JP2004262911A - Chiral alcohol derived from glucose, its production method, chiral alkoxide derived from chiral allohol, optically active alpha-aminoketone using the same and its production method - Google Patents

Chiral alcohol derived from glucose, its production method, chiral alkoxide derived from chiral allohol, optically active alpha-aminoketone using the same and its production method Download PDF

Info

Publication number
JP2004262911A
JP2004262911A JP2003102279A JP2003102279A JP2004262911A JP 2004262911 A JP2004262911 A JP 2004262911A JP 2003102279 A JP2003102279 A JP 2003102279A JP 2003102279 A JP2003102279 A JP 2003102279A JP 2004262911 A JP2004262911 A JP 2004262911A
Authority
JP
Japan
Prior art keywords
group
glucofuranose
chiral
substituted
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102279A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tomooka
克彦 友岡
Junichiro Sakamaki
順一郎 酒巻
Manabu Harada
学 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003102279A priority Critical patent/JP2004262911A/en
Publication of JP2004262911A publication Critical patent/JP2004262911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing effectively an optically active α-aminoketone. <P>SOLUTION: A method for producing an optically active α-aminoketone shown by general formula (2) comprises allowing a new chiral alkoxide originating from glucose, which is shown by formula (3), to act upon a quaternary ammonium salt shown by general formula (1), wherein R<SP>1</SP>is a member selected from a methyl group and a cyclohexylidene group, R<SP>2</SP>is a member selected from an i-propyl group, an i-butyl group, a benzyl group, a phenyl group, a hexyl group and a cyclohexyl group, R<SP>3</SP>is a member selected from a vinyl group and a phenyl group, R<SP>4</SP>is a member selected from a methyl group and an allyl group, and X<SP>-</SP>is a counter ion. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規なグルコース由来のキラルアルコール、キラルアルコキシド及びその製造法に関し、当該キラルアルコキシドを塩基反応剤として用いたアンモニウム塩との反応及びそれにより得られる光学活性α−アミノケトン類を製造する製造方法にも関する。
【0002】
【従来の技術】
光学活性α−アミノケトン類は、従来、多段階を経て合成されていた(例えば、非特許文献1参照)。これに対し、発明者らは既に短工程で効率的に光学活性α−アミノケトン類を製造する手法を報告している(例えば、非特許文献2参照)。
【0003】
【非特許文献1】
D.Enders,C.Poiesz,R.Joseph,Tetrahedron Asymmetry 1998,9,3709.
【非特許文献2】
友岡 克彦、原田 学、酒巻 順一郎、中井 武、日本化学会第79春季年会講演予稿集II、1G535
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の光学活性α−アミノケトン類の調製法(非特許文献2)では、光学純度が低いという問題があった。本発明は、このような課題に鑑みてなされたものであり、短工程で効率的に高い光学純度で光学活性α−アミノケトン類を製造する手法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、グルコース由来の新規キラルアルコール及びキラルアルコキシドの合成に成功するとともにそれを用いることで、光学活性α−アミノケトン類の効率的な合成に成功した。
【0006】
本発明は物の発明にあっては次の3つである。
【0007】
グルコース由来のキラルアルコールの発明にあっては、一般式(4)
【化4】

