JP2004261832A - Mold lubricant for powder molding - Google Patents

Mold lubricant for powder molding Download PDF

Info

Publication number
JP2004261832A
JP2004261832A JP2003053403A JP2003053403A JP2004261832A JP 2004261832 A JP2004261832 A JP 2004261832A JP 2003053403 A JP2003053403 A JP 2003053403A JP 2003053403 A JP2003053403 A JP 2003053403A JP 2004261832 A JP2004261832 A JP 2004261832A
Authority
JP
Japan
Prior art keywords
lubricant
mold
powder
charge
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053403A
Other languages
Japanese (ja)
Inventor
Yukihiro Maekawa
幸広 前川
Takeshi Yamauchi
剛 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003053403A priority Critical patent/JP2004261832A/en
Publication of JP2004261832A publication Critical patent/JP2004261832A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/0005Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses
    • B30B15/0011Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses lubricating means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase an amount of electrostatic charge generated by electrification friction, compared with a conventional powder lubricant used for a mold lubrication molding method, and to considerably reduce fluctuation of an amount of adhesion to an inside of a mold by improving Coulomb action. <P>SOLUTION: In a mold lubricant for powder molding, an electrification improver which generates more friction potential than a mold lubricant as a main agent is added. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金用の鉄基粉末等の粉末成形体の製造に用いる粉末成形用金型潤滑剤に関するものである。特に、高密度の粉末成形体を製造する際に使用する粉末成形用金型潤滑剤に関するものである。
【0002】
【従来の技術】
従来、粉末冶金法における成形工程(粉末圧縮工程)では、材料粉末である鉄基粉末等にステアリン酸亜鉛などの金属石鹸を添加することで金型との潤滑を行っている。
【0003】
しかしながら、こうした粉末成形体の重要な開発課題の1つは、粉末成形体をいかに高密度にするかという点にかかっている。かかる開発課題に対し、鉄粉中に含まれる潤滑剤の添加量を減らした方が鉄粉の圧縮性が向上し、高密度の粉末成形体が得られることがわかっている。
【0004】
しかしながら、潤滑剤の添加量を減していくと、金型との潤滑が失われるという問題があった。そこで、金型との潤滑が低下するという点を補う目的で直接金型に粉末状の潤滑剤を静電気の作用により付着させる金型潤滑成形法が開発されている(例えば、特許文献1参照。)。これによれば、潤滑剤供給タンクから、エア圧力により粉末状の潤滑剤を帯電ガンに輸送し、該潤滑剤を帯電ガンで帯電させ、投射通路を通してノズルに送給し、該ノズルから帯電した潤滑剤を金型内に投射し、静電気の作用により付着させるので、流動性の低い潤滑剤も使用でき、均一かつ安定して付着させることができるというものである。
【0005】
【特許文献1】
特開2001−220602号公報
【0006】
【発明が解決しようとする課題】
上記金型潤滑成形法では、安定した金型潤滑を行うことが金属粉末成形体の品質に影響するため、潤滑剤の金型内への一回当りの投射による付着量の安定化と該潤滑剤の帯電量の向上が強く求められる。
【0007】
しかしながら、帯電ガンの摩擦部と擦れ合うことで静電気が潤滑剤に帯電されるが、従来の潤滑剤は、その帯電量が少なく(湿度の影響を受けるほど微弱であり)、金型への付着力(クーロン作用力)が弱くバラツキが大きい。金型への付着力に大きなバラツキが生じると潤滑効果にもバラツキが生じ、結果として成形体の圧縮性や抜き出し荷重に影響を及ぼすため製品(金属粉末成形体)の重量、寸法、密度などの品質にバラツキが生じるという問題があった。
【0008】
そこで、本発明の目的は、上記問題点を解決してなる潤滑剤であって、金型潤滑成形法に用いられる従来の粉末潤滑剤に比して帯電摩擦により発生する帯電量が向上され、クーロン作用力向上により金型内への付着量のバラツキを大幅に低減することのできる粉末成形用金型潤滑剤を提供するものである。
【0009】
本発明の他の目的は、金型潤滑成形法に用いられる従来の粉末潤滑剤に比して、粉末材料の成形工程(粉末圧縮工程)での金型プレスによる圧縮性やプレス後の抜き出し荷重への影響が低減され、製品(金属粉末成形体)の重量、寸法、密度等の品質のバラツキを大幅に低減することのできる粉末成形用金型潤滑剤を提供するものである。
【0010】
【課題を解決するための手段】
本発明は、主剤としての潤滑剤(以下、単に潤滑主剤とも称する。)よりも摩擦による発生電位量の多い帯電向上剤が添加されてなることを特徴とする粉末成形用金型潤滑剤(以下、単に金型潤滑剤とも称する。)により達成されるものである。
【0011】
【発明の効果】
本発明によれば、潤滑主剤よりも摩擦による発生電位量の多い帯電向上剤を加えることで、金型潤滑剤と、帯電ガンの摩擦部との間に発生する静電気量(電流値)が増加し、該金型潤滑剤全体をより多く帯電させることができる。金型潤滑剤の帯電量が向上することで、湿度などの外乱等からの影響も少なく、1回当たりの帯電量(電流値)及び金型付着量のバラツキも低減できるので、安定した潤滑効果が得られ、製品の品質も安定する。
【0012】
【発明の実施の形態】
本発明の金型潤滑剤は、潤滑主剤よりも摩擦により帯電し易い帯電向上剤、すなわち、潤滑主剤よりも摩擦による発生電位量(または帯電量ないし電流値)の多い帯電向上剤が添加されてなることを特徴とするものである。以下、本発明の構成要件ごとに詳しく説明する。
【0013】
まず、本発明の金型潤滑剤に用いられる潤滑主剤としては、特に制限されるべきものではなく、従来公知の各種潤滑剤を用いることができる。例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸リチウムなどの高級脂肪酸金属塩(金属石鹸)、ポリスチレン、ポリアミド、フッ素樹脂等の熱可塑性樹脂、ポリスチレン系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマー、脂肪酸とエチレンジアミンとの重縮合体、エチレンビスステアロアミド、ステアリン酸モノアミド等の脂肪酸アミド系ワックス、およびエチレンビスステアロアミドとポリエチレンの共溶融物、エチレンビスステアロアミドとステアリン酸亜鉛の共溶融物、エチレンビスステアロアミドとステアリン酸カルシウムの共溶融物などの共溶融物など公知のもの、またはこれらを混合したものを使用することができる。好ましくは、環境保護対策によるコスト増を抑える観点から、亜鉛レスのものが望ましく、具体的には、脂肪酸とエチレンジアミンとの重縮合体、エチレンビスステアロアミド、ステアリン酸モノアミド等の脂肪酸アミド系ワックス、およびエチレンビスステアロアミドとポリエチレンの共溶融物、エチレンビスステアロアミドとステアリン酸亜鉛の共溶融物、エチレンビスステアロアミドとステアリン酸カルシウムの共溶融物などの共溶融物など、またはこれらを混合したものなどが挙げられる。こうした潤滑剤は、粉末材料の成形工程(粉末圧縮工程)後の焼結工程で、脱ろうの際に、亜鉛などが排出されることもなく、該亜鉛などを回収する設備を設ける必要がなく、かかる設備及びランニングコスト等もかからない点で有利である。なお、本発明の金型潤滑剤は粉末形態で使用されることから、金型潤滑剤の主剤である潤滑剤についても粉末形態で用いられる。
【0014】
次に、本発明の金型潤滑剤に用いられる粉末状の帯電向上剤は、潤滑主剤よりも摩擦により帯電し易いもの、すなわち、潤滑主剤よりも摩擦による発生電位量(または帯電量ないし電流値)の多いものであればよく、特に制限されるべきものではない。すなわち、金型潤滑剤は、金型内に投射する前に帯電ガンの摩擦部との間の摩擦帯電により電位(電荷)が発生する。この発生電位量が、金型潤滑剤の潤滑主剤よりも帯電向上剤の方が大きくなるものであればよい。また、主剤である潤滑剤よりも摩擦により帯電し易く、帯電量が多いものであればよいともいえる(後述する図4〜6参照のこと。)。
【0015】
好ましくは、帯電向上剤と、潤滑主剤との帯電極性を等しくするものである。これは、帯電ガンの摩擦部との間の摩擦帯電により発生した電荷が、帯電向上剤と、潤滑主剤とで極性が異なる場合には、正電荷と負電荷で相互に打ち消しあって(電気的に中和されて)、摩擦帯電により高めた帯電量の一部が消失されるためである。同様の理由から、前記帯電向上剤と、帯電ガンの摩擦部との帯電極性を異にするものである。
【0016】
かかる観点から、本発明では、帯電向上剤が、潤滑主剤、帯電ガンの摩擦部それぞれとの静電気的な特性(例えば、摩擦帯電電位の序列;下記表1参照のこと。)の相性に合わせて選択されるのが望ましい。すなわち、帯電ガンの摩擦部に対して、摩擦により帯電向上剤と潤滑主剤の帯電極性が等しくなり、かつ潤滑主剤よりも帯電向上剤の方が、帯電量が多くなる(例えば、摩擦部との摩擦帯電により、いずれも正電荷に帯電する場合には、摩擦帯電電位の序列において、帯電向上剤が潤滑主剤よりもプラス電荷を帯びる側になる)ように、これらの材料の組み合わせを選択するのが望ましい。例えば、帯電ガンの摩擦部にフッ素樹脂(最もマイナス電荷を帯びやすい材料の1つ)を使用し、潤滑主剤に潤滑特性に優れた脂肪酸とエチレンジアミンとの重縮合物(フッ素樹脂との摩擦ではプラス電荷を生じる)を用いていたとすれば、これらとの相性で帯電向上剤として有効に機能するものを選択すればよい。具体的には、帯電ガンの摩擦部のフッ素樹脂は、潤滑主剤との摩擦帯電によりマイナスに帯電し、一方の潤滑主剤はプラスに帯電する。このような場合に添加する帯電向上剤は、帯電ガンの摩擦部との摩擦によりプラスに帯電しかつ潤滑主剤よりも発生電位量(または帯電量など)が多くなる材料(摩擦帯電電位の序列において、帯電向上剤が潤滑主剤よりもプラス電荷を帯びる側の材料)を選択すれば、3者間の相性がよいものとなる。
【0017】
【表1】

