備する抗菌性高減衰性樹脂成形物を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明は、ベース樹脂中にヨウ素複合体と高双極子能率を有する有機低分子材料とを含むことを特徴とする抗菌性高減衰性樹脂成形物をその要旨とした。
【0014】
本発明の抗菌性高減衰性樹脂成形物(以下、単に成形物という)は、例えば靴、インナーソール、スリッパなどの衣料品、ラケットやバットのグリップバンド、グローブ用手袋などのスポーツ用品、カーペット、キッチンマット、バスマットなどの生活用品、壁紙、壁材、天井材、床材などの建築材料、便座、便器、浴槽などの住宅設備機器、洗濯機、掃除機、冷蔵庫、食器洗浄機などの家電製品、カメラ、ビデオ、ラジオ、ステレオ、コンピュータなどの電機機器など、広範な用途に適用することができる。
【0015】
本発明の成形物におけるベース樹脂としては、例えばポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチルなどのビニル系化合物、エチレン−酢酸ビニル共重合体、エチレン−塩化ビニル共重合体、エチレン−ビニルアルコール共重合体などのエチレンビニル系共重合体、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、塩素化ポリエチレンなどのポリオレフィン、ポリスチレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などのスチレン系樹脂、ナイロン6、ナイロン6−6、ナイロン6−10、ナイロン11、ナイロン12等のポリアミド系樹脂、ポリエステル、ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルニトリル、変性ポリフェニレンエーテル、ポリエーテルサルホン、ポリサルホン、フッ素樹脂、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、および熱可塑性ポリイミド、生分解樹脂の群から選ばれる1種若しくは2種以上の混合物、あるいは不飽和ポリエステル、エポキシ、フェノール、メラミン、ウレタン、およびケイ素樹脂のいずれか、またはこれらの混合物を挙げることができ、用途や使用状態に応じて適宜選択して使用することができる。
【0016】
上記ベース樹脂中にヨウ素複合体と高双極子能率を有する有機低分子材料とが含まれるのである。ヨウ素複合体としては、例えばヨウ素、ヨウ化ナトリウムまたはヨウ化カリウムなどの三ヨウ化物(ヨージド)を、ポリエーテルグリコール類、ポリアクリル酸類、ポリアミド類、ポリオキシアルキレン類、澱粉類、ポリビニルピロリドンおよびポリビニルアルコールなどのヨウ素担体に担持、吸蔵させて複合化したヨードホールを挙げることができる。
【0017】
また、上記ヨードホールをゲスト分子として、これをα−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリン、またはサイクロシクロデキストリンなどのシクロデキストリン、ゼラチン、乳糖、カルボキシメチルセルロース、アラビアゴムなどの1種若しくは2種以上の混合物からなるホスト分子に包接させたヨウ素包接体も、本発明のヨウ素複合体の範疇に含まれる。
【0018】
尚、上記ヨウ素包接体は、ホスト分子とゲスト分子とが99:1〜50:50の重量比で存在するように包接させたものが、十分な抗菌効果および熱的安定性を有する点で好ましい。また、上記ヨウ素包接体の中でも、シクロデキストリンをホスト分子としてヨードホールを包接したヨウ素包接体は、ヨウ素保持性に優れ、かつ熱的安定性および分散性に優れる点から好ましい。
【0019】
上記ヨウ素複合体の有効ヨウ素量としては、十分な抗菌性を発揮できるという観点から、少なくとも5%、好ましくは5〜20%の範囲が望ましい。
【0020】
尚、いずれの種類のヨウ素複合体を用いるかは、要求される抗菌性の強弱および持続時間(例えば有効ヨウ素量、ヨウ素の単位時間あたりの放出量など)、製造時の温度や圧力、使用環境などを考慮して適宜決定するとよい。
【0021】
ヨウ素複合体は、上記ベース樹脂100重量部に対し0.1〜30重量部の割合で含まれているのが望ましく、より好ましくは1〜25重量部、最適には5〜25重量部である。ヨウ素複合体の含有量が0.1重量部を下回るとき、十分な抗菌効果が得られない恐れがあり、含有量が30重量部を越える場合には、抗菌効果が強すぎたり、ベース樹脂に均一に分散しなかったり、該成形物の機械的強度の低下を招いたりするなどの弊害を生じる恐れがある。
【0022】
高双極子能率を有する有機低分子材料としては、例えばN、N−ジシクロヘキシルベンゾチアジル−2−スルフェンアミド(DCHBSA)、2−メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルスルフィド(MBTS)、N−シクロヘキシルベンゾチアジル−2−スルフェンアミド(CBS)、N−tert−ブチルベンゾチアジル−2−スルフェンアミド(BBS)、N−オキシジエチレンベンゾチアジル−2−スルフェンアミド(OBS)、N、N−ジイソプロピルベンゾチアジル−2−スルフェンアミド(DPBS)などのベンゾチアジル基を持つ化合物、
ベンゼン環にアゾール基が結合したベンゾトリアゾールを母核とし、これにフェニル基が結合した2−{2′−ハイドロキシ−3′−(3″,4″,5″,6″テトラハイドロフタリミデメチル)−5′−メチルフェニル}−ベンゾトリアゾール(2HPMMB)、2−{2′−ハイドロキシ−5′−メチルフェニル}−ベンゾトリアゾール(2HMPB)、2−{2′−ハイドロキシ−3′−t−ブチル−5′−メチルフェニル}−5−クロロベンゾトリアゾール(2HBMPCB)、2−{2′−ハイドロキシ−3′,5′−ジ−t−ブチルフェニル}−5−クロロベンゾトリアゾール(2HDBPCB)などのベンゾトリアゾール基を持つ化合物、
エチル−2−シアノ−3,3−ジ−フェニルアクリレートなどのジフェニルアクリレート基を持つ化合物、