Figure 2004262911
(式中、Rはメチル基、シクロヘキシリデン基から選ばれ、Rはi−プロピル基、i−ブチル基、ベンジル基、フェニル基、ヘキシル基、シクロヘキシル基から選ばれる)で示される1,2:5,6−二−O−置換−α−D−グルコフラノースである。
【0008】
キラルアルコキシドの発明にあっては、一般式(5)
【化5】
Figure 2004262911
(式中、Rはメチル基、シクロヘキシリデン基から選ばれ、Rはi−プロピル基、i−ブチル基、ベンジル基、フェニル基、ヘキシル基、シクロヘキシル基から選ばれ、Mはリチウム、ナトリウム、カリウムから選ばれる)で示されるキラルアルコキシドである。
【0009】
光学活性α−アミノケトンの発明にあっては、一般式(6)
【化6】
Figure 2004262911
(式中、Rはビニル基、フェニル基から選ばれ、Rはメチル基又はアリル基から選ばれる)で示される光学活性α−アミノケトンである。
【0010】
一方、本発明の方法の発明にあっては次の3つである。
【0011】
1,2:5,6−二−O−置換−α−D−グルコフラノースの製造方法については、1,2−O−置換−α−D−グルコフラノースから一般式(4)に示される1,2:5,6−二−O−置換−α−D−グルコフラノースを製造する方法であって、前記1,2−O−置換−α−D−グルコフラノースに対して、室温下、置換基に対応するケトンのジメチルアセタールを作用させることを特徴とする1,2:5,6−二−O−置換−α−D−グルコフラノースの製造方法、及び、前記1,2−O−置換−α−D−グルコフラノースに対して、室温下、系中で調製した置換基に対応するケトンのジメチルアセタールを作用させることを特徴とする1,2:5,6−二−O−置換−α−D−グルコフラノースの製造方法である。
【0012】
光学活性α−アミノケトンの製造方法については、四級アンモニウム塩から光学活性α−アミノケトンを製造する方法であって、前記四級アンモニウム塩に対して、0 ℃から室温下、一般式(5)に示されるキラルアルコキシドを作用させることを特徴とする光学活性α−アミノケトンの製造方法である。
【0013】
【発明の実施の形態】
本発明は、(一)グルコース由来のキラルアルコールの製造、(二)キラルアルコールからキラルアルコキシドを合成する製造法(三)キラルアルコキシドを用いた光学活性α−アミノケトン類の製造といった三つの工程から成り立っている。
【0014】
(一)「グルコース由来のキラルアルコールの製造」の段階では、1,2−O−置換−α−D−グルコフラノースから1,2:5,6−二−O−置換−α−D−グルコフラノースへの誘導を行う。(二)「キラルアルコールからキラルアルコキシドを合成する製造法」では、1,2:5,6−二−O−置換−α−D−グルコフラノースから、キラルアルコキシドを調製する。(三)「光学活性α−アミノケトン類の製造」の段階では、四級アンモニウム塩に対し、キラルアルコキシドを作用させることにより、Stevens転位を進行させ、対応するα−アミノケトン類を光学活性体として合成する。
【0015】
(一)、(二)、(三)のそれぞれの段階についてさらに説明する。(一)「グルコース由来のキラルアルコールの製造」の段階に関しては、
【化7】
Figure 2004262911
(7)で示される1,2−O−置換−α−D−グルコフラノースに対し、別途調製したジアルキルアセタールを作用させ合成する方法と、系中で調製したジアルキルアセタールを作用させ合成する方法の二通りの方法がある。1,2−O−置換−α−D−グルコフラノースに対し、ジアルキルアセタールを作用させる方法(第一の方法)の場合は、1,2−O−置換−α−D−グルコフラノースを0−60℃下、溶媒中で、別途調製したジアルキルアセタールと酸を作用させることで、
【化8】
Figure 2004262911
(8)で示される1,2:5,6−二−置換−α−D−グルコフラノースを得ることが出来る。なお、(8)においてR及びRとしては種々のアルキル置換基、アリール置換基が考えられる。
【0016】
(7)で示される1,2−O−置換−α−D−グルコフラノースに対し、系中で調製したジアルキルアセタールを作用させる方法(第二の方法)の場合は、1,2−O−置換グルコフラノースを0−60℃下、系中で調製したジアルキルアセタールと酸を作用させることで(8)で示される1,2:5,6−二−O−置換−α−D−グルコフラノースを得ることが出来る。なお、(8)においてRとしては種々のアルキル置換基及びアリール置換基が考えられる。
【0017】
次に、(二)の「キラルアルコール由来のキラルアルコキシドの製造」の段階では、前記第一又は第二の方法によって得た一般式(8)に示される1,2:5,6−二−置換−α−D−グルコフラノースを強塩基処理し、
【化9】
Figure 2004262911
(9)で示されるキラルアルコキシドを調製する。
【0018】
次に、(三)「光学活性α−アミノケトン類の製造」について説明する。前記のキラルアルコキシド(9)を
【化10】
Figure 2004262911
(10)で示される四級アンモニウム塩に作用させることで
【化11】
Figure 2004262911
(11)で示される光学活性α−アミノケトンを合成することが出来る。すなわち、(9)で示されるキラルアルコキシドのトルエン溶液に、(10)で示されるアンモニウム塩を加え室温まで徐々に昇温することにより、Stevens転位が進行し、(11)で示される光学活性α−アミノケトン類が得ることが出来る。
【0019】
【実施例】
さらに具体的な実施例について試験結果を含めて説明する。
【0020】
(実施例1)
上記(一)「1,2:5,6−二−O−置換−α−D−グルコフラノースの合成」の段階での上記第一の方法における1,2−O−置換−α−D−グルコフラノースとして1,2−O−シクロヘキリデングルコフラノースを用いた。アルゴン雰囲気下、1,2−O−シクロヘキリデン−α−D−グルコフラノース300mg(1.15mmol)とベンゾフェノンジメチルアセタール488mg(3.45mmol)を10mlの塩化メチレンに溶解させ、室温下、その溶液に触媒量のトシル酸一水和物を加えた。その温度で40分攪拌した後、反応を飽和塩化アンモニウム水溶液で停止した。塩化メチレンで抽出し、有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、シリカゲルクロマトグラフィー(溶出液:ヘキサン−酢酸エチル 2:1)で精製し、それをヘキサン−酢酸エチル中で再結晶することにより、1,2−O−シクロヘキシリデン−5,6−O−(ジフェニル)メチリデン−α−D−グルコフラノース231mg(収率68%)を得た。1,2−O−シクロヘキシリデン−5,6−O−(ジフェニル)メチリデン−α−D−グルコフラノースの物性データは、
IR(neat cm−1)3469,2937,2856,1957,1483,1449,1272,1208,1164,1004,880,843,784,700,645,529.
H NMR(300 MHz,CDCl)δ 7.47−7.53(m,4H),7.26−7.37(m,6H),5.93(d,J=3.6 Hz,1H),4.51(d,J=3.6 Hz,1H),4.43(ddd,J=8.7,8.1,5.7 Hz,1H),4.37(dd,J=4.2,2.7 Hz,1H),4.17(dd,J=8.7,8.4 Hz,1H),4.15(dd,J=8.4,5.7 Hz,1H),4.09(dd,J=8.1,2.7 Hz,1H),2.26(d,J=4.2 Hz,1H),1.37−1.60(m,10H).
13C NMR(75 MHz,CDCl)δ 142.1,141.9,128.7,128.6,128.4,126.5,126.4 112.8,110.0,105.1,84.8,81.4,75.3,73.8,68.4,36.4,35.7,24.8,23.8,23.5.
[α] 30 36.6(c 1.03 in CHCl
Anal.Calcd for C2728:C,70.74;H,6.65.Found:C,70.62;H,6.65.
【0021】
(実施例2)同様にして上述のベンゾフェノンジメチルアセタールをジベンジルケトンジメチルアセタールとすることによって、1,2−O−シクロヘキシリデン−5,6−O−(ジベンジル)メチリデン−α−D−グルコフラノースを収率75%で得た。1,2−O−シクロヘキシリデン−5,6−O−(ジベンジル)メチリデン−α−D−グルコフラノースの物性データは、
IR(neat cm−1)3534,3032,2936,2843,1496,1455,1260,1126,943,848,829,753,700,644,535.
H NMR(300 MHz,CDCl)δ 7.22−7.28(m,10H),5.76(d,J=6.6 Hz,1H),4.0(d,J=6.6Hz,1H),4.12(dd,J=3.6,2.7 Hz),3.79(dd,J=7.8,6.3 Hz),3.2(ddd,J=8.4,8.4,6.3 Hz,1H),3.29(dd,J=8.4,7.8 Hz,1H),3.25(dd,J8.4,2.7 Hz,1H),2.98(s,2H),2.96(s,2H),1.82(d,3.6 Hz,1H),1.34−1.66(m,10H).
13C NMR(75 MHz,CDCl)δ 136.6,136.2,131.3,130.9,128.4,128.1,127.0,126.9,112.6,111.9,105.1,84.5,81.5,75.5,73.7,69.3,45.0,44.7,36.3,35.6,24.8,23.8,23.5.
[α] 31 −5.18(c 1.02 in CHCl
Anal.Calcd for C2732:C,71.66;H,7.13.Found:C,71.56;H,7.12.
【0022】
(実施例3)同様にして上述のベンゾフェノンジメチルアセタールをジイソブチルケトンジメチルアセタールとすることによって、1,2−O−シクロヘキシリデン−5,6−O−(ジイソブチル)メチリデン−α−D−グルコフラノースを収率91%で得た。1,2−O−シクロヘキシリデン−5,6−O−(ジイソブチル)メチリデン−α−D−グルコフラノースの物性データは、
IR(neat cm−1)3516,3411,2941,1715,1464,1370,1195,1166,1125,945,827,816,776,671,632,565,537,514
H NMR(300 MHz,CDCl)δ 5.95(d,J=3.6 Hz,1H),4.52(d,J=3.6 Hz,1H),4.33(dd,J=3.3,3.0 Hz,1H),4.26(ddd,J=7.8,6.3,6.0 Hz,1H),4.15(dd,J=8.4,6.3 Hz,1H),4.05(dd J=7.8,3.0 Hz,1H),3.88(dd,J=8.4,6.0 Hz,1H),1.38−1.80(m,16H),0.95(s,3H),0.94(s,3H),0.93(s,3H),0.93(s,3H).
13C NMR(75 MHz,CDCl)δ 113.6,112.7,105.2,84.7,81.9,75.7,73.3,67.8,45.9,44.5,36.4,35.6,24.8,24.2,24.0,23.9,23.8,23.7,23.5.
[α] 27 5.76(c 1.51 in CHCl
Anal.Calcd for C2136:C,65.60;H,9.44.Found:C,65.58;H,9.40.
【0023】
(実施例4)上記(一)「1,2:5,6−二−O−置換−α−D−グルコフラノースの合成」の段階での上記第二の方法における1,2−O−置換−α−D−グルコフラノースとして1,2−O−シクロヘキリデン−α−D−グルコフラノースを用いた。アルゴン雰囲気下、ジシクロヘキシルケトン6.23ml(30mmol)とギ酸オルソトリメチル2.19ml(20mmol)を脱水メタノール20mlに溶解させ、室温下、トシル酸1水和物380mg(2mmol)を加える。これを常圧下、60℃で1時間攪拌し、生成したギ酸メチルを短いVigreux columunを通して留去する。反応混合物を室温まで放冷し、これに1,2−O−シクロヘキリデン−α−D−グルコフラノース2.16g(8.30mmol)を加える。室温で30分攪拌した後に、反応をトリエチルアミンで停止する。溶媒を留去した後に、水を加え、塩化メチレンで抽出し、油層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥する。溶媒を留去し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=5:1)で精製後、塩化メチレン−ヘキサン中で再結晶することにより1,2−O−シクロヘキリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを2.93g(収率67%)得た。1,2−O−シクロヘキリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースの物性データは、
IR(neat cm−1)3457,2933,2851,1452,1157,1063,923,829,776,640,520.
H NMR(300 MHz,acetone−d6)δ 5.83(d,J=3.6 Hz,1H),4.46(d,J=3.6Hz,1H),4.34(ddd,J=8.7,6.9,6.9Hz,1H),4.16(dd,J=3.3,2.7 Hz,1H),4.10(dd,J=6.9,2.7 Hz,1H),4.06(dd,J=7.8,6.9 Hz,1H),3.73(dd,J=8.7,7.8 Hz,1H),2.25(d,J=3.3 Hz,1H),1.08−1.78(m,30H).
13C NMR(75 MHz,CDCl)δ 116.4,112.7,105.3,84.6,82.1,75.9,75.2,71.2,44.2,43.4,36.4,35.6,27.2,27.1,27.1,27.0,26.4,26.4,26.3,26.3,24.8,23.8,23.5.
[α] 28 12.4(c 1.29 in CHCl
Anal.Calcd for C2540:C,68.78;H,9.23.Found:C,68.63;H,8.94.
【0024】
(実施例5)同様にして上述のジシクロヘキシルケトンをジヘキシルケトンとすることによって、1,2−O−シクロヘキシリデン−5,6−O−(ジヘキシル)メチリデン−α−D−グルコフラノースを収率70%で得た。1,2−O−シクロヘキシリデン−5,6−O−(ジベンジル)メチリデン−α−D−グルコフラノースの物性データは、
IR(neat cm−1)3435,2937,2861,1466,1369,1166,936,846,788,725,645,556,516.
H NMR(300 MHz,CDCl)δ 5.95(d,J=3.6Hz,1H),4.54(d,J=3.6 Hz,1H),4.34(dd,J=2.7,3.6 Hz,1H),4.31(ddd,J=7.5,6.3,6.3,Hz,1H),4.18(dd,J=8.4,6.3 Hz,1H),4.06(dd,J=7.5,2.7 Hz,1H),3.92(dd,J=8.4,6.3 Hz,1H),2.52(d,J=3.6 Hz,1H),1.29−1.67(m,30H),0.88−0.92(m,6H).