Figure 2004261832
【0018】
以上の観点から、上記帯電向上剤としては、電気絶縁性粉末材料であることが望ましく、より詳しくはセラミックス粉末材料、樹脂粉末材料およびゴム粉末材料から選ばれてなる少なくとも1種であるが、これらに何ら制限されるべきものではなく、上記表1で例示した材料の中の電気絶縁性粉末材料についても利用可能であり、紙・パルプ粉末材料、木材粉末材料、繊維粉末材料、皮革粉末材料などであってもよい。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
【0019】
このうち、上記セラミックス粉末材料としては、特に制限されるものではないが、好ましくは、これらの粉末材料が成形によって製品中にそのまま含有され、焼結工程での焼結温度下(材料粉末の種類により異なるが、鉄基粉末では、1140℃程度)において製品(粉末成形体)との間で反応を起こさない材料であればよく、具体的には、アルミナ(セラミックス)粉末などが好適に利用できるが、これらに何ら制限されるべきものではなく、材料粉末の種類によっては、例えば、チタニアセラミックス粉末なども利用可能といえる。
【0020】
上記樹脂粉末材料としては、特に制限されるものではなく、潤滑主剤や帯電ガンの摩擦部との相性に合わせて適宜選択されるべきものであればよく、具体的には、ポリウレタン、エポキシ樹脂、ポリアミド、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリテトラフルオロエチレンなどが例示できるが、これらに何ら制限されるべきものではない。
【0021】
また、上記ゴム粉末材料としては、特に制限されるものではなく、潤滑主剤や帯電ガンの摩擦部との相性に合わせて適宜選択されるべきものであればよく、具体的には、フッ素ゴム、シリコーンコム、アクリルゴム、ヒドリンゴム、スチレン−プロピレンゴム、エチレン−酢酸ビニルゴム、クロロプレンゴム、ニトリルゴム、スチレン−ブタジエンゴム、天然ゴムなどが例示できるが、これらに何ら制限されるべきものではない。
【0022】
上記樹脂粉末材料やゴム粉末材料を用いる場合、これらの粉末材料は成形によって製品中(詳しくは、成形体表面)にそのまま含有されるが、焼結工程においてそのほとんどが品質に影響が出ないレベルまで焼失されるので、特に追加で除去工程を設ける必要がない点で有利である。
【0023】
本発明の帯電向上剤はどれも乾燥した粉末形態(粉体)のため、鉄基材料等の材料粉末の流動度に影響を与えないので、かかる流動度の観点からは、使用する材料粉末の種類の選択範囲を何ら制限しない点で有用である。
【0024】
また、本発明の帯電向上剤の添加量としては、本発明の作用効果が認められる範囲であればよく、特に制限されるべきものではないが、好ましくは1質量%以上である。上限値に関しては、帯電向上剤の種類によっても異なることから、一義的に規定することはできないが、添加量の増加に伴い生ずる効果(利点)と欠点とを比較考量して決定すればよい。
【0025】
例えば、セラミックス粉末材料の場合には、これらの粉末材料が成形によって製品中にそのまま含有され、焼結工程においても焼失されないので、表面が荒れるなどの品質に影響を及ぼすようになれば、追加で除去工程を設ける必要が生じる。こうした段階で、帯電向上剤の増加に伴う効果
(効果);すなわち、金型内への金型潤滑剤の付着力の増量効果(例えば、成形体の圧縮性や抜き出し荷重、更には製品の重量、寸法、密度などの安定化率の向上効果等)と、帯電向上剤の増加に伴う欠点;すなわち、追加工程に要するコスト増という欠点とを比較考量し、許容し得る最大添加量を決定すればよい。ただし、例えば、アルミナ粉末の場合を例にとれば、添加量として十分に許容し得る範囲であっても、20質量%程度の添加量を超えると更なる効果の向上が見られなくなる(更なる効果の発現が期待できなくなる)。そのため、それ以上の範囲では、得られるメリットはさほど増えない反面、デメリットが増えていき、ついには得られるメリットよりもデメリットの方が大きくなり、許容範囲を超えることになるものである。なお、アルミナ粉末が製品表面に残ってしまっても品質などに影響を与えない範囲が望ましいことから、より好ましくは1〜20質量%、特に好ましくは1〜10質量%の範囲であるといえるが、かかる範囲に何ら制限されるべきものではない。
【0026】
一方、樹脂粉末材料やゴム粉末材料の場合には、これらの粉末材料が成形によって製品中にそのまま含有されても、焼結工程において焼失されるので、表面が荒れるなどの品質に影響を及ぼすことがないため、潤滑主剤と同等、もしくはそれ以上添加してもよい。また、こうした樹脂粉末材料やゴム粉末材料で、潤滑性に優れるものであれば、潤滑主剤としての機能をも持たせることができるため、略全量をこうした帯電向上剤でまかなうことも可能である。こうした場合には、その時々の潤滑主剤や帯電向上剤の商品取引価格から、帯電向上剤の最適な添加量を決定すればよいといえる。さらに、樹脂粉末材料やゴム粉末材料の場合には、潤滑主剤との比重差が少ないため、潤滑剤供給タンク内でのエア攪拌操作において、比較的小さいエア圧でも双方を均一に攪拌混合できる点で有利であり、同様に搬送する際のエア圧も比較的低く抑えることができ、装置の小型化、省エネ化、ランニングコストの低減等が図れる。
【0027】
また、上記に挙げたような電気絶縁性粉末材料を帯電向上剤として使用すれば、帯電ガンの摩擦部との摩擦静電気によって発生した電荷は、帯電向上剤そのものが持ち出すことなく効率良く、主剤である潤滑剤に電荷を付加できる。そのため、金型内への金型潤滑剤の付着量を増加、安定化させることができる点で優れている(図4〜6参照のこと。)。
【0028】
また、上記帯電向上剤は、主剤である潤滑剤の流動性も向上させる働きもあるので、1回当たりの金型潤滑剤の付着量を安定させることができ(図4〜6参照のこと。)、より安定した潤滑効果が得られるため、製品の品質安定化が図れる。
【0029】
また、本発明の粉末成形用金型潤滑剤には、上記潤滑主剤、帯電向上剤のほか、本発明の作用効果を損なわない範囲内であれば、他の添加剤を適宜適量添加してなるものであってもよい。
【0030】
本発明の粉末成形用金型潤滑剤の使用用途に関しては、特に制限されるべきものではなく、従来公知の金型潤滑成形法による粉末成形に用いられる潤滑剤として適用可能である。具体的には、常温における粉末成形、あるいは金型及び材料粉末(例えば、鉄基粉末など)を適当な温度(例えば、130℃前後)に温めて成形を行う温間成形等において使用されるものであるが、これらの使用用途に何ら制限されるべきものではない。
【0031】
また、本発明の粉末成形用金型潤滑剤は、材料粉末である鉄粉等の金属粉末には潤滑剤を添加することなく、単独で利用することができるほか、該材料粉末に添加する潤滑剤と併用することもできる。特に、後者の場合には、高密度の粉末成形体を製造する上で、材料粉末への潤滑剤添加量を極力減らし、金型との潤滑が失われる傾向にある場合において有効かつ効果的である。
【0032】
なお、本発明の粉末成形用金型潤滑剤は、静電気を利用して帯電させる方式において、特に有効に利用することができる。これは、コロナ放電を利用して帯電させる場合では、電極を金型(キャビティ)の近くまで持ってこないと放電しない。そのためコロナ放電用のガンを金型プレスの近くに設置せざるを得ず、プレスでパンチする際に邪魔になるためである。一方、本発明の粉末成形用金型潤滑剤は、静電気を利用して帯電させることができるため、帯電ガンで帯電させた後、ホース(輸送通路)で運んで、その先端に設けた投射ノズルから吹き付けることができるので、取り扱いやすいという利点を有するものである。
【0033】
【実施例】
以下、本発明につき、具体例を挙げて、更に詳しく説明する。
【0034】
なお、以下の実施例で使用した金型潤滑剤投射装置(ノードソン社製)の基本構造の概略図を図1に示す。図2は、図1の摩擦帯電(tribo electrification)方式による帯電ガンの摩擦部とカバーとの間隙を潤滑剤が通過する様子を模式的に表わした断面概略図である。図3は、ファラデーゲージによる電位量測定装置の概略図である。
【0035】
図1に示す金型潤滑剤投射装置101は、タンクエア105やポンプエア109等のドライエアによる流動により潤滑剤供給タンク107内の潤滑剤103が帯電部である帯電ガン111に送られ、そこで静電気が付加されることによって金型(ダイスキャビティ)201に金型潤滑剤103を吸着させるシステムである。詳しくは、先の特許文献1と同様の装置構成を有するものであり、金型(ダイスキャビティ)201に金型潤滑剤103を投射(噴射)する装置であって、前記金型潤滑剤103をタンクエア105により攪拌する潤滑剤供給タンク107と、ポンプエア109の圧力調整に加えパージエア(図示せず)の圧力調整により前記潤滑剤供給タンク107内から帯電ガン111に輸送する前記金型潤滑剤103の量を可変とされたパウダポンプ113と、該パウダポンプ113から輸送された金型潤滑剤103を帯電する帯電ガン111と、該帯電ガン111で帯電した金型潤滑剤103を、リターンエア(図示せず)の停止により噴出通路115を通してノズル117に噴出可能に送給し、リターンエアの供給により噴出通路115上のバイパス通路(図示せず)を通してエジェクト通路(図示せず)に排出する分岐ブロック(図示せず)と、前記ポンプエア109、タンクエア105、パージエア、帯電ガンエア(図示せず)およびリターンエアの各エアの圧力制御および各エアの供給並びに停止を行うコントローラ119と、前記エジェクト通路に排出された金型潤滑剤103を前記潤滑剤供給タンク107に戻すようにされたサイクロン(図示せず)と、前記噴出可能に送給された潤滑剤103を金型内に投射するための投射ノズル117とを備えたものである。以下の実施例では、さらに帯電ガンで発生する電流を計測する目的で電流計121を設置した。