あるいは2−ハイドロキシ−4−メトキシベンゾフェノン(HMBP)、2−ハイドロキシ−4−メトキシベンゾフェノン−5−スルフォニックアシド(HMBPS)などのベンゾフェノン基を持つ化合物の中から選ばれた1種若しくは2種以上の混合物を挙げることができる。
【0023】
上記高双極子能率を有する有機低分子材料は、ベース樹脂の成形温度を下げる働きがある。本発明者の実験によれば、例えばポリエチレンをベース樹脂としてこれを成形するとき、その成形温度は120〜180℃であるが、ベース樹脂中に有機低分子材料を含ませることで、その成形温度が100〜160℃となることが確認された。
【0024】
同様にポリプロピレンは、140〜190℃の成形温度が120〜180℃となり、ポリスチレンは、160〜200℃の成形温度が140〜180℃となり、ポリアセタールは、200〜220℃の成形温度が160〜200℃となることが確認された。
【0025】
このようにベース樹脂中に有機低分子材料を含ませることで、低温での成形が可能となるために、成形時にヨウ素が放出し、十分な有効ヨウ素量が確保できないという不具合が発生し難くなる。
【0026】
また、高双極子能率を有する有機低分子材料は、これをベース樹脂中に含ませたとき、該成形物の衝撃吸収性、振動減衰性、あるいは吸音性といったエネルギーの減衰性能を飛躍的に向上させる働きがある。
【0027】
衝撃、振動、あるいは音などのエネルギーが加わる前、図1に示すようにベース樹脂11内部における双極子12の配置状態は安定な状態にある。ところが、図2に示すように、ベース樹脂11に衝撃、振動、あるいは音などのエネルギーが加わることで、ベース樹脂11内部の存在する双極子12に変位が生じ、この結果、ベース樹脂11内部における各双極子12は不安定な状態に置かれることになり、各双極子12は、図1に示す安定な状態に戻ろうとする。このとき、エネルギーの消費が生じるのである。
【0028】
こうしたベース樹脂内部における双極子の変位、双極子の復元作用によるエネルギー消費を通じて、衝撃吸収性、振動減衰性、あるいは吸音性といったエネルギーの減衰性能が生じているものと考えられる。このようなエネルギー消費のメカニズムから、ベース樹脂11内部における双極子モーメントの量が、各性能に大きく関与していることが解る。本発明者らの実験によれば、ベース樹脂11内部における双極子モーメント量が大きければ大きい程、そのベース樹脂11のエネルギーの減衰性も高くなることが解ったのである。
【0029】
上述した高双極子能率を有する有機低分子材料は、ベース樹脂における双極子モーメントの量を飛躍的に増加させる機能を有しており、これをベース樹脂中に含ませることで、図3に示すように、ベース樹脂における双極子モーメントの量は同じ条件の下で3倍とか、10倍とかいった量に増加することになる。これに伴って、前述のエネルギーが加わったときの双極子の復元作用によるエネルギー消費量も飛躍的に増大することになり、この結果、予測を遥かに超えたエネルギーの減衰性(衝撃吸収性、振動減衰性、あるいは吸音性など)が生じることになると考えられる。
【0030】
高双極子能率を有する有機低分子材料のベース樹脂の成形温度を下げ、かつ該成形物のエネルギー減衰性(衝撃吸収性、振動減衰性、あるいは吸音性など)を飛躍的に向上させるという効果は、ベース樹脂およびこれに配合される有機低分子材料の種類により、該成形物に加わるエネルギーの大小により、さらに用途や使用状態により、変動を生じるものの、ベース樹脂100重量部に対し、有機低分子材料の含有量を0.1〜30重量部の割合とすることで、一定の効果を得ることができる。
【0031】
有機低分子材料の含有量が、上記範囲外の場合、上記2つの効果が得られないだけではなく、十分な抗菌性が得られなくなったり、該成形物の機械的強度が低下したりするなどの弊害を生じる恐れがある。
【0032】
本発明の成形物は、シート、フィルム、棒状、球状、円筒状など、その用途や使用状態に応じて様々な形状に成形することができ、その成形法としては、ベース樹脂の種類や成形物の形状に応じて、ロール成形、圧縮成形、射出成形、押出成形、注型法など従来公知の様々な成形法を使用することができる。また本発明の成形物は、発泡成形した発泡成形体という形態を採ることもでき、衝撃吸収性、吸音性、軽量化のさらなる改良を図ることもできる。
【0033】
尚、本発明の成形物において、ベース樹脂中には、上記ヨウ素複合体および有機低分子材料のほかに、その用途や使用状態に応じて、例えばマイカ鱗片、ガラス片、炭酸カルシウム、バライト、沈降硫酸バリウムなどの無機充填材を充填したり、酸化防止剤、補強剤・強化剤、帯電防止剤、難燃剤、滑剤、発泡剤、着色剤などの添加剤を適宜混合したりすることもできる。
【0034】
また本発明の成形物は、シートやフィルム、あるいは発泡シートなどの形態に成形したものを、さらに別の樹脂シート、金属箔、織物、編物、不織布および紙からなる選ばれる1種若しくは2種以上と積層して複合化した形態を採ることもできる。
【0035】
また本発明の成形物は、上述のベース樹脂中にヨウ素複合体と高双極子能率を有する有機低分子材料とを含む抗菌性高減衰性樹脂を、織物、編物、不織布および紙からなる群から選ばれる基材に塗布または含浸させて含ませた形態を採ることもできる。
【0036】
尚、本発明は、下記実施例に限定されるものではなく、「特許請求の範囲」に記載された範囲で自由に変更して実施することができる。
【0037】
【実施例】
実施例1
低反発フォーム(SSA−06、三和化工株式会社製)を構成するベース樹脂100重量部に対して粉末状のヨウ素包接体(CDI−10、有効ヨウ素量10%、日宝化学株式会社製)20重量部と、DCHBSA(サンセラーDZ、三新化学工業株式会社製)3重量部とを配合し、この配合物を約160℃の成形温度で発泡成形してサンプルを得た。
【0038】
実施例2
DCHBSAの配合量をベース樹脂100重量部に対して1重量部とした以外は実施例1と同様にしてサンプルを得た。
【0039】
比較例1
ヨウ素包接体およびDCHBSAのいずれも配合していない低反発フォーム(SSA−06、三和化工株式会社製)をサンプルとした。
【0040】
比較例2