13C NMR(75 MHz,CDCl)δ 113.2,112.4,104.9,84.6,81.3,75.6,73.8,68.2,37.5,36.7,36.6,35.8,32.0,29.7,25.1,24.1,24.1,24.0,23.8,22.8,14.3.
[α] 29 10.1(c 1.22 in CHCl
Anal.Calcd for C2544:C,68.15;H,10.07.Found:C,68.06:H,9.68.
【0025】
(実施例6)同様にして上述のジシクロヘキシルケトンをジイソプロピルケトンとすることによって、1,2−O−シクロヘキシリデン−5,6−O−(ジイソプロピル)メチリデン−α−D−グルコフラノースを収率81%で得た。1,2−O−シクロヘキシリデン−5,6−O−(ジイソプロピル)メチリデン−α−D−グルコフラノースの物性データは、
IR(neat cm−1)3460,2968,2849,2875,1450,1249,1222,1147,939,879,845,788,645,620,495.
H NMR(300 MHz,acetone−d6)δ 5.83(d,J=3.6 Hz,1H),4.48(d,J=3.6Hz,1H),4.38(ddd,J=8.4,6.6,6.6 Hz,1H),4.16(d,J=2.7 Hz,1H),4.12(dd,J=6.6,2.7 Hz,1H),4.10(dd,J=8.1,6.6 Hz,1H),3.80(dd,J=8.4,8.1 Hz,1H),1.39(s,3H),1.25(s,3H),0.90(s,3H),0.90(s,3H),0.88(s,3H),0.87(s,3H).
13C NMR(75 MHz,CDCl)δ 117.2,112.7,105.2,84.6,82.1,75.6,75.0,71.1,36.4,35.6,34.4,33.7,24.8,23.8,23.4,17.4,17.2.
[α] 29 10.2(c 1.01 in CHCl
Anal.Calcd for C1932:C,64.02;H,9.05.Found:C,63.89;H,9.00.
【0026】
(実施例7)同様にして上述のジシクロヘキシルケトンをジイソプロピルケトン、1,2−O−シクロヘキリデン−α−D−グルコフラノースを1,2−O−イソプロピリデン−α−D−グルコフラノースとすることによって、1,2−O−イソプロピリデン−5,6−O−(ジイソプロピル)メチリデン−α−D−グルコフラノースを収率79%で得た。1,2−O−イソプロピリデン−5,6−O−(ジイソプロピル)メチリデン−α−D−グルコフラノースの物性データは、H NMR(300 MHz,acetone−d6)δ 5.83(d,J=3.6 Hz,1H),4.48(d,J=3.6Hz,1H),4.38(ddd,J=8.4,6.6,6.6 Hz,1H),4.16(d,J=2.7Hz,1H),4.12(dd,J=6.6,2.7 Hz,1H),4.10(dd,J=8.1,6.6 Hz,1H),1.37−1.63(m,10H),0.89(s,3H),0.89(s,3H),0.87(s,3H),0.87(s,3H).
13C NMR(75 MHz,CDCl)δ 117.2,112.7,105.2,84.6,82.1,75.6,75.0,71.1,36.4,35.6,34.4,33.7,24.8,23.8,23.4,17.4,17.2.
[α] 30 1.36(c 1.11 in CHCl
Anal.Calcd for C1628:C,60.74;H,8.92.Found:C,60.63;H,8.76.
【0027】
(実施例8−14)実施例1−7で調製した1,2:5,6−二−O−置換−α−D−グルコフラノースに対し、それぞれ、0℃下、トルエン中、当量のノルマルブチルリチウムを作用させることにより、対応するリチウムアルコキシドを製造した。
【0028】
(実施例15−21)実施例1−7で調製した1,2:5,6−二−O−置換−α−D−グルコフラノースに対し、それぞれ、0℃下、トルエン中、当量のナトリウムヒドリドを作用させることにより、対応するナトリウムアルコキシドを製造した。
【0029】
(実施例22−28)実施例1−7で調製した1,2:5,6−二−O−置換−α−D−グルコフラノースに対し、0℃下、トルエン中、当量のナトリウムヒドリドを作用させることにより、対応するナトリウムアルコキシドを製造した。
【0030】
上述の(三)「光学活性α−アミノケトン類の製造」の段階における、上記の1,2:5,6−二−O−置換−α−D−グルコフラノースについて試験した。
【0031】
(実施例29)アルゴン雰囲気下、上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノース127mg(0.290mmol)を2mlのトルエンに縣濁させ、0℃に冷却した。そこに、ノルマルブチルリチウム(1.34 Mヘキサン溶液)0.214ml(0.287mmol)を加え、30分間攪拌した。その溶液にベンジルジメチル(α−メチルフェナシル)アンモニウムブロミド10.0mg(0.0287mmol)を加え、室温まで徐々に昇温させ、20時間攪拌する。pH=7リン酸緩衝液で反応を停止し、酢酸エチルで抽出,有機層を硫酸マグネシウムで乾燥する。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(溶出液:ヘキサン−酢酸エチル 10:1)で精製することで2−(ジメチルアミノ)−2−メチル−3−フェニルプロピオフェノン5.6mg(収率72%)を得た。この鏡像体過剰率は光学異性体分離カラムを用いた高速液体クロマトグラフィー(カラム:ダイセルCHIRALCEL OD−H、展開溶媒:ヘキサン/2−プロパノール=150:1)を用い、測定したところ75%eeであった。
[α] 25 17.0(c 1.43 in CHCl)(75%ee)
IR(neat cm−1)3063,2941,2789,1681,1596,1495,1450,1370,1275,1204,1174,1158,1125,1093,964,886,750,701,587.
H NMR(300 MHz,CDCl)δ 8.46(d,J=6.9 Hz,2H),6.88−7.52(m,8H),3.46(d,J=12.3Hz,1H),2.96(d,J=12.3 Hz,1H),2.36(s,6H),1.18(s,3H).
13C NMR(75 MHz,CDCl)δ 203.1,137.7,137.6,132.5,130.9,130.5,128.3,128.1,126.5,72.2,41.2,39.0,14.5.
【0032】
(実施例30)同様にして上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを1,2−O−シクロヘキシリデン−5,6−O−(ジフェニル)メチリデン−α−D−グルコフラノースとすることによって、2−(ジメチルアミノ)−2−メチル−3−フェニルプロピオフェノンを収率50%,鏡像体過剰率4%eeで得た。
【0033】
(実施例31)同様にして上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを1,2−O−シクロヘキシリデン−5,6−O−(ジイソプロピル)メチリデン−α−D−グルコフラノースとすることによって、2−(ジメチルアミノ)−2−メチル−3−フェニルプロピオフェノンを収率91%,鏡像体過剰率61%eeで得た。
【0034】
(実施例32)同様にして上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを1,2−O−シクロヘキシリデン−5,6−O−(ジイソブチル)メチリデン−α−D−グルコフラノースとすることによって、2−(ジメチルアミノ)−2−メチル−3−フェニルプロピオフェノンを収率80%,鏡像体過剰率48%eeで得た。
【0035】
(実施例33)同様にして上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを1,2−O−シクロヘキシリデン−5,6−O−(ジベンジル)メチリデン−α−D−グルコフラノースとすることによって、2−(ジメチルアミノ)−2−メチル−3−フェニルプロピオフェノンを収率49%,鏡像体過剰率45%eeで得た。
【0036】
(実施例34)同様にして上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを1,2−O−シクロヘキシリデン−5,6−O−(ジヘキシル)メチリデン−α−D−グルコフラノースとすることによって、2−(ジメチルアミノ)−2−メチル−3−フェニルプロピオフェノンを収率76%,鏡像体過剰率45%eeで得た。
【0037】
(実施例35)同様にして上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを1,2−O−イソプロピリデン−5,6−O−(ジイソプロピル)メチリデン−α−D−グルコフラノースとすることによって、2−(ジメチルアミノ)−2−メチル−3−フェニルプロピオフェノンを収率74%,鏡像体過剰率45%eeで得た。
【0038】
上述の(三)「光学活性α−アミノケトン類の製造」の段階における、アンモニウム塩について試験した。1,2:5,6−二−O−置換α−D−グルコフラノースとしては1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノースを用いた。
【0039】
(実施例36)アルゴン雰囲気下、上述の1,2−O−シクロヘキシリデン−5,6−O−(ジシクロヘキシル)メチリデン−α−D−グルコフラノース334mg(0.765mmol)を5mlのトルエンに縣濁させ、0℃に冷却した。そこに、ノルマルブチルリチウム(1.34Mヘキサン溶液)0.560ml(0.750mmol)を加え、30分間攪拌した。その溶液にアリルジメチル(α−メチルフェナシル)アンモニウムブロミド44.6mg(0.150mmol)を加え、室温まで徐々に昇温させ、48時間攪拌する。pH=7リン酸緩衝液で反応を停止し、酢酸エチルで抽出,有機層を硫酸マグネシウムで乾燥する。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(溶出液:ヘキサン−酢酸エチル 10:1)で精製することで2−メチル−2−(ジメチルアミノ)−1−フェニル−4−ペンテン−1−オン22.2mg(収率68%)を得た。この鏡像体過剰率は−7℃に冷やした光学異性体分離カラムを用いた高速液体クロマトグラフィー(カラム:ダイセルCHIRALCEL OD−H、展開溶媒:ヘキサン/2−プロパノール=3000:1)を用い、測定したところ78%eeであった。
【0040】
(実施例37)同様にして上述のアリルジメチル(α−メチルフェナシル)アンモニウムブロミドをトリアリル(α−メチルフェナシル)アンモニウムブロミドとすることによって、2−(ジアリルアミノ)−2−メチル−1−フェニル−4−ペンテン−1−オンを収率80%,鏡像体過剰率80%eeで得た。
【0041】
【発明の効果】
本発明の製造方法により、光学活性α−アミノケトン類を効率良く製造できる。また本発明に係る反応の優れたキラル塩基であり、さらに他の様々な不斉合成反応にもキラル塩基として利用できる可能性を有する新規キラルアルコキシドおよびその効率の良い製造方法を提供する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel glucose-derived chiral alcohol, a chiral alkoxide and a method for producing the same, a reaction with an ammonium salt using the chiral alkoxide as a base reactant, and production for producing optically active α-aminoketones obtained thereby. Also about the method.
[0002]
[Prior art]
Conventionally, optically active α-aminoketones have been synthesized through multiple steps (for example, see Non-Patent Document 1). In contrast, the inventors have already reported a method for efficiently producing optically active α-aminoketones in a short process (for example, see Non-Patent Document 2).
[0003]
[Non-patent document 1]
D. Enders, C.I. Poiesz, R.A. Joseph, Tetrahedron Asymmetry 1998, 9, 3709.
[Non-patent document 2]
Katsuhiko Tomooka, Manabu Harada, Junichiro Sakaki, Takeshi Nakai, Proceedings of the 79th Annual Meeting of the Chemical Society of Japan II, 1G535
[0004]
[Problems to be solved by the invention]
However, the above-mentioned conventional method for preparing optically active α-aminoketones (Non-Patent Document 2) has a problem that optical purity is low. The present invention has been made in view of such a problem, and an object of the present invention is to provide a method for efficiently producing optically active α-aminoketones with high optical purity in a short process.
[0005]
[Means for Solving the Problems]
The present inventors succeeded in synthesizing novel chiral alcohols and chiral alkoxides derived from glucose and, by using them, succeeded in efficiently synthesizing optically active α-aminoketones.
[0006]
The present invention is the following three aspects of the invention of a product.
[0007]
In the invention of the chiral alcohol derived from glucose, the general formula (4)
Embedded image
Figure 2004262911
(Where R1Is selected from a methyl group and a cyclohexylidene group;2Is selected from i-propyl group, i-butyl group, benzyl group, phenyl group, hexyl group, and cyclohexyl group), which is 1,2,5,6-2-O-substituted-α-D-glucofuranose. is there.
[0008]
In the invention of the chiral alkoxide, the general formula (5)
Embedded image
Figure 2004262911
(Where R1Is selected from a methyl group and a cyclohexylidene group;2Is selected from i-propyl group, i-butyl group, benzyl group, phenyl group, hexyl group and cyclohexyl group, and M is selected from lithium, sodium and potassium).
[0009]
In the invention of the optically active α-aminoketone, the general formula (6)
Embedded image
Figure 2004262911
(Where R3Is selected from a vinyl group and a phenyl group;4Is selected from a methyl group or an allyl group).
[0010]
On the other hand, the method of the present invention includes the following three.
[0011]
Regarding the method for producing 1,2,5,6-2-O-substituted-α-D-glucofuranose, the compound represented by the general formula (4) is prepared from 1,2-O-substituted-α-D-glucofuranose. , 2: 5,6-2-O-substituted-α-D-glucofuranose, which comprises substituting the 1,2-O-substituted-α-D-glucofuranose at room temperature. A method for producing 1,2,5,6-di-O-substituted-α-D-glucofuranose by reacting dimethyl acetal of a ketone corresponding to the group, and the 1,2-O-substitution 1,2-, 5,6-2-O-substituted-, characterized in that dimethyl acetal of a ketone corresponding to a substituent prepared in the system is allowed to act on -α-D-glucofuranose at room temperature. This is a method for producing α-D-glucofuranose.
[0012]
The method for producing an optically active α-aminoketone is a method for producing an optically active α-aminoketone from a quaternary ammonium salt. A process for producing an optically active α-aminoketone, which comprises reacting the indicated chiral alkoxide.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention comprises three steps: (1) production of a chiral alcohol derived from glucose, (2) a production method for synthesizing a chiral alkoxide from a chiral alcohol, and (3) production of an optically active α-aminoketone using the chiral alkoxide. ing.
[0014]
(1) In the step of “Production of glucose-derived chiral alcohol”, 1,2-, 5-6-substituted-α-D-glucose is converted from 1,2-O-substituted-α-D-glucofuranose. Induction to furanose is performed. (2) In the “production method for synthesizing a chiral alkoxide from a chiral alcohol”, a chiral alkoxide is prepared from 1,2,5,6-2-O-substituted-α-D-glucofuranose. (3) In the stage of “Production of optically active α-aminoketones”, a Stevens rearrangement is caused by acting a chiral alkoxide on a quaternary ammonium salt, and the corresponding α-aminoketones are synthesized as optically active substances. I do.
[0015]
Each stage of (1), (2), and (3) will be further described. (1) Regarding the stage of “production of glucose-derived chiral alcohol”,
Embedded image
Figure 2004262911
A method of synthesizing a 1,2-O-substituted-α-D-glucofuranose represented by (7) by reacting a separately prepared dialkylacetal and a method of synthesizing by reacting a dialkylacetal prepared in the system. There are two ways. In the case of a method (first method) in which a dialkyl acetal is allowed to act on 1,2-O-substituted-α-D-glucofuranose, 1,2-O-substituted-α-D-glucofuranose is converted to 0-. By reacting a separately prepared dialkyl acetal and an acid in a solvent at 60 ° C,
Embedded image
Figure 2004262911
The 1,2: 5,6-disubstituted-α-D-glucofuranose represented by (8) can be obtained. In (8), R1And R2Examples include various alkyl substituents and aryl substituents.
[0016]
In the case of the method (second method) of reacting the dialkyl acetal prepared in the system with the 1,2-O-substituted-α-D-glucofuranose shown in (7), 1,2-O- The substituted glucofuranose is reacted with a dialkyl acetal prepared in a system at 0-60 ° C. and an acid to give 1,2,5,6-2-O-substituted-α-D-glucofuranose represented by (8). Can be obtained. In (8), R2Can be various alkyl and aryl substituents.
[0017]
Next, in the step of (2) “Production of chiral alkoxide derived from chiral alcohol”, 1,2,5,6-di- (2) represented by general formula (8) obtained by the first or second method is used. Treating the substituted -α-D-glucofuranose with a strong base,
Embedded image
Figure 2004262911
A chiral alkoxide represented by (9) is prepared.
[0018]
Next, (3) “Production of optically active α-aminoketones” will be described. The above chiral alkoxide (9)
Embedded image
Figure 2004262911
By acting on the quaternary ammonium salt shown in (10)
Embedded image
Figure 2004262911
The optically active α-aminoketone represented by (11) can be synthesized. That is, by adding the ammonium salt represented by (10) to a toluene solution of the chiral alkoxide represented by (9) and gradually raising the temperature to room temperature, the Stevens rearrangement proceeds, and the optical activity α represented by (11) is obtained. -Aminoketones can be obtained.
[0019]
【Example】
Further specific examples will be described including test results.
[0020]
(Example 1)
(1) 1,2-O-substituted-α-D- in the first method at the stage of “Synthesis of 1,2,5,6-2-O-substituted-α-D-glucofuranose” 1,2-O-cyclohexylidene glucofuranose was used as glucofuranose. Under an argon atmosphere, 1,2-O-cyclohexylidene-α-D-glucofuranose (300 mg, 1.15 mmol) and benzophenone dimethyl acetal (488 mg, 3.45 mmol) were dissolved in 10 ml of methylene chloride, and the solution was added at room temperature. A catalytic amount of tosylic acid monohydrate was added. After stirring at that temperature for 40 minutes, the reaction was quenched with saturated aqueous ammonium chloride. The mixture was extracted with methylene chloride, and the organic layer was washed with brine and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel chromatography (eluent: hexane-ethyl acetate 2: 1) and recrystallized in hexane-ethyl acetate to give 1,2-O-cyclohexyl. 231 mg (68% yield) of den-5,6-O- (diphenyl) methylidene-α-D-glucofuranose was obtained. Physical property data of 1,2-O-cyclohexylidene-5,6-O- (diphenyl) methylidene-α-D-glucofuranose is as follows.
IR (neat cm-13469, 2937, 2856, 1957, 1483, 1449, 1272, 1208, 1164, 1004, 880, 843, 784, 700, 645, 529.
11 H NMR (300 MHz, CDCl3) Δ 7.47-7.53 (m, 4H), 7.26-7.37 (m, 6H), 5.93 (d, J = 3.6 Hz, 1H), 4.51 (d, J = 3.6 Hz, 1H), 4.43 (ddd, J = 8.7, 8.1, 5.7 Hz, 1H), 4.37 (dd, J = 4.2, 2.7 Hz) , 1H), 4.17 (dd, J = 8.7, 8.4 Hz, 1H), 4.15 (dd, J = 8.4, 5.7 Hz, 1H), 4.09 (dd, J = 8.1, 2.7 Hz, 1H), 2.26 (d, J = 4.2 Hz, 1H), 1.37-1.60 (m, 10H).
ThirteenC NMR (75 MHz, CDCl3) Δ 142.1, 141.9, 128.7, 128.6, 128.4, 126.5, 126.4 112.8, 110.0, 105.1, 84.8, 81.4, 75 .3,73.8,68.4,36.4,35.7,24.8,23.8,23.5.
[Α]D 30  36.6 (c 1.03 in CHCl3)
Anal. Calcd for C27H28O6: C, 70.74; H, 6.65. Found: C, 70.62; H, 6.65.
[0021]
(Example 2) Similarly, the above-mentioned benzophenone dimethyl acetal was changed to dibenzyl ketone dimethyl acetal to give 1,2-O-cyclohexylidene-5,6-O- (dibenzyl) methylidene-α-D-glucose. Furanose was obtained in a yield of 75%. Physical property data of 1,2-O-cyclohexylidene-5,6-O- (dibenzyl) methylidene-α-D-glucofuranose is as follows.
IR (neat cm-13534, 3032, 2936, 2843, 1496, 1455, 1260, 1126, 943, 848, 829, 753, 700, 644, 535.
11 H NMR (300 MHz, CDCl3) Δ 7.22-7.28 (m, 10H), 5.76 (d, J = 6.6 Hz, 1H), 4.0 (d, J = 6.6 Hz, 1H), 4.12 ( dd, J = 3.6, 2.7 Hz), 3.79 (dd, J = 7.8, 6.3 Hz), 3.2 (ddd, J = 8.4, 8.4, 6. 3 Hz, 1H), 3.29 (dd, J = 8.4, 7.8 Hz, 1H), 3.25 (dd, J8.4, 2.7 Hz, 1H), 2.98 (s, 2H), 2.96 (s, 2H), 1.82 (d, 3.6 Hz, 1H), 1.34-1.66 (m, 10H).
ThirteenC NMR (75 MHz, CDCl3) Δ 136.6, 136.2, 131.3, 130.9, 128.4, 128.1, 127.0, 126.9, 112.6, 111.9, 105.1, 84.5, 81.5, 75.5, 73.7, 69.3, 45.0, 44.7, 36.3, 35.6, 24.8, 23.8, 23.5.
[Α]D 31  −5.18 (c 1.02 in CHCl3)
Anal. Calcd for C27H32O6: C, 71.66; H, 7.13. Found: C, 71.56; H, 7.12.
[0022]
(Example 3) Similarly, the above-mentioned benzophenone dimethyl acetal was changed to diisobutyl ketone dimethyl acetal, whereby 1,2-O-cyclohexylidene-5,6-O- (diisobutyl) methylidene-α-D-glucofuranose was obtained. Was obtained in a yield of 91%. Physical property data of 1,2-O-cyclohexylidene-5,6-O- (diisobutyl) methylidene-α-D-glucofuranose is as follows.
IR (neat cm-1) 3516, 3411, 2941, 1715, 1464, 1370, 1195, 1166, 1125, 945, 827, 816, 776, 671, 632, 565, 537, 514
11 H NMR (300 MHz, CDCl3) Δ 5.95 (d, J = 3.6 Hz, 1H), 4.52 (d, J = 3.6 Hz, 1H), 4.33 (dd, J = 3.3, 3.0 Hz) , 1H), 4.26 (ddd, J = 7.8, 6.3, 6.0 Hz, 1H), 4.15 (dd, J = 8.4, 6.3 Hz, 1H), 4. 05 (dd J = 7.8, 3.0 Hz, 1H), 3.88 (dd, J = 8.4, 6.0 Hz, 1H), 1.38-1.80 (m, 16H), 0.95 (s, 3H), 0.94 (s, 3H), 0.93 (s, 3H), 0.93 (s, 3H).
ThirteenC NMR (75 MHz, CDCl3) Δ 113.6, 112.7, 105.2, 84.7, 81.9, 75.7, 73.3, 67.8, 45.9, 44.5, 36.4, 35.6, 24.8, 24.2, 24.0, 23.9, 23.8, 23.7, 23.5.
[Α]D 27  5.76 (c 1.51 in CHCl3)
Anal. Calcd for C21H36O6: C, 65.60; H, 9.44. Found: C, 65.58; H, 9.40.
[0023]
(Example 4) 1,2-O-substitution in the second method at the stage of (1) "Synthesis of 1,2,5,6-2-O-substituted-α-D-glucofuranose" 1,2-O-cyclohexylidene-α-D-glucofuranose was used as -α-D-glucofuranose. Under an argon atmosphere, 6.23 ml (30 mmol) of dicyclohexyl ketone and 2.19 ml (20 mmol) of orthotrimethyl formate are dissolved in 20 ml of dehydrated methanol, and 380 mg (2 mmol) of tosylic acid monohydrate is added at room temperature. This is stirred for 1 hour at 60 ° C. under normal pressure, and the formed methyl formate is distilled off through a short Vigreux column. The reaction mixture is allowed to cool to room temperature, and 2.16 g (8.30 mmol) of 1,2-O-cyclohexylidene-α-D-glucofuranose is added thereto. After stirring at room temperature for 30 minutes, the reaction is quenched with triethylamine. After the solvent was distilled off, water was added, and the mixture was extracted with methylene chloride. The oil layer was washed with saturated saline and dried over magnesium sulfate. The solvent was distilled off, the residue was purified by silica gel chromatography (hexane: ethyl acetate = 5: 1), and recrystallized in methylene chloride-hexane to give 1,2-O-cyclohexylidene-5,6-O- ( 2.93 g (yield 67%) of dicyclohexyl) methylidene-α-D-glucofuranose was obtained. Physical property data of 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose is as follows.
IR (neat cm-13457, 2933, 2851, 1452, 1157, 1063, 923, 829, 776, 640, 520.
11 H NMR (300 MHz, acetone-d6) δ 5.83 (d, J = 3.6 Hz, 1H), 4.46 (d, J = 3.6 Hz, 1H), 4.34 (ddd, J = 8.7, 6.9, 6.9 Hz, 1H), 4.16 (dd, J = 3.3, 2.7 Hz, 1H), 4.10 (dd, J = 6.9, 2.7) Hz, 1H), 4.06 (dd, J = 7.8, 6.9 Hz, 1H), 3.73 (dd, J = 8.7, 7.8 Hz, 1H), 2.25 (d , J = 3.3 Hz, 1H), 1.08-1.78 (m, 30H).
ThirteenC NMR (75 MHz, CDCl3) Δ 116.4, 112.7, 105.3, 84.6, 82.1, 75.9, 75.2, 71.2, 44.2, 43.4, 36.4, 35.6, 27.2, 27.1, 27.1, 27.0, 26.4, 26.4, 26.3, 26.3, 24.8, 23.8, 23.5.
[Α]D 28  12.4 (c 1.29 in CHCl3)
Anal. Calcd for C25H40O6: C, 68.78; H, 9.23. Found: C, 68.63; H, 8.94.
[0024]
(Example 5) In the same manner, 1,2-O-cyclohexylidene-5,6-O- (dihexyl) methylidene-α-D-glucofuranose was obtained by converting the above-mentioned dicyclohexyl ketone into dihexyl ketone. Obtained at 70%. Physical property data of 1,2-O-cyclohexylidene-5,6-O- (dibenzyl) methylidene-α-D-glucofuranose is as follows.
IR (neat cm-13435, 2937, 2861, 1466, 1369, 1166, 936, 846, 788, 725, 645, 556, 516.
11 H NMR (300 MHz, CDCl3) Δ 5.95 (d, J = 3.6 Hz, 1H), 4.54 (d, J = 3.6 Hz, 1H), 4.34 (dd, J = 2.7, 3.6 Hz, 1H), 4.31 (ddd, J = 7.5, 6.3, 6.3 Hz, 1H), 4.18 (dd, J = 8.4, 6.3 Hz, 1H), 4. 06 (dd, J = 7.5, 2.7 Hz, 1H), 3.92 (dd, J = 8.4, 6.3 Hz, 1H), 2.52 (d, J = 3.6 Hz) , 1H), 1.29-1.67 (m, 30H), 0.88-0.92 (m, 6H).
ThirteenC NMR (75 MHz, CDCl3) Δ 113.2, 112.4, 104.9, 84.6, 81.3, 75.6, 73.8, 68.2, 37.5, 36.7, 36.6, 35.8, 32.0, 29.7, 25.1, 214.1, 214.1, 24.0, 23.8, 22.8, 14.3.
[Α]D 29  10.1 (c 1.22 in CHCl3)
Anal. Calcd for C25H44O6: C, 68.15; H, 10.07. Found: C, 68.06: H, 9.68.
[0025]
Example 6 In the same manner, 1,2-O-cyclohexylidene-5,6-O- (diisopropyl) methylidene-α-D-glucofuranose was obtained by converting the above-mentioned dicyclohexyl ketone into diisopropyl ketone. Obtained at 81%. Physical property data of 1,2-O-cyclohexylidene-5,6-O- (diisopropyl) methylidene-α-D-glucofuranose is as follows.
IR (neat cm-13460, 2968, 2849, 2875, 1450, 1249, 1222, 1147, 939, 879, 845, 788, 645, 620, 495.
11 H NMR (300 MHz, acetone-d6) δ 5.83 (d, J = 3.6 Hz, 1H), 4.48 (d, J = 3.6 Hz, 1H), 4.38 (ddd, J = 8.4, 6.6, 6.6 Hz, 1H), 4.16 (d, J = 2.7 Hz, 1H), 4.12 (dd, J = 6.6, 2.7 Hz, 1H) ), 4.10 (dd, J = 8.1, 6.6 Hz, 1H), 3.80 (dd, J = 8.4, 8.1 Hz, 1H), 1.39 (s, 3H) , 1.25 (s, 3H), 0.90 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H), 0.87 (s, 3H).
ThirteenC NMR (75 MHz, CDCl3) Δ 117.2, 112.7, 105.2, 84.6, 82.1, 75.6, 75.0, 71.1, 36.4, 35.6, 34.4, 33.7, 24.8, 23.8, 23.4, 17.4, 17.2.
[Α]D 29  10.2 (c 1.01 in CHCl3)
Anal. Calcd for C19H32O6: C, 64.02; H, 9.05. Found: C, 63.89; H, 9.00.
[0026]
Example 7 Similarly, the above-mentioned dicyclohexyl ketone was changed to diisopropyl ketone, and 1,2-O-cyclohexylidene-α-D-glucofuranose was changed to 1,2-O-isopropylidene-α-D-glucofuranose. As a result, 1,2-O-isopropylidene-5,6-O- (diisopropyl) methylidene-α-D-glucofuranose was obtained in a yield of 79%. Physical property data of 1,2-O-isopropylidene-5,6-O- (diisopropyl) methylidene-α-D-glucofuranose is as follows.11 H NMR (300 MHz, acetone-d6) δ 5.83 (d, J = 3.6 Hz, 1H), 4.48 (d, J = 3.6 Hz, 1H), 4.38 (ddd, J = 8.4, 6.6, 6.6 Hz, 1H), 4.16 (d, J = 2.7 Hz, 1H), 4.12 (dd, J = 6.6, 2.7 Hz, 1H) , 4.10 (dd, J = 8.1, 6.6 Hz, 1H), 1.37-1.63 (m, 10H), 0.89 (s, 3H), 0.89 (s, 3H) ), 0.87 (s, 3H), 0.87 (s, 3H).
ThirteenC NMR (75 MHz, CDCl3) Δ 117.2, 112.7, 105.2, 84.6, 82.1, 75.6, 75.0, 71.1, 36.4, 35.6, 34.4, 33.7, 24.8, 23.8, 23.4, 17.4, 17.2.
[Α]D 30  1.36 (c 1.11 in CHCl3)
Anal. Calcd for C16H28O6: C, 60.74; H, 8.92. Found: C, 60.63; H, 8.76.
[0027]
(Examples 8-14) Normal amounts of 1,2,5,6-di-O-substituted-α-D-glucofuranose prepared in Example 1-7 in toluene at 0 ° C. The corresponding lithium alkoxide was produced by the action of butyllithium.
[0028]
(Example 15-21) To 1,2,5,6-2-O-substituted-α-D-glucofuranose prepared in Example 1-7, an equivalent amount of sodium in toluene at 0 ° C., respectively. The corresponding sodium alkoxide was produced by the action of a hydride.
[0029]
(Examples 22-28) To 1,2,5,6-2-O-substituted-α-D-glucofuranose prepared in Example 1-7, an equivalent amount of sodium hydride in toluene at 0 ° C. By acting, the corresponding sodium alkoxide was produced.
[0030]
The above 1,2,5,6-2-O-substituted-α-D-glucofuranose was tested in the above-mentioned (3) “Production of optically active α-aminoketones”.
[0031]
(Example 29) Under an argon atmosphere, 127 mg (0.290 mmol) of the above-mentioned 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose was suspended in 2 ml of toluene. Turn cloudy and cool to 0 ° C. Thereto, 0.214 ml (0.287 mmol) of normal butyl lithium (1.34 M hexane solution) was added, and the mixture was stirred for 30 minutes. 10.0 mg (0.0287 mmol) of benzyldimethyl (α-methylphenacyl) ammonium bromide is added to the solution, and the temperature is gradually raised to room temperature, followed by stirring for 20 hours. The reaction is stopped with a pH = 7 phosphate buffer, extracted with ethyl acetate, and the organic layer is dried over magnesium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (eluent: hexane-ethyl acetate 10: 1) to obtain 5.6 mg of 2- (dimethylamino) -2-methyl-3-phenylpropiophenone (yield). 72%). The enantiomeric excess was measured by high performance liquid chromatography using an optical isomer separation column (column: Daicel CHIRALCEL OD-H, developing solvent: hexane / 2-propanol = 150: 1), and was measured to be 75% ee. there were.
[Α]D 25  17.0 (c 1.43 in CHCl3) (75% ee)
IR (neat cm-13063, 2941, 2789, 1681, 1596, 1495, 1450, 1370, 1275, 1204, 1174, 1158, 1125, 1093, 964, 886, 750, 701, 587.
11 H NMR (300 MHz, CDCl3) Δ 8.46 (d, J = 6.9 Hz, 2H), 6.88-7.52 (m, 8H), 3.46 (d, J = 12.3 Hz, 1H), 2.96 ( d, J = 12.3 Hz, 1H), 2.36 (s, 6H), 1.18 (s, 3H).
ThirteenC NMR (75 MHz, CDCl3) Δ 203.1, 137.7, 137.6, 132.5, 130.9, 130.5, 128.3, 128.1, 126.5, 72.2, 41.2, 39.0, 14.5.
[0032]
(Example 30) In the same manner, 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose was converted to 1,2-O-cyclohexylidene-5. By using 6-O- (diphenyl) methylidene-α-D-glucofuranose, 2- (dimethylamino) -2-methyl-3-phenylpropiophenone can be obtained in a yield of 50% and an enantiomeric excess of 4% ee. Obtained.
[0033]
(Example 31) Similarly, 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose was converted to 1,2-O-cyclohexylidene-5. By using 6-O- (diisopropyl) methylidene-α-D-glucofuranose, 2- (dimethylamino) -2-methyl-3-phenylpropiophenone was obtained at a yield of 91% and an enantiomeric excess of 61% ee. Obtained.
[0034]
(Example 32) Similarly, the above-mentioned 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose was converted to 1,2-O-cyclohexylidene-5. By using 6-O- (diisobutyl) methylidene-α-D-glucofuranose, 2- (dimethylamino) -2-methyl-3-phenylpropiophenone can be obtained at a yield of 80% and an enantiomeric excess of 48% ee. Obtained.
[0035]
(Example 33) In the same manner, 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose was converted to 1,2-O-cyclohexylidene-5. By using 6-O- (dibenzyl) methylidene-α-D-glucofuranose, 2- (dimethylamino) -2-methyl-3-phenylpropiophenone can be obtained in a yield of 49% and an enantiomeric excess of 45% ee. Obtained.
[0036]
(Example 34) In the same manner, 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose was converted to 1,2-O-cyclohexylidene-5. By using 6-O- (dihexyl) methylidene-α-D-glucofuranose, 2- (dimethylamino) -2-methyl-3-phenylpropiophenone can be obtained in a yield of 76% and an enantiomeric excess of 45% ee. Obtained.
[0037]
(Example 35) In the same manner, 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose was converted to 1,2-O-isopropylidene-5,6. By using -O- (diisopropyl) methylidene-α-D-glucofuranose, 2- (dimethylamino) -2-methyl-3-phenylpropiophenone was obtained in a yield of 74% and an enantiomeric excess of 45% ee. Was.
[0038]
The ammonium salt was tested in the above-mentioned (3) “Production of optically active α-amino ketones”. 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose is used as the 1,2: 5,6-2-O-substituted α-D-glucofuranose. Was.
[0039]
(Example 36) Under argon atmosphere, 334 mg (0.765 mmol) of 1,2-O-cyclohexylidene-5,6-O- (dicyclohexyl) methylidene-α-D-glucofuranose described above was suspended in 5 ml of toluene. Turn cloudy and cool to 0 ° C. 0.560 ml (0.750 mmol) of normal butyl lithium (1.34 M hexane solution) was added thereto, and the mixture was stirred for 30 minutes. 44.6 mg (0.150 mmol) of allyldimethyl (α-methylphenacyl) ammonium bromide is added to the solution, the temperature is gradually raised to room temperature, and the mixture is stirred for 48 hours. The reaction is stopped with a pH = 7 phosphate buffer, extracted with ethyl acetate, and the organic layer is dried over magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (eluent: hexane-ethyl acetate 10: 1) to give 2-methyl-2- (dimethylamino) -1-phenyl-4-penten-1-one. 22.2 mg (68% yield) were obtained. The enantiomeric excess was measured using high performance liquid chromatography using an optical isomer separation column cooled to -7 ° C (column: Daicel CHIRALCEL OD-H, developing solvent: hexane / 2-propanol = 3000: 1). As a result, it was 78% ee.
[0040]
Example 37 In the same manner, 2- (diallylamino) -2-methyl-1-methyl-1-ammonium bromide was used in place of the above-mentioned allyldimethyl (α-methylphenacyl) ammonium bromide. Phenyl-4-penten-1-one was obtained with a yield of 80% and an enantiomeric excess of 80% ee.
[0041]
【The invention's effect】
According to the production method of the present invention, optically active α-aminoketones can be produced efficiently. Further, the present invention provides a novel chiral alkoxide which is an excellent chiral base of the reaction according to the present invention and has a possibility of being used as a chiral base in various other asymmetric synthesis reactions, and an efficient production method thereof.

Claims (6)

一般式 (1)
Figure 2004262911
(式中、Rはメチル基、シクロヘキシリデン基から選ばれ、Rはi−プロピル基、i−ブチル基、ベンジル基、フェニル基、ヘキシル基、シクロヘキシル基から選ばれる)で示されるキラルアルコール。
General formula (1)
Figure 2004262911
(Wherein, R 1 is selected from a methyl group and a cyclohexylidene group, and R 2 is selected from an i-propyl group, an i-butyl group, a benzyl group, a phenyl group, a hexyl group, and a cyclohexyl group) alcohol.
一般式 (2)
Figure 2004262911
(式中、Rはメチル基、シクロヘキシリデン基から選ばれ、Rはi−プロピル基、i−ブチル基、ベンジル基、フェニル基、ヘキシル基、シクロヘキシル基から選ばれ、Mはリチウム、ナトリウム、カリウムから選ばれる)で示されるキラルアルコキシド。
General formula (2)
Figure 2004262911
(Wherein, R 1 is selected from a methyl group and a cyclohexylidene group, R 2 is selected from an i-propyl group, an i-butyl group, a benzyl group, a phenyl group, a hexyl group, a cyclohexyl group, M is lithium, Chiral alkoxides selected from sodium and potassium).
一般式 (3)
Figure 2004262911
(式中、Rはビニル基、フェニル基から選ばれ、Rはメチル基又はアリル基から選ばれる)で示される光学活性α−アミノケトン。
General formula (3)
Figure 2004262911
(Wherein, R 3 is selected from a vinyl group and a phenyl group, and R 4 is selected from a methyl group or an allyl group).
1,2−O−置換−α−D−グルコフラノースから請求項1に記載の1,2:5,6−二−O−置換−α−D−グルコフラノースを製造する方法であって、前記1,2−O−置換−α−D−グルコフラノースに対して、室温下、置換基に対応するケトンのジメチルアセタールを作用させることを特徴とするキラルアルコールの製造方法。The method for producing 1,2,5,6-di-O-substituted-α-D-glucofuranose according to claim 1 from 1,2-O-substituted-α-D-glucofuranose, wherein the method comprises: A method for producing a chiral alcohol, comprising reacting 1,2-O-substituted-α-D-glucofuranose with dimethyl acetal of a ketone corresponding to a substituent at room temperature. 1,2−O−置換−α−D−グルコフラノースから請求項1に記載の1,2:5,6−二−O−置換−α−D−グルコフラノースを製造する方法であって、前記1,2−O−置換−α−D−グルコフラノースに対して、室温下、系中で調製した置換基に対応するケトンのジメチルアセタールを作用させることを特徴とするキラルアルコールの製造方法。The method for producing 1,2,5,6-di-O-substituted-α-D-glucofuranose according to claim 1 from 1,2-O-substituted-α-D-glucofuranose, wherein the method comprises: A method for producing a chiral alcohol, comprising reacting 1,2-O-substituted-α-D-glucofuranose with dimethyl acetal of a ketone corresponding to a substituent prepared in a system at room temperature. 四級アンモニウム塩から光学活性α−アミノケトンを製造する方法であって、前記四級アンモニウム塩に対して、室温下、請求項2に記載のキラルアルコキシドを作用させることを特徴とする光学活性α−アミノケトンの製造方法A method for producing an optically active α-amino ketone from a quaternary ammonium salt, wherein the chiral alkoxide according to claim 2 is allowed to act on the quaternary ammonium salt at room temperature. Method for producing aminoketone
JP2003102279A 2003-03-01 2003-03-01 Chiral alcohol derived from glucose, its production method, chiral alkoxide derived from chiral allohol, optically active alpha-aminoketone using the same and its production method Pending JP2004262911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102279A JP2004262911A (en) 2003-03-01 2003-03-01 Chiral alcohol derived from glucose, its production method, chiral alkoxide derived from chiral allohol, optically active alpha-aminoketone using the same and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102279A JP2004262911A (en) 2003-03-01 2003-03-01 Chiral alcohol derived from glucose, its production method, chiral alkoxide derived from chiral allohol, optically active alpha-aminoketone using the same and its production method

Publications (1)

Publication Number Publication Date
JP2004262911A true JP2004262911A (en) 2004-09-24

Family

ID=33127721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102279A Pending JP2004262911A (en) 2003-03-01 2003-03-01 Chiral alcohol derived from glucose, its production method, chiral alkoxide derived from chiral allohol, optically active alpha-aminoketone using the same and its production method

Country Status (1)

Country Link
JP (1) JP2004262911A (en)

Similar Documents

Publication Publication Date Title
US6310248B2 (en) Process and intermediates
ES2207202T3 (en) PROCEDURE TO PRODUCE ACID DERIVATIVES 6-CYANOMETIL-1, 3-DIOXANE-4-ACETIC.
KR101379383B1 (en) A process for preparing high purity of ⒮―Metoprolol
US6689916B2 (en) Phenyl propenone compounds
JP2004262911A (en) Chiral alcohol derived from glucose, its production method, chiral alkoxide derived from chiral allohol, optically active alpha-aminoketone using the same and its production method
JP6230528B2 (en) Process for producing optically active 2-vinylcyclopropane-1,1-dicarboxylic acid ester
EP1364933B1 (en) Optical resolver and method of optically resolving alcohol with the same
JP6158168B2 (en) Process for producing optically active 2-vinylcyclopropane-1,1-dicarboxylic acid ester
FR2781479A1 (en) SULFONES AND PROCESS FOR THEIR PREPARATION
JP3591245B2 (en) Polyenediol and method for producing the same
JP4918736B2 (en) Novel optically active ruthenium complex, process for producing the same, and process for producing optically active compounds using the same
JP2000063321A (en) Production of long-chain beta-hydroxycarboxylic acid of high optical purity
JP2533110B2 (en) Optically active fluorine-containing diol derivative
JP2009215196A (en) Method for producing optically active perfluoroalkyl secondary alcohol derivative
JP2974181B2 (en) A new method for producing cyclobutanol
KR20110019145A (en) Method of preparing (s)-rivastigmine
JPH10298183A (en) Optically active new tartaric acid derivative, its production and optical resolution using the same
JP2002529437A (en) Stereoselective process for preparing (cyclo) alkylphenylglycolic acid
KR101428906B1 (en) Method for preparation of chiral naphthoquinone derivatives
JP4131075B2 (en) Novel production method of 3-mercapto-3-methyl-1-butanol and its intermediate
JP2903805B2 (en) Preparation of optically active benzyl glycidyl ether
JP2973546B2 (en) Optically active 4-benzoyloxymethyl-2-oxazolidinone and method for producing the same
JP5773850B2 (en) Method for producing optically active α-alkylserine derivative
JPH0967382A (en) Production of optically active 4-trimethylsilyl-3butyn-2-ol
JP2008174452A (en) Method for producing 2,2-dichloro-12-(4-halophenyl)dodecanoic acid salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A521 Written amendment

Effective date: 20060428

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090915

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202