【0036】
以下の実施例では、かかる金型潤滑剤投射装置101を用いて、ドライエアによる流動により潤滑剤供給タンク107内の金型潤滑剤103を帯電部である帯電ガン111に送り、そこで静電気を付加した。詳しくは、摩擦帯電方式による帯電ガンの摩擦部とカバーとの間隙を金型潤滑剤が通過する過程で静電気を付加した。これは、図2に示すように、帯電ガン111内部に設けられた波状の摩擦部(フッ素樹脂製)118とその外周部カバー120との間隙を粉末状の金型潤滑剤103がエア搬送される過程で、波状の摩擦部118との間で衝突流動を繰り返すことによって静電気が発生し、金型潤滑剤に電位(正電荷)が付加されるものである。この際、金型潤滑剤103中の粉末状の帯電向上剤103aでは、粉末状の潤滑主剤103bに比べて摩擦部118との間で衝突流動を繰り返すことによって帯電し易く、正電荷が多く発生する(図2に模式的に示した。)。なお、金型潤滑剤103が衝突流動を繰り返す過程で、帯電向上剤103aと金型主剤103bも衝突するため、粒子間の帯電(電荷)量が全体として高められ且つ均一化されることになる。以下の実施例では、電流計121により、金型潤滑剤103が帯電ガン摩擦部118を通過する際に生じる電流値を計測した。
【0037】
次に、帯電ガン111で静電気を付加された金型潤滑剤103は、その後、噴出通路115を通じてノズル117から金型内(以下の実施例では、図3に示す装置の内カップ307内)に投射した。この電荷を帯びた金型潤滑剤103を金型101内に投射することにより、金型101内の表面に静電作用(クーロン作用力)によって該金型潤滑剤103が吸引され付着(吸着)されることになる。この際、帯電力の弱い金型潤滑剤は、エアで吹くので舞上がって金型の外に逃げてしまう。そのため、以下の実施例では、予めエアの圧力、エアの吐出時間等を、金型への金型潤滑剤(従来の粉末潤滑剤である潤滑主剤のみで実施した。)の付着量のバラツキが少ない最適条件を求めておき、全て当該最適条件下にて行った。具体的には、▲1▼吐出圧(帯電ガンから吐出するときの圧力)4.0MPa、▲2▼霧化圧(潤滑剤供給タンクから帯電ガンに送るときのエアの圧力)2.0MPa、▲3▼流動圧(潤滑剤供給タンクの中で金型潤滑剤を流動させる圧力)2.0MPa、▲4▼吐出時間(帯電ガンから吹き出す時間)0.05sec、▲5▼霧化時間(潤滑剤供給タンクから帯電ガンに送るエアがでている時間)0.50secが最適条件であったため、全て当該条件下で実験を行った。
【0038】
また、以下の実施例では、図1に示す金型(ダイスキャビティ)201に代えて、図3に示すファラジーケージによる電位量測定装置を用いて電位量および投射量(詳しくは金型への付着量)を測定した。詳しくは、図3に示すように、ファラジーケージ(相互に絶縁された2重の筒)による電位量測定装置301は、外カップ303内部に載置した絶縁体支持具305により支持された内カップ307に、帯電ガン111で帯電させた金型潤滑剤103を噴出通路115を通じて投射ノズル117から投射し、外カップ303に設置した表面電位計309により内カップ307内に吸着した金型潤滑剤103の持つ電位量を測定した。その後、内カップ307の計量を行い、潤滑剤の投射量(詳しくは内カップへの付着量)を測定した。
【0039】
実施例1
上述した図1の金型潤滑剤投射装置(ノードソン社製)及び図3の電位量測定装置を用いて、金型潤滑剤の投射実験を行い、1回当たりの投射量(内カップへの付着量)、電流値、電位量について測定した。この際、金型潤滑剤には、(i)潤滑主剤(脂肪酸とエチレンジアミンとの重縮合体粉末;川崎製鉄株式会社製、KWAX−WD(商品名))のみで帯電向上剤の添加なしのもの、(ii)同じ潤滑主剤に帯電向上剤としてアルミナ粉末1質量%添加したもの、(iii)同じ潤滑主剤にアルミナ粉末5質量%添加したもの、それぞれについて30回づつ投射実験を行った。これらの投射実験による1回当たりの投射量(内カップへの付着量)、電流値、電位量の測定結果を、図4〜6に示す。
【0040】
投射実験により、1回当たりの投射量が最も安定化するように最適条件下で行っても、帯電向上剤の添加なしの金型潤滑剤では、1回当たりの投射量、電流値、電位量のバラツキが生じることが確認された。
【0041】
一方、帯電向上剤としてアルミナ粉末1質量%及び5質量%添加した金型潤滑剤については、帯電向上剤の添加なしの金型潤滑剤に対して、1回当たりの投射量のバラツキが低減できることが確認できた(図4参照のこと。)。また、帯電向上剤としてアルミナ粉末1質量%添加した金型潤滑剤よりもアルミナ粉末5質量%添加した金型潤滑剤の方が、1回当たりの投射量のバラツキ低減効果がより顕著になることも確認できた(図4参照のこと。)。
【0042】
また、帯電向上剤としてアルミナ粉末1質量%及び5質量%添加した金型潤滑剤については、帯電向上剤の添加なしの金型潤滑剤に対して、1回当たりの電流値が向上し、かつバラツキも低減することが確認できた(図5参照のこと。)。また、帯電向上剤としてアルミナ粉末1質量%添加した金型潤滑剤よりもアルミナ粉末5質量%添加した金型潤滑剤の方が、1回当たりの電流値向上効果及びそのバラツキ低減効果がより顕著になることも確認できた(図5参照のこと。)。
【0043】
また、帯電向上剤としてアルミナ粉末1質量%及び5質量%添加した金型潤滑剤については、帯電向上剤の添加なしの金型潤滑剤に対して、1回当たりの電位量が向上することが確認できた(図6参照のこと。)。また、帯電向上剤としてアルミナ粉末5質量%添加した金型潤滑剤については、帯電向上剤の添加なしの金型潤滑剤に対して、電位量のバラツキも低減することが確認できた(図6参照のこと。)。また、帯電向上剤としてアルミナ粉末1質量%添加した金型潤滑剤よりもアルミナ粉末5質量%添加した金型潤滑剤の方が、1回当たりの電位量向上効果及びそのバラツキ低減効果がより顕著になることも確認できた(図6参照のこと。)。
【0044】
なお、帯電の際に発生する電流値が上がっていくと、金型潤滑剤の電位量はやがて飽和電位量になる。この飽和電位量は物によって決まるため、帯電ガンの摩擦部での摩擦帯電により飽和電位量にまで達していないと、金型への付着量のバラツキが大きくなる。従来の潤滑剤(本発明で言うところの潤滑主剤)のみでは、帯電の際に発生する電流値(帯電量)は低く、電位も低かったため、金型への付着量のバラツキが大きくなっていたが、本発明では帯電向上剤の添加により、金型潤滑剤の電位量は概ね飽和電位量に達することができるので、金型への付着量のバラツキが大幅に低減できたものと言える。
【図面の簡単な説明】
【図1】実施例で使用した金型潤滑剤投射装置(ノードソン社製)の基本構造の概略図を示す。
【図2】図1の摩擦帯電(tribo electrification)方式による帯電ガンの摩擦部とカバーとの間隙を潤滑剤が通過する様子を模式的に表わした断面概略図である。
【図3】図3は、ファラデーゲージによる電位量測定装置の概略図である。
【図4】本発明の実施例で、金型潤滑剤投射装置(ノードソン社製)を用いて、金型潤滑剤に添加する帯電向上剤であるアルミナ粉末を0〜5質量%の範囲で変化させた際の、該帯電向上剤の添加量と投射量(内カップへの付着量)の関係を示すグラフである。図4中の◆maxは、30回の投射実験で得られた投射量の最大値を示し、灰色の□minは、30回の投射実験で得られた投射量の最小値を示し、■avgは、は、30回の投射実験で得られた投射量の平均値を示す。
【図5】本発明の実施例で、金型潤滑剤投射装置(ノードソン社製)を用いて、金型潤滑剤に添加する帯電向上剤であるアルミナ粉末を0〜5質量%の範囲で変化させた際の、該帯電向上剤の添加量と電流値の関係を示すグラフである。図5中の◆maxは、30回の投射実験で得られた電流値の最大値を示し、灰色の□minは、30回の投射実験で得られた電流値の最小値を示し、■avgは、は、30回の投射実験で得られた電流値の平均値を示す。
【図6】本発明の実施例で、金型潤滑剤投射装置(ノードソン社製)を用いて、金型潤滑剤に添加する帯電向上剤であるアルミナ粉末を0〜5質量%の範囲で変化させた際の、該帯電向上剤の添加量と電位量の関係を示すグラフである。図5中の◆maxは、30回の投射実験で得られた電位量の最大値を示し、灰色の□minは、30回の投射実験で得られた電位量の最小値を示し、■avgは、は、30回の投射実験で得られた電位量の平均値を示す。
【符号の説明】
101…金型潤滑剤投射装置、 103…金型潤滑剤(帯電向上剤を含む)