DCHBSAの配合量をベース樹脂100重量部に対して3重量部とすると共に、ヨウ素包接体を使用していないことを除き、それ以外は実施例1と同様にしてサンプルを得た。
【0041】
得られた実施例1および2、並びに比較例1および2に係るサンプルについて、抗菌力試験、反発弾性試験および粘弾性試験を行い、各サンプルの抗菌性および減衰性(衝撃吸収性)を評価した。
抗菌力試験
実施例1に係るサンプル(検体1)および実施例2に係るサンプル(検体2)の抗菌力試験は、JIS Z 2801『2000「抗菌加工製品−抗菌性試験方法・抗菌効果」5.2 プラスチック製品などの試験方法』に準じて行った。
尚、試験は、Escherichia coli ATCC 43895(大腸菌、血清型O157:H7、ベロ毒素IおよびII型産生株)と、Trichophyton rubrum TIMM 2659(白癬菌)の2種株で行い(白癬菌については、菌液調製溶液として0.005%のスルホ琥珀酸ジオクチルナトリウム溶液を用いた。)、生菌数測定条件は、ポテトデキストロース寒天培地「栄研化学株式会社製」を用いた混釈平板培養法(25±1℃、7日間培養)で行った。尚、無加工試験片としてポリエチレンフィルムを用いた。
【0042】
抗菌力試験結果は、下記表1のとおりであった。

Figure 2004262991
表1から、検体1および検体2のいずれについても、大腸菌については35℃24時間後、測定−1、測定−2、測定−3のいずれもケースでも、完全に死滅しており、また白癬菌についても、生菌数が大幅に減少しており、検体1および検体2が抗菌効果に優れていることが確認された。
反発弾性試験
上記実施例1および比較例2の各サンプルについて反発弾性を測定した。その結果を図5に示した。尚、反発弾性の測定は、図4に示す装置を用いて行った。
すなわち、図4に示す金属台上に各サンプルを置き、これに500mmの高さから直径10mmの鋼球を落下させ、その跳ね返りの高さをhとし、このhに基づき次式に従って反発弾性(%)を測定した。また測定は、各サンプル毎10回ずつ行い、それらの平均高さhより求めた。反発弾性(%)=(h/50)×100
図5から、ヨウ素包接体およびDCHBSAの両方を配合した実施例1に係るサンプルと、DCHBSAのみを配合し、ヨウ素包接体を使用していない比較例2のサンプルとは、いずれも同様に優れた反発弾性(衝撃吸収性)を示し、かつヨウ素包接体の配合が反発弾性に悪影響を与えないことが確認された。
粘弾性試験
上記実施例1および2並びに比較例1の各サンプルについて、動的粘弾性(tanδ)を測定した。その結果を図6に示した。尚、動的粘弾性(tanδ)の測定は、動的粘弾性測定試験装置(レオバイブロンDDV−25FP、株式会社オリエンテック製)を用いて行った。
【0043】
図6から、ヨウ素包接体およびDCHBSAのいずれも配合していない比較例1のサンプルに対し、DCHBSAの含有量を3重量部とした実施例1、およびDCHBSAの含有量を1重量部とした実施例2については、それぞれ配合量に従ってtanδが高くなると共に、そのピークが高温側へとシフトしていることが確認された。尚、tanδが高いということは、低反発性(衝撃吸収性)に優れているということもなり、この粘弾性試験によっても、実施例1および2のサンプルが衝撃吸収性に優れていることが確認された。
【0044】
【発明の効果】
本発明の成形物は、ベース樹脂中にヨウ素複合体と高双極子能率を有する有機低分子材料とを含むことから、広範な用途に適用可能であり、かつ優れた抗菌性と高減衰性とを兼備する。
【図面の簡単な説明】
【図1】ベース樹脂における双極子の状態を示した模式図。
【図2】エネルギーが加わったときのベース樹脂における双極子の状態を示した模式図。
【図3】ヨウ素複合体と高双極子能率を有する有機低分子材料とを含むベース樹脂における双極子の状態を示した模式図。
【図4】反発弾性の測定装置を示す模式図。
【図5】実施例1に係るサンプルと比較例2に係るサンプルの反発弾性を示すグラフ。
【図6】実施例1および2に係るサンプルと比較例1に係るサンプルの各温度におけるtanδを示すグラフ。
【符号の説明】
11・・・ベース樹脂
12・・・双極子[0001]
[Industrial applications]
The present invention, for example, shoes, inner soles, clothing such as slippers, rackets and bat grip bands, sporting goods such as gloves for gloves, carpets, kitchen mats, living goods such as bath mats, wallpaper, wall materials, ceiling materials, A wide range of building materials such as flooring, household equipment such as toilet seats, toilets, and bathtubs, household appliances such as washing machines, vacuum cleaners, refrigerators, dishwashers, and electrical equipment such as cameras, videos, radios, stereos, and computers. The present invention relates to an antibacterial high-damping resin molded article applicable to various uses. More specifically, the present invention relates to an antibacterial high-damping resin molded article having both excellent antibacterial properties and high damping properties.
[0002]
[Prior art]
Iodine has excellent antibacterial properties comparable to halogenated antibacterial agents, and its antibacterial effect is independent of the pH value of its environment, and has a broad antibacterial spectrum that is active against a wider range of bacteria and viruses. It is known as having an antibacterial substance. In addition, iodine has the advantage of being relatively safe for the human body and excellent in safety.
[0003]
However, iodine is volatile, has a high solid vapor pressure, and has a property of rapidly losing its antibacterial effect over time, particularly when exposed to high temperatures.
[0004]
Due to such properties of iodine, various devices have been devised for application to resin molded products.
[0005]
For example, an iodine complex in which iodine is supported on an organic carrier or an inorganic carrier and absorbed to form a complex to control the release rate of iodine is also an example. As organic carriers to be complexed with iodine, for example, polyvinylpyrrolidone, polyether glycol, polyacrylic acids, polyamides, polyoxyalkylenes, starches, polyvinyl alcohol and the like are known. Examples of the inorganic carrier include activated carbon, zeolite, diatomaceous earth, calcium silicate and the like.
[0006]
An antibacterial resin molded product in which iodine is composited by applying this composite technology has been proposed. For example, there is an antibacterial resin molded product containing polyacetalized polyvinyl alcohol (PVA / I complex) complexed with iodine.
[0007]
This antibacterial resin molded product is formed from a polyacetalized polyvinyl alcohol complexed with iodine into a foam, a sheet, a film, or the like, and the molded product comes into contact with water or water vapor to release and release iodine ions, Antibacterial properties are exhibited (for example, see Patent Document 1).
[0008]
[Patent Document 1]
JP-A-2-299662 (Claims, pages 4 to 20)
[0009]
[Problems to be solved by the invention]
However, when the above-described iodine composite is blended into a base resin such as polyethylene, polypropylene, hard polyvinyl chloride, or polystyrene, which is widely used as a resin material of a molded article, and molded, the molding temperature is 200 ° C. Because of the above, iodine is released at the time of molding, and there is a problem that a sufficient amount of effective iodine cannot be secured.
[0010]
For this reason, the type of the base resin of the antibacterial resin molded product that can be molded using the iodine composite is limited to a resin having a low molding temperature, and its use is also narrowly limited.
[0011]
In the process of studying an antibacterial resin molded product using an iodine complex, the present inventors have found that by including an organic low-molecular material having high dipole efficiency in the base resin, the molding temperature of the base resin can be reduced. And found that the molded article can be provided with high damping properties, and based on this finding, completed the present invention.
[0012]
The present invention has been made in view of the above technical problem, and provides an antibacterial and high-attenuating resin molded article that is applicable to a wide range of uses and has both excellent antibacterial properties and high-attenuating properties. The purpose is.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has as its gist an antibacterial high-attenuating resin molded article characterized by containing an iodine complex and an organic low-molecular material having a high dipole efficiency in a base resin. .
[0014]
The antibacterial high-damping resin molded product of the present invention (hereinafter, simply referred to as molded product) includes, for example, clothing such as shoes, inner soles and slippers, rackets and bat grip bands, sports equipment such as gloves for gloves, carpets, Living goods such as kitchen mats and bath mats, building materials such as wallpaper, wall materials, ceiling materials, flooring materials, household equipment such as toilet seats, toilet bowls, bathtubs, and household appliances such as washing machines, vacuum cleaners, refrigerators, dishwashers, etc. It can be applied to a wide range of uses such as cameras, videos, radios, stereos, and electrical equipment such as computers.
[0015]
As the base resin in the molded article of the present invention, for example, vinyl compounds such as polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymer, polymethyl acrylate, polymethyl methacrylate, and ethylene-vinyl acetate copolymer Copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl alcohol copolymer such as ethylene-vinyl alcohol copolymer, low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, chlorinated polyethylene, etc. Polyolefin, polystyrene, styrene-based resin such as acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyamide-based resin such as nylon 6, nylon 6-6, nylon 6-10, nylon 11, nylon 12, and the like; Po Ester, polycarbonate, polyacetal, polyphenylene sulfide, polyether ether ketone, polyether nitrile, modified polyphenylene ether, polyether sulfone, polysulfone, fluororesin, polyarylate, polyamideimide, polyetherimide, and thermoplastic polyimide, biodegradable resin Or a mixture of two or more selected from the group of unsaturated polyesters, epoxies, phenols, melamines, urethanes, and silicon resins, or a mixture thereof. Can be appropriately selected for use.