103a…帯電向上剤、 103b…潤滑主剤
105…タンクエア、 107…潤滑剤供給タンク、
109…ポンプエア、 111…帯電ガン、
113…パウダポンプ、 115…噴出通路、
117…投射ノズル、 118…波状の摩擦部、
119…コントローラ(エアツール)、 120…外周部のカバー、
121…電流計、 201…金型(ダイスキャビティ)、
301…電位量測定装置、 303…外カップ、
305…絶縁体支持具、 307…内カップ、
309…表面電位計。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a powder molding die lubricant used for producing a powder compact such as an iron-based powder for powder metallurgy. In particular, the present invention relates to a powder molding die lubricant used when manufacturing a high-density powder molded body.
[0002]
[Prior art]
Conventionally, in a molding step (powder compression step) in powder metallurgy, lubrication with a mold is performed by adding a metal soap such as zinc stearate to an iron-based powder or the like as a material powder.
[0003]
However, one of the important development issues of such a powder compact depends on how high the density of the powder compact is. In order to solve such a development problem, it has been found that when the amount of the lubricant contained in the iron powder is reduced, the compressibility of the iron powder is improved and a high-density powder compact can be obtained.
[0004]
However, there is a problem that the lubrication with the mold is lost when the amount of the lubricant added is reduced. Therefore, a mold lubrication molding method has been developed in which a powdery lubricant is directly adhered to a mold by the action of static electricity in order to compensate for the decrease in lubrication with the mold (for example, see Patent Document 1). ). According to this, from the lubricant supply tank, the powdery lubricant is transported to the charging gun by air pressure, the lubricant is charged by the charging gun, fed to the nozzle through the projection passage, and charged from the nozzle. Since the lubricant is projected into the mold and adhered by the action of static electricity, a lubricant having low fluidity can be used, and the lubricant can be uniformly and stably adhered.
[0005]
[Patent Document 1]
JP 2001-220602 A
[0006]
[Problems to be solved by the invention]
In the above-described mold lubrication molding method, since stable mold lubrication affects the quality of the metal powder compact, stabilization of the amount of adhesion of the lubricant into the mold by one shot and stabilization of the lubrication Improvement of the charge amount of the agent is strongly required.
[0007]
However, static electricity is charged to the lubricant by rubbing against the frictional portion of the charging gun. However, the conventional lubricant has a small amount of charge (it is so weak as to be affected by humidity) that it adheres to the mold. (Coulomb action force) is weak and has large variations. If there is a large variation in the adhesive force to the mold, a variation occurs in the lubricating effect, and as a result, it affects the compressibility of the molded product and the drawing load, so that the weight, size, density, etc. There is a problem that the quality varies.
[0008]
Therefore, an object of the present invention is a lubricant that solves the above-mentioned problems, and the amount of charge generated by charging friction is improved as compared with a conventional powder lubricant used in a mold lubrication molding method, An object of the present invention is to provide a powder molding die lubricant capable of greatly reducing the variation in the amount of adhesion to the die by improving the Coulomb action force.
[0009]
Another object of the present invention is to improve the compressibility of a powder material in a molding step (powder compression step) by a die press and a removal load after the press, compared to a conventional powder lubricant used in a mold lubrication molding method. It is intended to provide a powder molding die lubricant capable of reducing the influence on the quality of the product (metal powder molded body), such as weight, dimensions, density, etc.
[0010]
[Means for Solving the Problems]
The present invention provides a powder molding die lubricant (hereinafter, referred to as a lubricant) characterized by adding a charge improver having a larger potential generated by friction than a lubricant as a main agent (hereinafter, also simply referred to as a lubricant main agent). , Simply referred to as a mold lubricant).
[0011]
【The invention's effect】
According to the present invention, the amount of static electricity (current value) generated between the mold lubricant and the frictional portion of the charging gun is increased by adding the charge improver having a larger potential generated by friction than the main lubricant. In addition, the entire mold lubricant can be charged more. By improving the charge amount of the mold lubricant, the influence of disturbances such as humidity is small, and the variation of the charge amount (current value) per one time and the adhesion amount of the mold can be reduced, so that a stable lubrication effect can be obtained. And the product quality is stable.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The mold lubricant of the present invention contains a charge improver which is more easily charged by friction than the lubricant main agent, that is, a charge improver having a larger potential amount (or charge amount or current value) generated by friction than the lubricant main agent is added. It is characterized by becoming. Hereinafter, each component of the present invention will be described in detail.
[0013]
First, the main lubricant used in the mold lubricant of the present invention is not particularly limited, and various conventionally known lubricants can be used. For example, higher fatty acid metal salts (metal soaps) such as zinc stearate, calcium stearate, and lithium stearate; thermoplastic resins such as polystyrene, polyamide, and fluororesin; thermoplastic elastomers such as polystyrene elastomer and polyamide elastomer; Polycondensates with ethylenediamine, ethylenebisstearamide, fatty acid amide waxes such as stearic acid monoamide, and co-melts of ethylenebisstearamide and polyethylene, co-melts of ethylenebisstearamide and zinc stearate, Known materials such as a co-melt such as a co-melt of ethylene bisstearamide and calcium stearate, or a mixture thereof can be used. Preferably, from the viewpoint of suppressing the increase in cost due to environmental protection measures, zinc-less wax is desirable, and specifically, a fatty acid amide wax such as a polycondensate of a fatty acid and ethylenediamine, ethylenebisstearamide, and stearic acid monoamide. Or a co-melt of ethylene bis-stearamide and polyethylene, a co-melt of ethylene bis-stearamide and zinc stearate, a co-melt of ethylene bis-stearamide and calcium stearate, or the like. Mixtures and the like can be mentioned. Such a lubricant is used in the sintering process after the powder material compacting process (powder compaction process), so that when dewaxing, zinc or the like is not discharged, and there is no need to provide a facility for recovering the zinc or the like. This is advantageous in that such equipment and running costs are not required. Since the mold lubricant of the present invention is used in powder form, the lubricant which is the main component of the mold lubricant is also used in powder form.
[0014]
Next, the powdery charge improver used in the mold lubricant of the present invention is one that is more easily charged by friction than the lubricant main agent, that is, the amount of potential generated by friction (or the amount of charge or current value) than the lubricant main agent. ), And should not be particularly limited. That is, a potential (charge) is generated by frictional charging between the mold lubricant and the friction portion of the charging gun before the mold lubricant is projected into the mold. It is sufficient that the amount of generated potential is larger for the charge improver than for the lubricant main agent of the mold lubricant. Also, it can be said that any material that is more easily charged by friction than the lubricant as the main component and has a larger charge amount may be used (see FIGS. 4 to 6 described later).
[0015]
Preferably, the charge polarity of the charge improver and the charge polarity of the lubricant main agent are made equal. This is because, when the charge generated by frictional charging between the frictional portion of the charging gun and the charge improver and the lubricating agent have different polarities, the positive and negative charges cancel each other out (electrically. This is because a part of the charge amount increased by the triboelectric charge is lost. For the same reason, the charge improver and the friction portion of the charge gun have different charge polarities.
[0016]
From this viewpoint, in the present invention, the charge improver is used in accordance with the compatibility of the electrostatic property (for example, the order of the triboelectric potential; see Table 1 below) with the main lubricant and the friction portion of the charging gun. It is desirable to be selected. That is, with respect to the friction portion of the charging gun, the charge polarity of the charge improver and the lubricant main agent becomes equal due to friction, and the charge amount of the charge improver is larger than that of the lubricant main agent (for example, When both are positively charged by triboelectric charging, the combination of these materials should be selected so that the charge improver is more positively charged than the lubricating agent in the order of the triboelectric potential). Is desirable. For example, using a fluororesin (one of the materials most likely to be negatively charged) in the friction part of the charging gun, and using as a lubricating agent a polycondensate of a fatty acid and ethylenediamine with excellent lubricating properties (plus If a charge-producing agent is used, a material that effectively functions as a charge-improving agent depending on the compatibility may be selected. More specifically, the fluororesin in the friction portion of the charging gun is negatively charged by frictional charging with the lubricant, and one lubricant is positively charged. In such a case, the charge improver to be added is a material that is positively charged due to friction with the frictional portion of the charge gun and generates a larger amount of potential (or charge, etc.) than the lubricant main agent (in the order of frictional charge potential). If the charge improver is selected to be a material having a positive charge than the lubricating main agent), the compatibility between the three becomes better.
[0017]
[Table 1]
Figure 2004261832
[0018]
In view of the above, the charge improver is preferably an electrically insulating powder material, and more specifically, at least one selected from a ceramic powder material, a resin powder material, and a rubber powder material. However, the present invention is not limited thereto, and it is also possible to use an electrically insulating powder material among the materials exemplified in Table 1 above, such as a paper / pulp powder material, a wood powder material, a fiber powder material, and a leather powder material. It may be. These may be used alone or in combination of two or more.