[0016]
The base resin contains an iodine complex and an organic low molecular weight material having a high dipole efficiency. Examples of the iodine complex include, for example, triiodide (iodide) such as iodine, sodium iodide or potassium iodide, polyether glycols, polyacrylic acids, polyamides, polyoxyalkylenes, starches, polyvinylpyrrolidone and polyvinyl An iodine hole which is supported on an iodine carrier such as an alcohol and absorbed to form a complex is exemplified.
[0017]
In addition, the above-mentioned iodohole is used as a guest molecule, and is used as α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, cyclodextrin such as cyclocyclodextrin, gelatin, lactose, carboxymethylcellulose, gum arabic or the like. An iodine clathrate included in a host molecule composed of a mixture of two or more kinds is also included in the category of the iodine complex of the present invention.
[0018]
The above-mentioned iodine clathrate has a sufficient antibacterial effect and thermal stability when clathrated so that host molecules and guest molecules are present at a weight ratio of 99: 1 to 50:50. Is preferred. Further, among the above-mentioned iodine clathrates, an iodine clathrate in which cyclodextrin is used as a host molecule and clathrates iodine is preferable because it has excellent iodine retention properties and excellent thermal stability and dispersibility.
[0019]
The effective iodine content of the iodine complex is desirably at least 5%, preferably 5 to 20%, from the viewpoint that sufficient antibacterial properties can be exhibited.
[0020]
Which type of iodine complex is used depends on the strength and duration of the required antibacterial activity (eg, the effective amount of iodine, the amount of iodine released per unit time, etc.), the temperature and pressure during production, and the operating environment. It may be appropriately determined in consideration of such factors.
[0021]
The iodine complex is desirably contained at a ratio of 0.1 to 30 parts by weight, more preferably 1 to 25 parts by weight, and most preferably 5 to 25 parts by weight based on 100 parts by weight of the base resin. . When the content of the iodine complex is less than 0.1 part by weight, a sufficient antibacterial effect may not be obtained. When the content exceeds 30 parts by weight, the antibacterial effect is too strong, There is a possibility that adverse effects such as non-uniform dispersion or reduction in mechanical strength of the molded product may occur.
[0022]
Examples of organic low molecular weight materials having a high dipole efficiency include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobenzothiazole (MBT), dibenzothiazyl sulfide (MBTS), N -Cyclohexylbenzothiazyl-2-sulfenamide (CBS), N-tert-butylbenzothiazyl-2-sulfenamide (BBS), N-oxydiethylenebenzothiazyl-2-sulfenamide (OBS), A compound having a benzothiazyl group such as N, N-diisopropylbenzothiazyl-2-sulfenamide (DPBS);
2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" tetrahydrophthalimide) having a benzene ring having an azole group bonded to a nucleus and a phenyl group bonded thereto. Methyl) -5'-methylphenyl} -benzotriazole (2HPMBB), 2- {2'-hydroxy-5'-methylphenyl} -benzotriazole (2HMPB), 2- {2'-hydroxy-3'-t- Butyl-5'-methylphenyl} -5-chlorobenzotriazole (2HBPCB), 2- {2'-hydroxy-3 ', 5'-di-t-butylphenyl} -5-chlorobenzotriazole (2HDBPCB) A compound having a benzotriazole group,
A compound having a diphenyl acrylate group such as ethyl-2-cyano-3,3-di-phenyl acrylate;
Alternatively, one or more compounds selected from compounds having a benzophenone group such as 2-hydroxy-4-methoxybenzophenone (HMBP) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (HMBPS). Mixtures can be mentioned.
[0023]
The low-molecular organic material having a high dipole efficiency has a function of lowering the molding temperature of the base resin. According to the experiment of the present inventor, for example, when molding this using polyethylene as a base resin, the molding temperature is 120 to 180 ° C., but by including an organic low molecular material in the base resin, the molding temperature is increased. Was 100 to 160 ° C.
[0024]
Similarly, polypropylene has a molding temperature of 140-190 ° C at 120-180 ° C, polystyrene has a molding temperature of 160-200 ° C at 140-180 ° C, and polyacetal has a molding temperature of 200-220 ° C of 160-200 ° C. ° C was confirmed.
[0025]
By including the organic low-molecular material in the base resin in this manner, molding at a low temperature becomes possible, so that iodine is released at the time of molding, and a problem that a sufficient amount of effective iodine cannot be secured is less likely to occur. .
[0026]
Organic low molecular weight materials with high dipole efficiency, when incorporated in the base resin, dramatically improve the energy absorption performance of the molded product, such as shock absorption, vibration attenuation, or sound absorption. There is a function to make it.
[0027]
Before the application of energy such as impact, vibration, or sound, the arrangement of the dipoles 12 in the base resin 11 is stable as shown in FIG. However, as shown in FIG. 2, when energy such as impact, vibration, or sound is applied to the base resin 11, a displacement occurs in the dipole 12 existing inside the base resin 11, and as a result, Each dipole 12 will be placed in an unstable state, and each dipole 12 will attempt to return to the stable state shown in FIG. At this time, energy is consumed.
[0028]
It is considered that energy displacement performance such as shock absorption, vibration damping, or sound absorption is generated through the displacement of the dipole inside the base resin and the energy consumption due to the restoring action of the dipole. From such a mechanism of energy consumption, it is understood that the amount of the dipole moment inside the base resin 11 greatly affects each performance. According to the experiments by the present inventors, it was found that the larger the amount of dipole moment in the inside of the base resin 11, the higher the energy attenuation of the base resin 11.
[0029]
The above-described organic low molecular weight material having a high dipole efficiency has a function of dramatically increasing the amount of dipole moment in the base resin, and by including this in the base resin, as shown in FIG. As described above, the amount of the dipole moment in the base resin increases to three times or ten times under the same conditions. Along with this, the energy consumption due to the dipole restoring action when the above-mentioned energy is added will also increase drastically, and as a result, the energy attenuation (shock absorption, It is considered that vibration damping property or sound absorbing property is generated.
[0030]
The effects of lowering the molding temperature of the base resin of the organic low molecular weight material having high dipole efficiency and dramatically improving the energy damping properties (such as shock absorbing property, vibration damping property, or sound absorbing property) of the molded article are as follows. Depending on the type of the base resin and the organic low-molecular material blended therein, the amount of energy applied to the molded product may vary depending on the application and use conditions. By setting the content of the material to a ratio of 0.1 to 30 parts by weight, a certain effect can be obtained.
[0031]
When the content of the organic low-molecular-weight material is out of the above range, not only the above two effects cannot be obtained, but also sufficient antibacterial properties cannot be obtained, or the mechanical strength of the molded product is reduced. There is a possibility that the adverse effect of the above may occur.
[0032]
The molded product of the present invention can be formed into various shapes according to its use and use state, such as a sheet, a film, a rod shape, a spherical shape, and a cylindrical shape. Depending on the shape, various conventionally known molding methods such as roll molding, compression molding, injection molding, extrusion molding, and casting can be used. Further, the molded article of the present invention can also take the form of a foam molded article obtained by foam molding, and further improve impact absorption, sound absorption, and weight reduction.
[0033]
Incidentally, in the molded product of the present invention, in addition to the above-mentioned iodine complex and organic low molecular weight material, in the base resin, depending on its use and use state, for example, mica scales, glass pieces, calcium carbonate, barite, sedimentation An inorganic filler such as barium sulfate or the like can be filled, and additives such as an antioxidant, a reinforcing agent / a reinforcing agent, an antistatic agent, a flame retardant, a lubricant, a foaming agent, and a coloring agent can be appropriately mixed.
[0034]
Further, the molded article of the present invention is formed into a form such as a sheet, a film, or a foamed sheet, and is further selected from one or more selected from another resin sheet, metal foil, woven fabric, knitted fabric, nonwoven fabric, and paper. And a composite form by lamination.
[0035]
Further, the molded article of the present invention comprises an antibacterial high-attenuating resin containing an iodine complex and an organic low-molecular material having a high dipole efficiency in the base resin described above, from the group consisting of woven fabric, knitted fabric, nonwoven fabric and paper. A form in which a selected base material is coated or impregnated and included may be employed.
[0036]
It should be noted that the present invention is not limited to the following embodiments, but can be freely modified and implemented within the scope described in the claims.
[0037]
【Example】
Example 1
Powdered iodine clathrate (CDI-10, effective iodine content 10%, Nihoho Chemical Co., Ltd.) based on 100 parts by weight of base resin constituting low resilience foam (SSA-06, manufactured by Sanwa Kako Co., Ltd.) ) 20 parts by weight and 3 parts by weight of DCHBSA (Suncellar DZ, manufactured by Sanshin Chemical Industry Co., Ltd.) were blended, and this mixture was foamed at a molding temperature of about 160 ° C. to obtain a sample.
[0038]
Example 2
A sample was obtained in the same manner as in Example 1 except that the amount of DCHBSA was changed to 1 part by weight based on 100 parts by weight of the base resin.
[0039]
Comparative Example 1
A low resilience foam (SSA-06, manufactured by Sanwa Kako Co., Ltd.) in which neither an iodine clathrate nor DCHBSA was blended was used as a sample.
[0040]
Comparative Example 2
A sample was obtained in the same manner as in Example 1 except that the amount of DCHBSA was set to 3 parts by weight based on 100 parts by weight of the base resin, and that no iodine clathrate was used.
[0041]
The samples according to Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to an antibacterial test, a rebound resilience test and a viscoelastic test to evaluate the antibacterial properties and the damping properties (shock absorbing properties) of each sample. .
4. Antibacterial activity test The antibacterial activity tests of the sample (Sample 1) according to Example 1 and the sample (Sample 2) according to Example 2 were conducted according to JIS Z 2801 “2000“ Antibacterial processed product-Antibacterial test method / antibacterial effect ”5. 2 Test method for plastic products etc.].
The test was performed on two strains, Escherichia coli ATCC 43895 (Escherichia coli, serotype O157: H7, verotoxin type I and type II producing strains), and Trichophyton rubrum TIMM 2659 (Trichophyton). A 0.005% dioctyl sodium sulfosuccinate solution was used as a liquid preparation solution.) The viable cell count conditions were the pour plate culture method (25) using a potato dextrose agar medium “Eiken Chemical Co., Ltd.” (Cultured at ± 1 ° C. for 7 days). In addition, a polyethylene film was used as a non-processed test piece.
[0042]
Table 1 shows the results of the antibacterial activity test.
Figure 2004262991
From Table 1, it was found that Escherichia coli was completely killed after 24 hours at 35 ° C. in all cases of Measurement-1, Measurement-2, and Measurement-3. Also, the number of viable bacteria was significantly reduced, and it was confirmed that Sample 1 and Sample 2 had excellent antibacterial effects.