[0019]
Among these, the ceramic powder material is not particularly limited, but preferably, these powder materials are directly contained in a product by molding, and are subjected to a sintering temperature in a sintering step (type of material powder). Depending on the iron-based powder, any material that does not react with a product (powder compact) at iron-based powder (about 1140 ° C.) may be used. Specifically, alumina (ceramics) powder or the like can be suitably used. However, the present invention is not limited to these, and depending on the type of material powder, for example, titania ceramic powder can be used.
[0020]
The resin powder material is not particularly limited and may be any material that can be appropriately selected in accordance with the compatibility with the lubricant and the friction portion of the charging gun.Specifically, polyurethane, epoxy resin, Examples thereof include polyamide, polyvinyl chloride, polypropylene, polyethylene, and polytetrafluoroethylene, but are not limited thereto.
[0021]
The rubber powder material is not particularly limited and may be any material that can be appropriately selected in accordance with the compatibility with the lubricant and the friction portion of the charging gun. Examples thereof include silicone comb, acrylic rubber, hydrin rubber, styrene-propylene rubber, ethylene-vinyl acetate rubber, chloroprene rubber, nitrile rubber, styrene-butadiene rubber, and natural rubber, but are not limited thereto.
[0022]
When the above resin powder material or rubber powder material is used, these powder materials are directly contained in the product by molding (specifically, the surface of the molded product), but most of them do not affect the quality in the sintering process. This is advantageous in that no additional removal step needs to be provided.
[0023]
Since all of the charge improvers of the present invention are in a dry powder form (powder), they do not affect the fluidity of the material powder such as an iron-based material. This is useful in that it does not limit the selection range of any kind.
[0024]
The amount of the charge improver of the present invention is not particularly limited as long as the effect of the present invention is recognized, and is not particularly limited, but is preferably 1% by mass or more. The upper limit cannot be unambiguously defined because it differs depending on the type of the charge improver, but it may be determined by comparing and considering the effect (advantage) and disadvantage caused by the increase in the added amount.
[0025]
For example, in the case of ceramic powder materials, these powder materials are directly contained in the product by molding and are not burned out even in the sintering process. It is necessary to provide a removal step. At this stage, the effect of increasing the charge improver
(Effect); That is, the effect of increasing the adhesive force of the mold lubricant into the mold (for example, the effect of improving the compressibility of the molded product, the removal load, and the stabilization rate of the product weight, dimensions, density, etc.) Etc.) and the drawback associated with the increase in the charge improver; that is, the drawback of an increase in the cost required for the additional step may be weighed to determine the maximum allowable addition amount. However, for example, in the case of alumina powder, even if the addition amount is within a sufficiently allowable range, if the addition amount exceeds about 20% by mass, no further improvement in the effect can be seen (further improvement). No effect can be expected). Therefore, in the range beyond that, the merit obtained does not increase so much, but the demerit increases, and finally the demerit becomes larger than the obtained merit and exceeds the allowable range. In addition, since the range which does not affect quality etc. even if alumina powder remains on the product surface is desirable, it can be said that it is more preferably 1 to 20% by mass, and particularly preferably 1 to 10% by mass. It should not be limited to such a range.
[0026]
On the other hand, in the case of resin powder materials and rubber powder materials, even if these powder materials are directly contained in the product by molding, they will be burned off in the sintering process, which may affect the quality such as surface roughness. Therefore, it may be added in an amount equal to or greater than that of the main lubricant. Further, if such a resin powder material or rubber powder material having excellent lubricity can be provided with a function as a lubricating agent, it is possible to cover almost the entire amount with such a charge improving agent. In such a case, it can be said that the optimum amount of the charge improver to be added should be determined based on the current transaction price of the lubricant main agent and the charge improver. Furthermore, in the case of a resin powder material or a rubber powder material, the difference in specific gravity from the lubricant is small, so that in the air stirring operation in the lubricant supply tank, both can be uniformly stirred and mixed even with a relatively small air pressure. Similarly, the air pressure at the time of conveyance can be relatively low, and the apparatus can be reduced in size, energy saving, running cost can be reduced, and the like.
[0027]
In addition, if the above-described electrically insulating powder material is used as a charge improver, the charge generated by frictional static electricity with the frictional portion of the charge gun can be efficiently used without being carried out by the charge improver itself. An electric charge can be added to a certain lubricant. Therefore, it is excellent in that the amount of the mold lubricant attached to the mold can be increased and stabilized (see FIGS. 4 to 6).
[0028]
In addition, the charge improver also has a function of improving the fluidity of the lubricant as the main agent, so that the amount of the mold lubricant adhered per operation can be stabilized (see FIGS. 4 to 6). ), A more stable lubricating effect is obtained, so that the product quality can be stabilized.
[0029]
In addition, the powder molding die lubricant of the present invention, in addition to the above-described lubricating main agent and the charge improver, may be appropriately added with other additives as long as the effects of the present invention are not impaired. It may be something.
[0030]
The application of the powder molding die lubricant of the present invention is not particularly limited, and it can be applied as a lubricant used for powder molding by a conventionally known die lubrication molding method. Specifically, it is used in powder molding at room temperature or warm molding in which a mold and a material powder (for example, iron-based powder) are heated to an appropriate temperature (for example, about 130 ° C.) to carry out molding. However, it should not be limited to these uses.
[0031]
In addition, the powder molding die lubricant of the present invention can be used alone without adding a lubricant to metal powder such as iron powder, which is a material powder, and a lubricant added to the material powder can be used. It can also be used in combination with an agent. In particular, in the latter case, in producing a high-density powder compact, the amount of lubricant added to the material powder is reduced as much as possible, and it is effective and effective when lubrication with the mold tends to be lost. is there.
[0032]
The powder molding lubricant of the present invention can be used particularly effectively in a system in which static electricity is used for charging. That is, when charging is performed using corona discharge, discharge is not performed unless the electrode is brought close to a mold (cavity). For this reason, the gun for corona discharge must be installed near the die press, which is an obstacle to punching by the press. On the other hand, since the powder molding die lubricant of the present invention can be charged by using static electricity, it is charged by a charging gun and then carried by a hose (transport passage), and a projection nozzle provided at the tip thereof. This has the advantage of being easy to handle because it can be sprayed from
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[0034]
FIG. 1 shows a schematic diagram of the basic structure of a mold lubricant projecting device (manufactured by Nordson) used in the following examples. FIG. 2 is a schematic cross-sectional view schematically illustrating a state in which a lubricant passes through a gap between a friction portion of a charging gun and a cover by a tribo electrification method of FIG. FIG. 3 is a schematic diagram of a potential measurement device using a Faraday gauge.
[0035]
In the mold lubricant projecting apparatus 101 shown in FIG. 1, the lubricant 103 in the lubricant supply tank 107 is sent to the charging gun 111 serving as a charging unit by the flow of dry air such as tank air 105 and pump air 109, where static electricity is added. This is a system in which the mold lubricant 103 is adsorbed on the mold (die cavity) 201. More specifically, the device has the same device configuration as that of Patent Document 1 described above, and is a device for projecting (injecting) the mold lubricant 103 onto a mold (die cavity) 201. A lubricant supply tank 107 agitated by the tank air 105; and a mold lubricant 103 transported from the lubricant supply tank 107 to the charging gun 111 by adjusting the pressure of the purge air (not shown) in addition to the pressure adjustment of the pump air 109. A powder pump 113 having a variable amount, a charging gun 111 for charging the mold lubricant 103 transported from the powder pump 113, and a mold lubricant 103 charged by the charging gun 111 are returned to a return air (not shown). ) Is stopped so as to be ejected to the nozzle 117 through the ejection passage 115, and the bypass air on the ejection passage 115 is supplied by supply of return air. A branch block (not shown) for discharging to an eject passage (not shown) through a passage (not shown), and pressures of the respective pump air 109, tank air 105, purge air, charging gun air (not shown), and return air A controller 119 for controlling and supplying and stopping each air, a cyclone (not shown) configured to return the mold lubricant 103 discharged into the eject passage to the lubricant supply tank 107, And a projection nozzle 117 for projecting the lubricant 103 fed into the mold into the mold. In the following examples, an ammeter 121 was further installed for the purpose of measuring the current generated by the charging gun.
[0036]
In the following embodiments, the mold lubricant projecting device 101 is used to send the mold lubricant 103 in the lubricant supply tank 107 to the charging gun 111 as a charging unit by the flow of dry air, where static electricity is added. . More specifically, static electricity was applied during the passage of the mold lubricant through the gap between the friction portion of the charging gun and the cover by the friction charging method. As shown in FIG. 2, a powdery mold lubricant 103 is pneumatically conveyed through a gap between a wavy friction portion (made of fluororesin) 118 provided inside the charging gun 111 and an outer peripheral cover 120. In the process, static electricity is generated by repeating collision flow with the wavy friction portion 118, and a potential (positive charge) is added to the mold lubricant. At this time, the powdery charge improver 103a in the mold lubricant 103 is more likely to be charged by repeating collision flow with the friction portion 118 than the powdery lubricant 103b, so that more positive charges are generated. (Schematically shown in FIG. 2). Since the mold lubricant 103 repeats the collision flow, the charge improver 103a and the mold main agent 103b also collide, so that the amount of charge (charge) between the particles is increased as a whole and uniformized. . In the following examples, a current value generated when the mold lubricant 103 passes through the charging gun friction portion 118 was measured by the ammeter 121.
[0037]
Next, the mold lubricant 103 to which static electricity has been added by the charging gun 111 is then injected into the mold (in the following embodiment, in the inner cup 307 of the apparatus shown in FIG. 3) from the nozzle 117 through the ejection passage 115. Projected. By projecting the charged mold lubricant 103 into the mold 101, the mold lubricant 103 is sucked and adhered (adsorbed) to the surface inside the mold 101 by electrostatic action (Coulomb action force). Will be done. At this time, the mold lubricant having a weak charged power blows up with air and escapes from the mold. For this reason, in the following embodiments, the air pressure, the air discharge time, and the like vary in advance in the amount of adhesion of the mold lubricant (only the lubricating main agent which is a conventional powder lubricant) to the mold. A few optimal conditions were determined, and all were performed under the optimal conditions. Specifically, (1) discharge pressure (pressure when discharging from the charging gun) is 4.0 MPa, (2) atomization pressure (pressure of air when sending from the lubricant supply tank to the charging gun) 2.0 MPa, (3) Fluid pressure (pressure at which the mold lubricant flows in the lubricant supply tank) 2.0 MPa, (4) Discharge time (time to blow out from the charging gun) 0.05 sec, (5) atomization time (lubrication) The time under which the air sent from the agent supply tank to the charging gun was 0.50 sec) was the optimum condition, and therefore the experiment was performed under all the conditions.
[0038]
Further, in the following embodiments, instead of the die (die cavity) 201 shown in FIG. 1, a potential amount and a projection amount (specifically, a mold Was measured. More specifically, as shown in FIG. 3, the electric potential measuring device 301 using a fuzzy cage (a double cylinder insulated from each other) has an inner part supported by an insulator support member 305 placed inside the outer cup 303. The mold lubricant 103 charged by the charging gun 111 is projected onto the cup 307 from the projection nozzle 117 through the ejection passage 115, and the mold lubricant adsorbed in the inner cup 307 by the surface voltmeter 309 installed in the outer cup 303. The amount of potential of 103 was measured. Thereafter, the inner cup 307 was weighed, and the amount of the lubricant projected (specifically, the amount adhered to the inner cup) was measured.
[0039]
Example 1
Using the mold lubricant projecting device (manufactured by Nordson Corporation) shown in FIG. 1 and the potential amount measuring device shown in FIG. 3, a projecting experiment of the mold lubricant was performed, and the projected amount per one time (adhesion to the inner cup) Volume), current value, and potential value. In this case, the mold lubricant includes only (i) a lubricant main agent (polycondensate powder of a fatty acid and ethylenediamine; KWAX-WD (trade name) manufactured by Kawasaki Steel Corporation) without adding a charge improver. And (ii) 1% by mass of alumina powder added to the same lubricating main agent as a charge improver, and (iii) 5% by mass of alumina powder added to the same lubricating main agent. FIGS. 4 to 6 show measurement results of the projection amount (the amount attached to the inner cup), the current value, and the potential amount per one time by these projection experiments.
[0040]
According to the projection experiment, even when the injection was performed under the optimum condition so that the projection amount per one shot was most stabilized, the projection amount, the current value, and the electric potential amount per one shot in the mold lubricant without the addition of the charge improver. Was found to occur.
[0041]
On the other hand, with respect to the mold lubricant to which 1% by mass and 5% by mass of the alumina powder were added as the charge improver, the variation in the projection amount per shot can be reduced as compared with the mold lubricant without the charge improver added. Was confirmed (see FIG. 4). Also, the effect of reducing the variation in the projection amount per shot is more remarkable in the mold lubricant added with 5% by mass of the alumina powder than in the mold lubricant added with 1% by mass of the alumina powder as the charge improver. Was also confirmed (see FIG. 4).
[0042]
Also, with respect to the mold lubricant to which 1% by mass and 5% by mass of the alumina powder are added as the charge improver, the current value per time is improved as compared with the mold lubricant without addition of the charge improver, and It was confirmed that the variation was also reduced (see FIG. 5). Further, a mold lubricant added with 5% by mass of alumina powder as a charge improver has a more remarkable effect of improving the current value per operation and a reduction effect of the variation than a mold lubricant added with 5% by mass of alumina powder. Was also confirmed (see FIG. 5).
[0043]
In addition, with respect to the mold lubricant to which 1% by mass and 5% by mass of the alumina powder are added as the charge improver, the potential amount per time can be improved as compared with the mold lubricant without addition of the charge improver. It could be confirmed (see FIG. 6). In addition, it was confirmed that the mold lubricant to which 5% by mass of the alumina powder was added as the charge improver also reduced the variation in the potential amount as compared to the mold lubricant without the charge improver added (FIG. 6). See.). Further, a mold lubricant added with 5% by mass of alumina powder as a charge improver has a more remarkable effect of improving the potential amount per operation and a reduction effect of the variation than a mold lubricant added with 5% by mass of alumina powder. (See FIG. 6).
[0044]
When the current value generated during charging increases, the potential amount of the mold lubricant eventually becomes a saturated potential amount. Since the saturation potential is determined by the object, if the saturation potential does not reach the saturation potential due to frictional charging in the friction portion of the charging gun, the variation in the amount of adhesion to the mold increases. With only the conventional lubricant (lubricating main agent in the present invention), the current value (charging amount) generated at the time of charging was low and the potential was low, so that the variation in the amount of adhesion to the mold was large. However, in the present invention, since the potential amount of the mold lubricant can substantially reach the saturation potential amount by the addition of the charge improver, it can be said that the variation in the amount of adhesion to the mold was greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of a basic structure of a mold lubricant projecting device (manufactured by Nordson) used in Examples.
FIG. 2 is a schematic cross-sectional view schematically showing a state in which a lubricant passes through a gap between a friction portion of a charging gun and a cover by a tribo electrification method of FIG. 1;
FIG. 3 is a schematic diagram of a potential measurement device using a Faraday gauge.
FIG. 4 is a graph showing a variation of an alumina powder as a charge improver added to a mold lubricant in a range of 0 to 5% by mass using a mold lubricant projecting device (manufactured by Nordson) in an embodiment of the present invention. 5 is a graph showing the relationship between the amount of the charge improver added and the amount of projection (the amount of adhesion to the inner cup) when the charging is performed. In FIG. 4, Δmax indicates the maximum value of the projection amount obtained in 30 projection experiments, gray □ min indicates the minimum value of the projection amount obtained in 30 projection experiments, and Δavg Indicates the average value of the projection amounts obtained in 30 projection experiments.
FIG. 5 is a graph showing a change in the amount of alumina powder, which is a charge improver, added to a mold lubricant within a range of 0 to 5% by mass, using a mold lubricant projection device (manufactured by Nordson) in an embodiment of the present invention. 5 is a graph showing the relationship between the amount of the charge improver added and the current value when the charging is performed. In FIG. 5, Δmax indicates the maximum value of the current value obtained in 30 projection experiments, gray square min indicates the minimum value of the current value obtained in 30 projection experiments, and Δavg Indicates the average value of the current values obtained in 30 projection experiments.
FIG. 6 is a graph showing a variation of an alumina powder as a charge improver added to a mold lubricant in a range of 0 to 5% by mass using a mold lubricant projecting apparatus (manufactured by Nordson) in an embodiment of the present invention. 4 is a graph showing the relationship between the amount of the charge improver added and the amount of potential when the charging is performed. In FIG. 5, Δmax indicates the maximum value of the amount of potential obtained in 30 projection experiments, gray □ min indicates the minimum value of the amount of potential obtained in 30 projection experiments, and Δavg Indicates the average value of the amount of potential obtained in 30 projection experiments.
[Explanation of symbols]
101: mold lubricant projecting device, 103: mold lubricant (including charge improver)
,
103a: Charge improver, 103b: Lubricating agent
105: tank air 107: lubricant supply tank
109 ... pump air, 111 ... charge gun,
113: powder pump, 115: spouting passage,
117: projection nozzle, 118: wavy friction part,
119: controller (air tool), 120: outer peripheral cover,
121: ammeter 201: mold (die cavity),
301: electric potential measuring device, 303: outer cup,
305 ... insulator support, 307 ... inner cup,
309: Surface electrometer.