Rebound resilience test The rebound resilience of each sample of Example 1 and Comparative Example 2 was measured. The results are shown in FIG. In addition, the measurement of the rebound resilience was performed using the apparatus shown in FIG.
That is, each sample was placed on the metal table shown in FIG. 4, a steel ball having a diameter of 10 mm was dropped from a height of 500 mm, and the height of the rebound was defined as h. %) Was measured. The measurement was performed 10 times for each sample, and the average height h was obtained. Rebound resilience (%) = (h / 50) × 100
From FIG. 5, the sample according to Example 1 in which both the iodine clathrate and DCHBSA were blended, and the sample in Comparative Example 2 in which only DCHBSA was blended and no iodine clathrate was used, were all the same. It was confirmed that they exhibited excellent rebound resilience (shock absorption) and that the inclusion of the iodine clathrate did not adversely affect the resilience.
Viscoelasticity test The dynamic viscoelasticity (tan δ) of each of the samples of Examples 1 and 2 and Comparative Example 1 was measured. FIG. 6 shows the result. The measurement of the dynamic viscoelasticity (tan δ) was performed using a dynamic viscoelasticity measurement test apparatus (Reo Vibron DDV-25FP, manufactured by Orientec Co., Ltd.).
[0043]
From FIG. 6, with respect to the sample of Comparative Example 1 in which neither the iodine clathrate nor the DCHBSA was blended, Example 1 in which the content of DCHBSA was 3 parts by weight, and the content of DCHBSA in which the content was 1 part by weight. In Example 2, it was confirmed that tan δ increased in accordance with the blending amount, and that the peak shifted to a higher temperature side. Incidentally, a high tan δ means that the sample has excellent resilience (impact absorption), and the viscoelasticity test shows that the samples of Examples 1 and 2 are also excellent in impact absorption. confirmed.
[0044]
【The invention's effect】
Since the molded product of the present invention contains an iodine complex and an organic low molecular weight material having high dipole efficiency in the base resin, it can be applied to a wide range of uses, and has excellent antibacterial properties and high attenuation properties. Combined.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a state of a dipole in a base resin.
FIG. 2 is a schematic diagram showing a state of a dipole in a base resin when energy is applied.
FIG. 3 is a schematic view showing a state of a dipole in a base resin containing an iodine complex and an organic low-molecular material having a high dipole efficiency.
FIG. 4 is a schematic view showing a rebound resilience measuring device.
FIG. 5 is a graph showing the rebound resilience of the sample according to Example 1 and the sample according to Comparative Example 2.
FIG. 6 is a graph showing tan δ at each temperature of the samples according to Examples 1 and 2 and the sample according to Comparative Example 1.
[Explanation of symbols]
11 ... base resin 12 ... dipole

Claims (10)

ベース樹脂中にヨウ素複合体と高双極子能率を有する有機低分子材料とを含むことを特徴とする抗菌性高減衰性樹脂成形物。An antibacterial high-attenuating resin molded product comprising an iodine complex and an organic low molecular weight material having high dipole efficiency in a base resin. ヨウ素複合体がシクロデキストリンをホスト分子とするヨウ素包接体であることを特徴とする請求項1記載の抗菌性高減衰性樹脂成形物。2. The antibacterial high-attenuation resin molded article according to claim 1, wherein the iodine complex is an iodine clathrate having cyclodextrin as a host molecule. ヨウ素複合体がベース樹脂100重量部に対し0.1〜30重量部の割合で含まれていることを特徴とする請求項2記載の抗菌性高減衰性樹脂成形物。The antibacterial high-attenuation resin molded product according to claim 2, wherein the iodine composite is contained in a ratio of 0.1 to 30 parts by weight based on 100 parts by weight of the base resin. 高双極子能率を有する有機低分子材料が、ベンゾチアジル基を持つ化合物、ベンゾトリアゾール基を持つ化合物、ジフェニルアクリレート基を持つ化合物、およびベンゾフェノン基を持つ化合物の中から選ばれる1種若しくは2種以上の混合物であることを特徴とする請求項1記載の抗菌性高減衰性樹脂成形物。One or more organic low molecular weight materials having high dipole efficiency are selected from a compound having a benzothiazyl group, a compound having a benzotriazole group, a compound having a diphenylacrylate group, and a compound having a benzophenone group. The antibacterial high-damping resin molded product according to claim 1, which is a mixture. 高双極子能率を有する有機低分子材料が、ベース樹脂100重量部に対し0.1〜30重量部の割合で含まれていることを特徴とする請求項1または4記載の抗菌性高減衰性樹脂成形物。The antibacterial and high attenuation property according to claim 1 or 4, wherein the organic low molecular weight material having high dipole efficiency is contained in a ratio of 0.1 to 30 parts by weight based on 100 parts by weight of the base resin. Resin molding. 該抗菌性高減衰性樹脂成形物がシートであることを特徴とする請求項1〜5のいずれかに記載の抗菌性高減衰性樹脂成形物。The antibacterial high-damping resin molded product according to any one of claims 1 to 5, wherein the antibacterial high-damping resin molded product is a sheet. 該抗菌性樹脂成形物が発泡シートであることを特徴とする請求項6記載の抗菌性高減衰性樹脂成形物。7. The antibacterial high-damping resin molded product according to claim 6, wherein the antibacterial resin molded product is a foam sheet. 該抗菌性高減衰性樹脂成形物がフィルムであることを特徴とする請求項1〜5のいずれかに記載の抗菌性高減衰性樹脂成形物。The antibacterial high-attenuation resin molded product according to any one of claims 1 to 5, wherein the antibacterial high-attenuation resin molded product is a film. 請求項6〜8記載の抗菌性高減衰性樹脂成形物に、樹脂シート、金属箔、織物、編物、不織布および紙からなる群から選ばれた1種若しくは2種以上が積層されたことを特徴とする抗菌性高減衰性樹脂成形物。The antibacterial high-damping resin molded product according to claim 6, wherein one or more selected from the group consisting of a resin sheet, a metal foil, a woven fabric, a knitted fabric, a nonwoven fabric, and paper are laminated. An antibacterial high-damping resin molded product. ベース樹脂中にヨウ素複合体と高双極子能率を有する有機低分子材料とを含む抗菌性高減衰性樹脂を、織物、編物、不織布および紙からなる群から選ばれる基材中に含ませたことを特徴とする抗菌性高減衰性樹脂成形物。A base resin selected from the group consisting of a woven fabric, a knitted fabric, a nonwoven fabric, and a paper, containing an antibacterial high-attenuating resin containing an iodine complex and an organic low-molecular material having a high dipole efficiency in a base resin An antibacterial high-damping resin molded product characterized by the following.