Claims (8)

主剤としての潤滑剤よりも摩擦による発生電位量の多い帯電向上剤が添加されてなることを特徴とする粉末成形用金型潤滑剤。A mold lubricant for powder molding, wherein a charge improver having a larger potential generated by friction than a lubricant as a main agent is added. 前記帯電向上剤と、主剤としての潤滑剤との帯電極性を等しくすることを特徴とする請求項1に記載の粉末成形用金型潤滑剤。The mold lubricant for powder molding according to claim 1, wherein the charge improver and the lubricant as a main agent have the same charge polarity. 前記帯電向上剤と、帯電ガンの摩擦部との帯電極性を異にすることを特徴とする請求項1または2に記載の粉末成形用金型潤滑剤。3. The powder molding die lubricant according to claim 1, wherein the charge improver and the friction portion of the charge gun have different charge polarities. 4. 前記帯電向上剤が、電気絶縁性粉末材料であることを特徴とする請求項1〜3のいずれか1項に記載の粉末成形用金型潤滑剤。The mold lubricant for powder molding according to any one of claims 1 to 3, wherein the charge improver is an electrically insulating powder material. 前記帯電向上剤が、セラミックス粉末材料、樹脂粉末材料およびゴム粉末材料から選ばれてなる少なくとも1種であることを特徴とする請求項1〜4のいずれか1項に記載の粉末成形用金型潤滑剤。The mold for powder molding according to any one of claims 1 to 4, wherein the charge improver is at least one selected from a ceramic powder material, a resin powder material, and a rubber powder material. lubricant. 前記セラミックス粉末材料が、アルミナ粉末であることを特徴とする請求項5に記載の粉末成形用金型潤滑剤。The mold lubricant for powder molding according to claim 5, wherein the ceramic powder material is an alumina powder. 粉末成形用金型潤滑剤中の帯電向上剤の割合が、1質量%以上であることを特徴とする請求項1〜6のいずれか1項に記載の粉末成形用金型潤滑剤。7. The powder molding die lubricant according to claim 1, wherein a ratio of the charge improver in the powder molding die lubricant is 1% by mass or more. 8. 常温における粉末成形、または金型及び材料粉末を温めて成形を行う温間成形に使用されるものであることを特徴とする請求項1〜7のいずれか1項に記載の粉末成形用金型潤滑剤。The mold for powder molding according to any one of claims 1 to 7, wherein the mold is used for powder molding at room temperature or warm molding for molding by warming a mold and a material powder. lubricant.
JP2003053403A 2003-02-28 2003-02-28 Mold lubricant for powder molding Pending JP2004261832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053403A JP2004261832A (en) 2003-02-28 2003-02-28 Mold lubricant for powder molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053403A JP2004261832A (en) 2003-02-28 2003-02-28 Mold lubricant for powder molding

Publications (1)

Publication Number Publication Date
JP2004261832A true JP2004261832A (en) 2004-09-24

Family

ID=33118015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053403A Pending JP2004261832A (en) 2003-02-28 2003-02-28 Mold lubricant for powder molding

Country Status (1)

Country Link
JP (1) JP2004261832A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171484A (en) * 1993-12-21 1995-07-11 Matsuo Sangyo Kk Method for controlling charge amount in triboelectric-charged powder coating device
JPH105635A (en) * 1996-04-25 1998-01-13 Kao Corp Electrostatic powder spray coating method and apparatus therefor
JPH1115193A (en) * 1997-06-23 1999-01-22 Mita Ind Co Ltd Toner
JP2001342478A (en) * 2000-03-28 2001-12-14 Kawasaki Steel Corp Lubricating agent for lubrication of mold and method for manufacturing high density molded article of iron based powder
JP2002327204A (en) * 2001-04-27 2002-11-15 Nordson Kk Lubricant application device for powder compacting mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171484A (en) * 1993-12-21 1995-07-11 Matsuo Sangyo Kk Method for controlling charge amount in triboelectric-charged powder coating device
JPH105635A (en) * 1996-04-25 1998-01-13 Kao Corp Electrostatic powder spray coating method and apparatus therefor
JPH1115193A (en) * 1997-06-23 1999-01-22 Mita Ind Co Ltd Toner
JP2001342478A (en) * 2000-03-28 2001-12-14 Kawasaki Steel Corp Lubricating agent for lubrication of mold and method for manufacturing high density molded article of iron based powder
JP2002327204A (en) * 2001-04-27 2002-11-15 Nordson Kk Lubricant application device for powder compacting mold

Similar Documents

Publication Publication Date Title
US6299690B1 (en) Die wall lubrication method and apparatus
EP1502655A3 (en) Powder bell with secondary charging electrode
JP2011131121A (en) Electrostatic coating gun and electrostatic coating method
PL319482A1 (en) Method of and apparatus for electrostatically atomising solid particles
CA2156872C (en) Powder metallurgy apparatus and process using electrostatic die wall lubrication
US5682591A (en) Powder metallurgy apparatus and process using electrostatic die wall lubrication
GB2393407B (en) Powder coating process with tribostatically charged fluidised bed
JP4315123B2 (en) Static elimination method
JP2004261832A (en) Mold lubricant for powder molding
US3786309A (en) Electrostatic powder spraying method and apparatus
JPWO2011030644A1 (en) Powder spreader for printing
KR102618725B1 (en) Gas-transported fine powder quantitative supply method and system
JP3779557B2 (en) Lubricant coating device for powder molding dies
CN1096302C (en) Control system for electrostatic power spraying apparatus
US20050287306A1 (en) Process for electrostatic powder coating an article using triboelectrically charged powder with air jet assist
DE102015006504B4 (en) Method and apparatus for reducing electrostatic charge when machining, bonding or coating surfaces by vacuum suction blasting
JP2005177815A (en) Apparatus for applying lubricant and method therefor
JP2005179751A (en) Device and method for applying lubricant
JP2004010947A (en) Intermittent powder-application device and powder compacting machine with lubrication into mold
JP2005290518A (en) Method for applying powdery lubricant, and applying device
Yang et al. Electrostatic performance of various lubricant powders in P/M electrostatic die wall lubrication
JP3675510B2 (en) Ejector for powder ejection, powder coated substrate manufacturing apparatus, and powder coated substrate manufacturing method
JP2003275656A (en) Electrostatic powder coater
CN108554663B (en) Thickened powder material forming device
Thomas et al. Tribocharging behaviour of automotive powder coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051226

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Effective date: 20080501

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A131 Notification of reasons for refusal

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A131 Notification of reasons for refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A02