JP2003052502A 2003-02-28 2003-02-28 Antibacterial high-damping resin molding Expired - Fee Related JP3738306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052502A JP3738306B2 (en) 2003-02-28 2003-02-28 Antibacterial high-damping resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052502A JP3738306B2 (en) 2003-02-28 2003-02-28 Antibacterial high-damping resin molding

Publications (2)

Publication Number Publication Date
JP2004262991A true JP2004262991A (en) 2004-09-24
JP3738306B2 JP3738306B2 (en) 2006-01-25

Family

ID=33117361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052502A Expired - Fee Related JP3738306B2 (en) 2003-02-28 2003-02-28 Antibacterial high-damping resin molding

Country Status (1)

Country Link
JP (1) JP3738306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081756A (en) * 2011-07-18 2013-05-09 Daiwa:Kk Mat, and interior material for vehicle, and upholstery material for vehicle seat
JP2013221865A (en) * 2012-04-17 2013-10-28 Daiwa:Kk Multifunctional sheet
CN116239834A (en) * 2023-04-26 2023-06-09 宁波美氧新材料科技有限公司 High-performance antibacterial composite plastic and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081756A (en) * 2011-07-18 2013-05-09 Daiwa:Kk Mat, and interior material for vehicle, and upholstery material for vehicle seat
JPWO2013011643A1 (en) * 2011-07-18 2015-02-23 株式会社大和 mat
JP2013221865A (en) * 2012-04-17 2013-10-28 Daiwa:Kk Multifunctional sheet
CN116239834A (en) * 2023-04-26 2023-06-09 宁波美氧新材料科技有限公司 High-performance antibacterial composite plastic and preparation method thereof
CN116239834B (en) * 2023-04-26 2023-09-29 广东亨嘉橡塑科技有限公司 High-performance antibacterial composite plastic and preparation method thereof

Also Published As

Publication number Publication date
JP3738306B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
Martucci et al. Biodegradation of three-layer laminate films based on gelatin under indoor soil conditions
US20160069001A1 (en) Method of preparing antimicrobial 3d-printing filament
JP4658813B2 (en) Antibacterial fibers, woven or knitted fabrics, non-woven fabrics, wallpaper, and insulation
US20110200674A1 (en) Antimicrobial foam and method of manufacture
JP4180922B2 (en) Antibacterial rubber composition
CA2090208A1 (en) Antibacterial and antifungal polyacetal resin composition
US20120184656A1 (en) Resin composition for carbon dioxide emission reduction, method for producing the same, and use thereof
TW201800456A (en) Method of manufacturing molded body
WO2000036022A1 (en) Energy converting compound
CN108602773B (en) Compounds, polymers and coating formulations comprising at least one N-halamine precursor, a cationic center and a coating binding group
CA3074038C (en) Fiber reinforced flexible foams
CN106893012A (en) A kind of Nano Silver modified graphene crystal composite material and preparation method thereof
JP3738306B2 (en) Antibacterial high-damping resin molding
JP3017135B2 (en) Antibacterial or antifungal resin composition and use thereof
JP2009082559A (en) Composite powdery body which emits negative ion at high efficiency, composite powdery body deposit, and its manufacturing method
WO2015021757A1 (en) Antibacterial antistatic plastic casing for financial pos device, and preparation method thereof
JP2006306937A (en) Antibacterial resin composition, resin molding and tubular resin molding using the composition
US7093307B1 (en) Anti-static protective garment
JP5396130B2 (en) Damping material
JP4810008B2 (en) Negative ion generation pillow
KR101481579B1 (en) Anti Bacteria Plastic Pellet Comprising Bamboo Charcoal and Method Thereof
CA2233548C (en) Flexible hydrophilic articles, especially sponges, having a residual antimicrobial effect
JP2006524740A (en) Antibacterial unvulcanized rubber composition and antibacterial vulcanized rubber article
JP2007332201A (en) Microcapsule-containing foam and method for producing the same
JP2002179927A (en) Low impact resilient, vibration-damping polymer composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees