JP2004261532A - Regenerated ectocornea cell sheet having high engraftment properties, its manufacturing method and utilizing method thereof - Google Patents

Regenerated ectocornea cell sheet having high engraftment properties, its manufacturing method and utilizing method thereof Download PDF

Info

Publication number
JP2004261532A
JP2004261532A JP2003068899A JP2003068899A JP2004261532A JP 2004261532 A JP2004261532 A JP 2004261532A JP 2003068899 A JP2003068899 A JP 2003068899A JP 2003068899 A JP2003068899 A JP 2003068899A JP 2004261532 A JP2004261532 A JP 2004261532A
Authority
JP
Japan
Prior art keywords
sheet
corneal epithelial
cell sheet
epithelial cell
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003068899A
Other languages
Japanese (ja)
Other versions
JP3935093B2 (en
Inventor
Mitsuo Okano
光夫 岡野
Koji Nishida
幸二 西田
Masayuki Yamato
雅之 大和
Yasuo Tano
保雄 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003068899A priority Critical patent/JP3935093B2/en
Application filed by Individual filed Critical Individual
Priority to ES04708896.8T priority patent/ES2538696T3/en
Priority to KR1020057014284A priority patent/KR101141985B1/en
Priority to EP04708896.8A priority patent/EP1602383B1/en
Priority to EP11192961.8A priority patent/EP2450065B1/en
Priority to US10/544,541 priority patent/US20060234377A1/en
Priority to PCT/JP2004/001274 priority patent/WO2004069295A1/en
Priority to CN2004800036987A priority patent/CN1747753B/en
Publication of JP2004261532A publication Critical patent/JP2004261532A/en
Application granted granted Critical
Publication of JP3935093B2 publication Critical patent/JP3935093B2/en
Priority to US15/859,304 priority patent/US10434219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerated ectocornea cell sheet and its stratified sheet having high engraftment properties of which the adhesiveness to the tissue of an anterior eye part is good. <P>SOLUTION: Cells are cultured on a cell culture support wherein the surface of a base material is coated with a temperature responsive polymer, of which the upper or lower limit critical melting temperature to water is 0-80°C, under a specific condition and, if necessary, cultured cell layers are mutually stratified. Thereafter, (1) the temperature of a culture liquid is set to the upper limit critical melting temperature or above or the lower limit critical melting temperature or below, (2) the cultured ectocornea cell sheet or its stratified sheet is closely bonded to a carrier and (3) this sheet is peeled along with the carrier under a specific condition to manufacture the regenerated ectocornea cell sheet or its stratified sheet having high engraftment properties. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【産業上の利用分野】
本発明は、生物学、医学等の分野における高生着性再生角膜上皮細胞シート、製造方法及びそれらを利用した治療法に関する。
【従来の技術】
医療技術の著しい発展により、近年、治療困難となった臓器を他人の臓器と置き換えようとする臓器移植が一般化してきた。対象となる臓器も皮膚、角膜、腎臓、肝臓、心臓等と実に多様で、また、術後の経過も格段に良くなり、医療の一技術としてすでに確立されつつある。一例として角膜移植をあげると、約40年前に日本にもアイバンクが設立され移植活動が始められた。しかしながら、未だにドナー数が少なく、国内だけでも角膜移植の必要な患者が年間約2万人出てくるのに対し、実際に移植治療が行える患者は約1/10の2000人程度でしかないといわれている。角膜移植というほぼ確立された技術があるにもかかわらず、ドナー不足という問題のため、次なる医療技術が求められているのが現状である。
このような背景のもと、以前より、人工代替物や細胞を培養して組織化させたものをそのまま移植しようという技術が注目されている。その代表的な例として、人工皮膚及び培養皮膚があげられよう。しかしながら、合成高分子を用いた人工皮膚は拒絶反応等が生じる可能性があり、移植用皮膚としては好ましくない。一方、培養皮膚は本人の正常な皮膚の一部を所望の大きさまで培養したものであるため、これを使用しても拒絶反応等の心配がなく、最も自然なマスキング剤と言える。
従来、そのような細胞培養は、ガラス表面上あるいは種々の処理を行った合成高分子の表面上にて行われていた。例えば、ポリスチレンを材料とする表面処理、例えばγ線照射、シリコーンコーティング等を行った種々の容器等が細胞培養用容器として普及している。このような細胞培養用容器を用いて培養・増殖した細胞は、トリプシンのような蛋白分解酵素や化学薬品により処理することで容器表面から剥離・回収される。
しかし、上述のような化学薬品処理を施して増殖した細胞を回収する場合、処理工程が煩雑になり、不純物混入の可能性が多くなること、及び増殖した細胞が化学的処理により変成若しくは損傷し細胞本来の機能が損なわれる例があること等の欠点が指摘されていた。かかる欠点を克服するために、これまでいくつかの技術が提案されている。
特公平2−23191号公報には、ヒト新生児由来角化表皮細胞を、ケラチン組織の膜が容器の表面上に形成される条件下にて、培養容器中で培養し、ケラチン組織の膜を酵素を用いて剥離させることを特徴とするケラチン組織の移植可能な膜を製造する方法、が記載されている。具体的には、3T3細胞をフィーダーレイヤーとして増殖、重層化させ、蛋白質分解酵素であるディスパーゼを用いて細胞シートを回収する技術が開示されている。しかしながら、当該公報に記載されている方法は次のような欠点を有していた。
(1)ディスパーゼは菌由来のものであり、回収された細胞シートを十分に洗浄する必要性があること。
(2)培養された細胞ごとにディスパーゼ処理の条件が異なり、その処理に熟練が必要であること。
(3)ディスパーゼ処理により培養された表皮細胞が病理学的に活性化されること。
(4)ディスパーゼ処理により細胞外マトリックスが分解されること。
(5)そのためその細胞シートを移植された患部は感染され易いこと。
上述したような従来法の欠点に加えて、本発明の対象とする角膜上皮細胞、角膜内皮細胞、及び結膜上皮細胞などの前眼部関連細胞は、皮膚細胞ほど細胞・細胞間の結合が強くないため、上記ディスパーゼをもってしても、培養後、1枚のシートとして剥離、回収することはできなかった、という欠点を有していた。
かかる課題を解決するために、最近、スポンジ層と上皮層を除去した羊膜上で、角膜上皮細胞や結膜上皮細胞を培養、組織化させ、その羊膜ごと移植用細胞片とする技術が考案された(特開2001−161353号)。羊膜は、十分な膜強度を持っていること、さらに抗原性を持っていないことから、移植用細胞片の支持体として好都合だが、羊膜というものがもともと眼内になく、より精密に眼内組織を構築していくためには、やはり眼内の細胞だけで十分な強度を持ったシートの作製が望まれていた。
また、特願2001−226141号では、水に対する上限もしくは下限臨界溶解温度が0〜80℃である温度応答性高分子を基材表面に被覆した細胞培養支持体上で前眼部関連細胞を培養し、必要に応じて常法により培養細胞層を重層化させ、支持体の温度を変えるだけで培養した細胞シートを剥離させることで、十分な強度を持った細胞シートの作製が可能となった。また、この細胞シートには基底膜様蛋白質も保持しており、上述したディスパーゼ処理したものに比べ、組織への生着性も明らかに改善されている。しかしながら、実際の患者の負担軽減を考えると、その生着性にさらに改善が望まれていた。
さらに、最近、医療現場においてもさまざまな方法が提案されている。たとえば、WO98/31316においては近視治療のためにPRK法、LASIK法を行う際、培養した角膜上皮細胞シートを利用する技術が提案している。しかしながら、ここでの培養角膜上皮シートは、上述のディスパーゼによって剥離されたものであり、レーザーで削られた角膜組織への付着性が悪く、顕著な治療効果も望めない問題点があった。
【発明が解決しようとする課題】
本発明は、上記のような従来技術の問題点を解決することを意図してなされたものである。すなわち、本発明は、前眼部組織への付着性が良好な高生着性再生角膜上皮細胞シートまたはその重層化シートを提供することを目的とする。また、本発明は、その製造法、並びに利用方法を提供することを目的とする。
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、種々の角度から検討を加えて、研究開発を行った。その結果、温度応答性ポリマーで基材表面を被覆した特定条件の細胞培養支持体上で角膜上皮細胞を特定条件下で培養し、その後、培養液温度を上限臨界溶解温度以上または下限臨界溶解温度以下とし、培養した再生角膜上皮細胞シートまたはその重層化シートを特定のキャリアに密着させ、細胞シートの収縮を抑えながら、そのままキャリアと共に剥離することにより、生体組織に極めて付着性の良い高生着性再生角膜上皮細胞シートまたはその重層化シートが得られることを見いだした。本発明はかかる知見に基づいて完成されたものである。
すなわち、本発明は、前眼部組織への付着性が良好な、キャリアに密着させた、高生着性再生角膜上皮細胞シートまたはその重層化シートを提供する。
また、本発明は、水に対する上限もしくは下限臨界溶解温度が0〜80℃である温度応答性高分子で基材表面を被覆した細胞培養支持体上で細胞を培養し、必要に応じて常法により培養細胞層を重層化させ、その後、
(1)培養液温度を上限臨界溶解温度以上または下限臨界溶解温度以下とし、
(2)培養した角膜上皮細胞シートまたはその重層化シートをキャリアに密着させ、
(3)そのままキャリアと共に剥離する
ことを特徴とする高生着性再生角膜上皮細胞シートまたはその重層化シートの製造方法を提供する。
加えて、本発明は、深部まで欠損及び/または創傷した組織を治療するための上記高生着性再生角膜上皮細胞シートまたはその重層化シートを提供する。
更に加えて、本発明は、深部まで欠損及び/または創傷した組織に対し、上記高生着性再生角膜上皮細胞シートまたはその重層化シートを移植することを特徴とする治療法を提供する。
更に、本発明は医療分野のみならず、化学物質、毒物、或いは医薬品の安全性評価用細胞として有用な高生着性再生角膜上皮細胞シートまたはその重層化シートを提供する。
【発明の実施の形態】
本発明の前眼部関連細胞シートまたは3次元構造体の作製に使用される好適な細胞として角膜上皮細胞、及びその幹細胞が挙げられるが、その種類は、何ら制約されるものではない。本発明において、高生着性再生角膜上皮細胞シートとは、上記した各種細胞が培養支持体上で単層状に培養され、その後、支持体より剥離されたシートを意味し、その重層化シートとは、その高生着性再生角膜上皮細胞シートが単独若しくは他の細胞からなるシートと組み合わされた状態で重層化されたシートを意味する。
本発明における高生着性再生角膜上皮細胞シートまたはその重層化シートは培養時にディスパーゼ、トリプシン等で代表される蛋白質分解酵素による損傷を受けていないものである。そのため、基材から剥離された高生着性再生角膜上皮細胞シートまたはその重層化シートは、細胞−細胞間のデスモソーム構造が保持され、構造的欠陥が少なく、強度の高いものである。また、本発明のシートは培養時に形成される細胞−基材間の基底膜様蛋白質も酵素による破壊を受けていない。このことにより、移植時において患部組織と良好に接着することができ、効率良い治療を実施することができるようになる。以上のことを具体的に説明すると、トリプシン等の通常の蛋白質分解酵素を使用した場合、細胞−細胞間のデスモソーム構造及び細胞、基材間の基底膜様蛋白質等は殆ど保持されておらず、従って、細胞は個々に分かれた状態となって剥離される。その中で、蛋白質分解酵素であるディスパーゼに関しては、細胞−細胞間のデスモソーム構造については10〜60%保持した状態で剥離させることができることで知られているが、細胞−基材間の基底膜様蛋白質等を殆ど破壊してしまうため、得られる細胞シートは強度の弱いものである。これに対して、本発明の細胞シートは、デスモソーム構造、基底膜様蛋白質共に80%以上残存された状態のものであり、上述したような種々の効果を得ることができるものである。
本発明における高生着性再生角膜上皮細胞シートまたはその重層化シートは生体組織である前眼部組織に極めて良好に生着する。その性質は、支持体表面から剥離させた再生角膜上皮細胞シートまたはその重層化シートの収縮を抑えることで実現されることを見いだした。その際、再生角膜上皮細胞シートまたはその重層化シートの収縮率はシート内の何れの方向における長さにおいても20%以下であることが望ましく、好ましくは10%以下、さらに好ましくは5%以下であることが好ましい。シートの何れかの方向の長さにおいて20%以上となると、剥離した細胞シートはたるんでしまって、その状態で生体組織に付着させても組織に密着させられず、本発明で示すところの高生着性は望めない。
再生角膜上皮細胞シートまたはその重層化シートを収縮させない方法は、細胞シートを収縮させない方法であれば何ら制約されるものではないが、例えば、支持体から再生角膜上皮細胞シートまたはその重層化シートを剥離させる際、これらの細胞シートに中心部を切り抜いたリング状のキャリアなどを密着させ、そのキャリアごと細胞シートを剥離する方法などが挙げられる。
高生着性再生角膜上皮細胞シートまたはその重層化シートを密着させる際に使用するキャリアは、本発明の細胞シートが収縮しないように保持するための構造物であり、例えば高分子膜または高分子膜から成型された構造物、金属性治具などを使用することができる。例えば、キャリアの材質として高分子を使用する場合、その具体的な材質としてはポリビニリデンジフルオライド(PVDF)、ポリプロピレン、ポリエチレン、セルロース及びその誘導体、紙類、キチン、キトサン、コラーゲン、ウレタン等を挙げることができる。
本発明において密着という場合、細胞シートが収縮しないように、細胞シートとキャリアとの境界面において、キャリア上で細胞シートがずれたり移動したりしない状態のことをいい、物理的に結合することにより密着していても、両者のあいだに存在する液体(例えば培養液、その他の等張液)を介して密着していてもよい。
キャリアの形状は、特に限定されるものではないが、例えば得られた高生着性再生角膜上皮細胞シートまたはその重層化シートを移植する際に、キャリアの一部に移植部位と同程度もしくは移植部位より大きく切り抜いたものを利用すると、細胞シートは切り抜かれたの周囲の部分だけに固定され、切り抜かれた部分にある細胞シートを移植部位に当てるだけで良く、好都合である。
また、本発明における再生角膜上皮細胞シートまたはその重層化シートの特徴である生体組織への高い生着性は、特定の培養条件下で実現される。すなわち、本発明の細胞シートまたは重層化シートは、支持体表面上に角膜上皮細胞を播種後、培養することで得られるが、支持体表面上で細胞がコンフルエント(満杯な状態)になってから21日以下、好ましくは15日以下、さらに10日以下であることが好ましいことが判明した。21日より多いと剥離した再生角膜上皮細胞シートまたはその重層化シートの最下層の細胞の活性が低下し、そのため付着性も低減してしまい、本発明でである高生着性は望めなくなる。
本発明の前眼部組織とは、前眼部であれば特に限定されるものではないが、一般には、角膜上皮組織、ボーマン組織、角膜実質組織などが挙げられる。
本発明における高生着性再生角膜上皮細胞シートまたはその重層化シートは、以上に示すように、生体組織である前眼部組織に極めて良好に付着できる細胞シートであり、従来技術からでは全く得られなかったものである。
細胞培養支持体において基材の被覆に用いられる温度応答性ポリマーは、水溶液中で上限臨界溶解温度または下限臨界溶解温度0℃〜80℃、より好ましくは20℃〜50℃を有する。上限臨界溶解温度または下限臨界溶解温度が80℃を越えると細胞が死滅する可能性があるので好ましくない。また、上限臨界溶解温度または下限臨界溶解温度が0℃より低いと一般に細胞増殖速度が極度に低下するか、または細胞が死滅してしまうため、やはり好ましくない。
本発明に用いる温度応答性高分子はホモポリマー、コポリマーのいずれであってもよい。このような高分子としては、例えば、特開平2−211865号公報に記載されているポリマーが挙げられる。具体的には、例えば、以下のモノマーの単独重合または共重合によって得られる。使用し得るモノマーとしては、例えば、(メタ)アクリルアミド化合物、N−(若しくはN,N−ジ)アルキル置換(メタ)アクリルアミド誘導体、またはビニルエーテル誘導体が挙げられ、コポリマーの場合は、これらの中で任意の2種以上を使用することができる。更には、上記モノマー以外のモノマー類との共重合、ポリマー同士のグラフトまたは共重合、あるいはポリマー、コポリマーの混合物を用いてもよい。また、ポリマー本来の性質を損なわない範囲で架橋することも可能である。
被覆を施される基材としては、通常細胞培養に用いられるガラス、改質ガラス、ポリスチレン、ポリメチルメタクリレート等の化合物を初めとして、一般に形態付与が可能である物質、例えば、上記以外の高分子化合物、セラミックス類など全て用いることができる。
温度応答性ポリマーの支持体への被覆方法は、特に制限されないが、例えば、特開平2−211865号公報に記載されている方法に従ってよい。すなわち、かかる被覆は、基材と上記モノマーまたはポリマーを、電子線照射(EB)、γ線照射、紫外線照射、プラズマ処理、コロナ処理、有機重合反応のいずれかにより、または塗布、混練等の物理的吸着等により行うことができる。
温度応答性高分子の被覆量は、0.4〜4.5μg/cmの範囲が良く、好ましくは0.7〜3.5μg/cmであり、さらに好ましくは0.9〜3.0μg/cmである。0.2μg/cmより少ない被覆量のとき、刺激を与えても当該高分子上の細胞は剥離し難く、作業効率が著しく悪くなり好ましくない。逆に4.5μg/cm以上であると、その領域に細胞が付着し難く、細胞を十分に付着させることが困難となる。
本発明における支持体の形態は特に制約されるものではないが、例えばディッシュ、マルチプレート、フラスコ、セルインサートなどが挙げられる。その中で、特にセルインサートについては、例えば角膜上皮細胞を重層化させる際に必要な3T3フィーダー細胞を角膜上皮細胞と分けて培養できるため好都合である。その際、角膜上皮細胞はセルインサート側にあっても、セルインサートが装着されるディッシュ側にあっても良く、少なくとも角膜上皮細胞が培養される表面には温度応答性高分子が被覆されている必要性がある。
本発明において、細胞の培養は上述のようにして製造された細胞培養支持体上で行われる。培地温度は、基材表面に被覆された前記ポリマーが上限臨界溶解温度を有する場合はその温度以下、また前記ポリマーが下限臨界溶解温度を有する場合はその温度以上であれば特に制限されない。しかし、培養細胞が増殖しないような低温域、あるいは培養細胞が死滅するような高温域における培養が不適切であることは言うまでもない。温度以外の培養条件は、常法に従えばよく、特に制限されるものではない。例えば、使用する培地については、公知のウシ胎児血清(FCS)等の血清が添加されている培地でもよく、また、このような血清が添加されていない無血清培地でもよい。
本発明の方法において、培養した細胞を支持体材料から剥離回収するには、培養された高生着性再生角膜上皮細胞シートまたはその重層化シートをキャリアに密着させ、細胞の付着した支持体材料の温度を支持体基材の被覆ポリマーの上限臨界溶解温度以上若しくは下限臨界溶解温度以下にすることによって、そのままキャリアとともに剥離することができる。なお、シートを剥離することは細胞を培養していた培養液中において行うことも、その他の等張液中において行うことも可能であり、目的に合わせて選択することができる。
本発明では、細胞シートを患部に当てた後、細胞シートをキャリアからはがせば良い。そのはがし方は、何ら制約されるものではないが、例えば、キャリアを濡らしてキャリアと細胞シートの密着性を弱めてはがす方法、或いはメス、はさみ、レーザー光、プラズマ波などの治具を用いても切断する方法でも良い。例えば上述したような一部を切り抜いたキャリアに密着した細胞シートを用いた場合、レーザー光などを用いて患部の境界線に沿って切断すると患部以外の余計なところへの細胞シートの付着を避けられ好都合である。
本発明で示すところの高生着性再生角膜上皮細胞シート、その重層化シートと生体組織との固定方法は特に限定されるものではなく、細胞シートと生体組織を縫合しても良く、或いは本発明で示すところの高生着性再生角膜上皮細胞シートまたはその重層化シートは生体組織と速やかに生着するため、患部に付着させた細胞シートは生体側と縫合しなくても良い。特に後者の場合、移植した細胞シートを保護する意味でコンタクトレンズを併用しても良い。
本発明における重層化シートの製造法は特に限定されるものではないが、例えば、一般的に知られている3T3細胞をフィーダーレイヤーとして増殖、重層化させる方法、或いは上記のキャリアに密着した高生着性再生角膜上皮細胞シートを利用することで製造する方法等を挙げることができる。具体的には、次のような方法が例示される。
(1)キャリアと密着した細胞シートを細胞培養支持体に付着させ、その後培地を加えることでキャリアを細胞シートからはがし、そして更に別のキャリアと密着した細胞シートを付着させることを繰り返すことで細胞シートを重層化させる方法。
(2)キャリアと密着した細胞シートを反転させ細胞培養支持体上でキャリア側で固定させ、細胞シート側に別の細胞シートを付着させ、その後培地を加えることでキャリアを細胞シートからはがし、再び別の細胞シートを付着させる操作を繰り返すことで細胞シートを重層化させる方法。
(3)キャリアと密着した細胞シート同士を細胞シート側で密着させる方法。
(4)キャリアと密着した細胞シートを生体の患部に当て、細胞シートを生体組織に付着させた後、キャリアをはがし、再び別の細胞シートを重ねていく方法。
本発明における重層化シートは、必ずしも角膜上皮細胞だけからなるものでなくても良い。例えば、角膜上皮細胞シートと同様に操作して作製した角膜内皮細胞シート及び/または結膜上皮細胞シートを重ね合わせることも可能である。生体内の前眼部組織により近いものとする上でこのような技術は極めて有効である。
高生着性再生角膜上皮細胞シートまたはその重層化シートを高収率で剥離、回収する目的で、細胞培養支持体を軽くたたいたり、ゆらしたりする方法、更にはピペットを用いて培地を撹拌する方法等を単独で、あるいは併用して用いてもよい。加えて、必要に応じて培養細胞は等張液等で洗浄して剥離回収してもよい。
本発明に示される高生着性再生角膜上皮細胞シートまたはその重層化シートの用途は何ら制約されるものではないが、例えば角膜びらん、角膜潰瘍、或いはエキシマレーザーを中央部に照射して角膜表面を削り、角膜の屈折力を減少させて近視を矯正するピーアールケー(PRK)法、マイクロケラトームによって160μmの厚さで角膜実質層を切断しフラップを作製した後、フラップをめくり、エキシマレーザーで角膜実質層を削り取り、表面を整え、最後にフラップを元の位置に戻すレーシック(LASIK)法、アルコールを点眼し角膜表面を柔らかくし、マイクロケラトームを使わずに角膜上皮の50μmの厚さで切除してフラップを作製し、エキシマレーザーで角膜実質層を削り取り、表面を整え、最後にフラップを元の位置に戻すレーゼック(LASEK)法などの屈折矯正に有効である。
上述の方法により得られた高生着性再生角膜上皮細胞シートまたはその重層化シートは、従来の方法により得られたものに比べて、剥離の際の非侵襲性の点で極めて優れており、移植用角膜等の臨床応用が強く期待される。特に、本発明の高生着性再生角膜上皮細胞シートまたはその重層化シートは従来の移植シートとは異なり、生体組織との高い生着性を有するため、極めて速く生体組織に生着する。このことは、患部の治療効率の向上、更には患者の負担の軽減もはかられ極めて有効な技術と考えられる。なお、本発明の方法において使用される細胞培養支持体は繰り返し使用が可能である。
【実施例】
以下に、本発明を実施例に基づいて更に詳しく説明するが、これらは本発明を何ら限定するものではない。
実施例1、2
市販の6ウェル用セルインサート(ベクトン・ディッキンソン・ラブウェア(Becton Dickinson Labware)社製ファルコン(FALCON)3090)上に、N−イソプロピルアクリルアミドモノマーを30%(実施例1)、35%(実施例2)になるようにイソプロピルアルコールに溶解させたものを0.08ml塗布した。0.25MGyの強度の電子線を照射し、培養皿表面にN−イソプロピルアクリルアミドポリマー(PIPAAm)を固定化した。照射後、イオン交換水により培養皿を洗浄し、残存モノマーおよび培養皿に結合していないPIPAAmを取り除き、クリーンベンチ内で乾燥し、エチレンオキサイドガスで滅菌することで細胞培養支持体材料を得た。基材表面における温度応答性高分子量を測定したところ、それぞれ1.3μg/cm(実施例1)、1.5μg/cm(実施例2)被覆されていることが分かった。得られた細胞培養支持体材料上にて、常法により正常ウサギ角膜上皮細胞を培養した(使用培地:コルネパック(クラボウ(株)製。37℃、5%CO下)。その結果、何れの細胞培養支持体材料上の角膜上皮細胞においても正常に付着し、増殖した。
培養7日後に培養した細胞はコンフルエントの状態となり、さらに7日間培養した細胞の上に直径1.5cmの円状に切り抜いた直径2.1cmのポリビニリデンジフルオライド(PVDF)膜から成型したキャリアをかぶせ、培地を静かに吸引し、細胞培養支持体材料ごと20℃で30分インキュベートし冷却することで、何れの細胞培養支持体材料上の細胞もかぶせたキャリアと共に剥離させられた。得られた細胞シートは収縮率5%以下の1枚のシートとして十分に強度を持ったものであった。
なお、上記各実施例において、「低温処理」は20℃で30分インキュベートという条件下で行われたが、本発明において「低温処理」はこれらの温度及び時間に限定されない。本発明における「低温処理」として好ましい温度条件は0℃〜30℃であり、好ましい処理時間は2分〜1時間である。
実施例1、2で得られた角膜上皮細胞シートを角膜上皮組織部が欠損した角膜びらん疾病モデルであるウサギに常法に従い移植した。角膜上皮細胞シートを創傷部へ15分間付着させ、その後、メスを用いて患部以外のところに重なる細胞シートを切除した。その際、細胞シートと生体側の縫合は行わなかった。また、実施例2については移植後、患部にコンタクトレンズを装着させた。3週間後、患部を観察したところ、実施例1、2共に角膜上皮細胞シートは眼球に良好に生着していた。
実施例3
実施例1の細胞培養支持体上で、培地をマイトマイシンCを含む通常のグリーンらの培地(DMEM+AB(フィーダーレイヤー作製用)、ヒト新生児由来角化表皮細胞用)に変更する以外は同様な方法で正常ウサギ角膜上皮細胞を培養させた。その結果、培養支持体材料上の角膜上皮細胞は正常に付着し、増殖した。
培養6日後にコンフルエントな状態となり、さらに6日間培養して重層化させた。次に、直径1.5cmの円状に切り抜いた直径2.1cmのポリビニリデンジフルオライド(PVDF)膜から成型したキャリアをかぶせ、培地を静かに吸引し、細胞培養支持体材料ごと20℃で30分インキュベートし冷却することで、細胞培養支持体材料上の細胞シートをかぶせたキャリアと共に剥離させられた。さらに細胞培養支持体材料ごと20℃で30分インキュベートし冷却することで重層化角膜上皮細胞を剥離させられた。剥離された重層化シートは収縮率5%以下の1枚のシートとして十分に強度を持ったものであった。
実施例3で得られた角膜上皮細胞重層化シートを角膜上皮組織部が欠損した角膜びらん疾病モデルであるウサギに常法に従い移植した。角膜上皮細胞シートを創傷部へ15分間付着させ、その後、レーザー光を用いて患部以外のところに重なる細胞シートを切除した。その際、細胞シートと生体側の縫合は行わなかった。3週間後、患部を観察したところ、角膜上皮細胞重層化シートは眼球に良好に生着していた。
比較例1
実施例1で角膜上皮細胞シートを作製し、キャリアを使わずに細胞シートを剥離させ、収縮させること以外は実施例1と同様に角膜上皮細胞シートを製造した。その際の収縮率は、42%であった。
実施例1と同様に得られた角膜上皮細胞シートを角膜上皮組織部を欠損させたウサギに常法に従い移植した。角膜上皮細胞シートを創傷部へ15分間付着させ、その後、メスを用いて患部以外のところに重なる細胞シートを切除した。その際、細胞シートと生体側の縫合は行わなかった。移植1日後に患部を観察したところ、角膜上皮細胞シートの眼球への生着性は悪く、患部より脱落しかけていた。
比較例2
実施例3で角膜上皮細胞重層化シートを作製し、細胞培養支持体から剥離するまでの期間をコンフルエントに達してから28日後としたこと以外は実施例3と同様に角膜上皮細胞重層化シートを製造した。得られたシートの収縮率は5%以下であり、1枚の膜として十分に強度のあるものであった。
次に、実施例3と同様に得られた角膜上皮細胞重層化シートを角膜上皮組織部を欠損させたウサギに常法に従い移植した。角膜上皮細胞シートを創傷部へ15分間付着させ、その後、メスを用いて患部以外のところに重なる細胞シートを切除した。その際、細胞シートと生体側の縫合は行わなかった。移植1日後に患部を観察したところ、角膜上皮細胞シートの眼球への生着性は悪く、患部より脱落しかけていた。
実施例4
実施例3に示す方法と全く同様な方法でキャリアに密着した角膜上皮細胞重層化シートを作製した。このものを近視治療法として知られるレーシック(LASIK)法における角膜上皮フラップの代替になるものかどうかを検討した。
具体的には、まずウサギ角膜に対しマイクロケラトームによって160μmの厚さで角膜実質層を切断しフラップを作製した後、そのフラップを除去し、さらにエキシマレーザーで角膜実質層を削り取り、表面を整え、最後に本来フラップを戻す場所に実施例3で得られたキャリアに密着した角膜上皮細胞重層化シートを付着させた。レーザー光で患部と同じ大きさに角膜上皮細胞重層化シートを切断し、移植を完了した。縫合は行わなかった。3週間後、患部を観察したところ、角膜上皮細胞重層化シートは眼球に良好に生着しており、本発明の角膜上皮細胞重層化シートはレーシック法にも有効であると考えた。
実施例5
実施例3に示す方法と全く同様な方法でキャリアに密着した角膜上皮細胞重層化シートを作製した。このものを近視治療法として知られるレーゼック(LASEK)法における角膜上皮フラップの代替になるものかどうかを検討した。
具体的には、まずウサギ角膜に対しアルコールを点眼し角膜表面を柔らかくし、マイクロケラトームを使わずに角膜上皮の50μmの厚さで切除してフラップを作製した後、そのフラップを除去し、エキシマレーザーで角膜実質層を削り取り、表面を整え、最後に本来フラップを戻す場所に実施例3で得られたキャリアに密着した角膜上皮細胞重層化シートを付着させた。レーザー光で患部と同じ大きさに角膜上皮細胞重層化シートを切断し、移植を完了した。縫合は行わなかった。3週間後、患部を観察したところ、角膜上皮細胞重層化シートは眼球に良好に生着しており、本発明の角膜上皮細胞重層化シートはレーゼック法にも有効であると考えた。
以上の結果より、本技術によれば、前眼部組織への付着性が良好な高生着性再生角膜上皮細胞シート、その重層化シートの作成が可能であることがわかった。このことは、治療の簡便化、効率化による患者の負担軽減という点において極めて有効な技術と考えられる。
【発明の効果】
本発明で得られる高生着性再生角膜上皮細胞シート、その重層化シートは生体組織への生着性が極めて高く、たとえば角膜移植、角膜疾患治療、近視治療等の臨床応用が強く期待される。したがって、本発明は細胞工学、医用工学、などの医学、生物学等の分野における極めて有用な発明である。
[Industrial applications]
The present invention relates to a highly engraftment regenerated corneal epithelial cell sheet in the fields of biology, medicine, and the like, a production method thereof, and a treatment method using the same.
[Prior art]
2. Description of the Related Art Due to the remarkable development of medical technology, in recent years, organ transplantation for replacing an organ that has become difficult to treat with an organ of another person has become popular. The target organs are quite diverse, such as skin, cornea, kidney, liver, heart, etc., and the post-operative course has been remarkably improved, and is already being established as a medical technique. One example is corneal transplantation. About 40 years ago, an eye bank was established in Japan and transplantation activities began. However, the number of donors is still small, and about 20,000 patients need corneal transplants annually in Japan alone, whereas only about 1/10 of patients who can actually undergo transplantation treatment are about 2,000. It is said. Despite the almost established technique of corneal transplantation, the current situation is that the next medical technique is required due to the problem of shortage of donors.
Against this background, attention has been focused on a technique for transplanting artificial substitutes or cells obtained by culturing and organizing cells as they are. Typical examples are artificial skin and cultured skin. However, artificial skin using a synthetic polymer may cause a rejection reaction or the like, and is not preferred as skin for transplantation. On the other hand, the cultured skin is obtained by culturing a part of the normal skin of a person to a desired size, so that even if this is used, there is no fear of rejection and the like, and it can be said that it is the most natural masking agent.
Conventionally, such cell culture has been performed on a glass surface or on a surface of a synthetic polymer subjected to various treatments. For example, various containers and the like that have been subjected to surface treatment using polystyrene as a material, for example, γ-irradiation, silicone coating, and the like, have become widespread as cell culture containers. Cells cultured and proliferated using such a cell culture container are separated and recovered from the surface of the container by treating with a protease or a chemical such as trypsin.
However, in the case of collecting cells grown by applying the above-described chemical treatment, the process becomes complicated, the possibility of contamination is increased, and the grown cells are denatured or damaged by the chemical treatment. It has been pointed out that the original function of cells is impaired in some cases. Several techniques have been proposed to overcome such disadvantages.
Japanese Patent Publication No. 2-23191 discloses that human neonatal keratinocytes are cultured in a culture vessel under conditions where a keratin tissue membrane is formed on the surface of the vessel. And a method for producing an implantable membrane of keratin tissue, characterized in that the membrane is exfoliated by using the method. Specifically, a technique is disclosed in which 3T3 cells are grown and layered as a feeder layer, and a cell sheet is recovered using dispase, which is a protease. However, the method described in this publication has the following disadvantages.
(1) The dispase is derived from a bacterium, and it is necessary to sufficiently wash the collected cell sheet.
(2) The conditions of dispase treatment differ for each cultured cell, and the treatment requires skill.
(3) Epidermal cells cultured by dispase treatment are pathologically activated.
(4) The extracellular matrix is degraded by the dispase treatment.
(5) Therefore, the affected part in which the cell sheet is transplanted is easily infected.
In addition to the drawbacks of the conventional methods as described above, the anterior eye-related cells such as corneal epithelial cells, corneal endothelial cells, and conjunctival epithelial cells targeted by the present invention have stronger cell-cell bonds than skin cells. Therefore, even with the above dispase, there was a drawback that, after culturing, it could not be peeled and collected as a single sheet.
In order to solve such a problem, a technique has recently been devised in which a corneal epithelial cell or a conjunctival epithelial cell is cultured and organized on an amniotic membrane from which a sponge layer and an epithelial layer have been removed, and the amniotic membrane and a cell piece for transplantation are used together. (JP-A-2001-161353). Amniotic membrane is convenient as a support for cell debris for transplantation because it has sufficient membrane strength and lacks antigenicity. In order to construct a sheet, it has been desired to produce a sheet having sufficient strength using only cells in the eye.
Also, in Japanese Patent Application No. 2001-226141, the anterior ocular segment-related cells are cultured on a cell culture support having a substrate coated with a temperature-responsive polymer having an upper or lower critical solution temperature of 0 to 80 ° C. Then, if necessary, the cultured cell layer was layered by a usual method, and the cultured cell sheet was peeled off only by changing the temperature of the support, thereby making it possible to produce a cell sheet having sufficient strength. . In addition, the cell sheet also retains a basement membrane-like protein, and has clearly improved tissue engraftment as compared with the above-described dispase-treated cell sheet. However, in view of the actual reduction of the burden on patients, further improvement in their engraftment has been desired.
Further, recently, various methods have been proposed in the medical field. For example, WO 98/31316 proposes a technique using a cultured corneal epithelial cell sheet when performing the PRK method and the LASIK method for myopia treatment. However, the cultured corneal epithelial sheet here has been peeled off by the above-mentioned dispase, and has a problem that adhesion to a corneal tissue shaved by a laser is poor and a remarkable therapeutic effect cannot be expected.
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems of the prior art. That is, an object of the present invention is to provide a highly engraftment regenerated corneal epithelial cell sheet having good adhesion to anterior segment tissue or a layered sheet thereof. Another object of the present invention is to provide a production method and a use method thereof.
[Means for Solving the Problems]
The present inventors have conducted research and development by adding studies from various angles to solve the above problems. As a result, corneal epithelial cells are cultured under specific conditions on a cell culture support under specific conditions in which the substrate surface is coated with a temperature-responsive polymer, and then the temperature of the culture solution is equal to or higher than the upper critical solution temperature or the lower critical solution temperature. In the following, the cultured regenerated corneal epithelial cell sheet or the layered sheet thereof is adhered to a specific carrier and peeled off with the carrier as it is while suppressing the shrinkage of the cell sheet. It has been found that a regenerated corneal epithelial cell sheet or a layered sheet thereof can be obtained. The present invention has been completed based on such findings.
That is, the present invention provides a highly adherent regenerated corneal epithelial cell sheet or a layered sheet thereof, which has good adhesion to anterior ocular tissue and is adhered to a carrier.
Further, the present invention also provides a method for culturing cells on a cell culture support having a substrate surface coated with a temperature-responsive polymer having an upper or lower critical solution temperature in water of 0 to 80 ° C., and if necessary, a conventional method. To layer the cultured cell layer, and then
(1) the temperature of the culture solution is not lower than the upper critical dissolution temperature or lower than the lower critical dissolution temperature;
(2) bringing the cultured corneal epithelial cell sheet or the layered sheet thereof into close contact with the carrier,
(3) Peel with carrier as it is
A method for producing a highly engraftment regenerated corneal epithelial cell sheet or a layered sheet thereof is provided.
In addition, the present invention provides the above-mentioned highly engraftment regenerated corneal epithelial cell sheet or a layered sheet thereof for treating a deeply defective and / or wounded tissue.
In addition, the present invention provides a therapeutic method characterized by transplanting the highly engrafted regenerated corneal epithelial cell sheet or the layered sheet thereof to a tissue that has been deeply defective and / or wounded.
Furthermore, the present invention provides a highly engrafted regenerated corneal epithelial cell sheet or a layered sheet thereof, which is useful not only in the medical field but also as a cell for evaluating the safety of chemicals, toxic substances, or pharmaceuticals.
BEST MODE FOR CARRYING OUT THE INVENTION
Suitable cells used for preparing the anterior ocular segment-related cell sheet or the three-dimensional structure of the present invention include corneal epithelial cells and their stem cells, but their types are not limited at all. In the present invention, the highly viable regenerated corneal epithelial cell sheet refers to a sheet in which the above-described various cells are cultured in a single layer on a culture support, and then separated from the support. Means that the highly engrafted regenerated corneal epithelial cell sheet is layered in a state where the sheet is used alone or in combination with a sheet made of other cells.
The highly engraftment regenerated corneal epithelial cell sheet or the layered sheet thereof according to the present invention is not damaged by proteolytic enzymes such as dispase and trypsin during culture. Therefore, the highly engraftment regenerated corneal epithelial cell sheet or its layered sheet that has been peeled off from the substrate retains the cell-cell desmosome structure, has few structural defects, and has high strength. In the sheet of the present invention, the basement membrane-like protein between the cell and the substrate formed during the culture is not destroyed by the enzyme. As a result, it is possible to adhere well to the affected tissue at the time of transplantation, and to carry out efficient treatment. To explain the above concretely, when a normal protease such as trypsin is used, the cell-cell desmosome structure and the cells, the basement membrane-like protein between the substrates, etc. are hardly retained, Therefore, the cells are separated and separated from each other. Among them, dispase which is a proteolytic enzyme is known to be able to be detached in a state where the desmosome structure between cells is maintained at 10 to 60%, but the basement membrane between cells and the substrate is known. The resulting cell sheet has low strength because almost all proteins are destroyed. On the other hand, the cell sheet of the present invention has a desmosome structure and a basement membrane-like protein of 80% or more, and can obtain various effects as described above.
The highly engrafted regenerated corneal epithelial cell sheet or the layered sheet thereof according to the present invention adheres very well to the anterior segment tissue which is a living tissue. It has been found that the property is realized by suppressing the contraction of the regenerated corneal epithelial cell sheet or the layered sheet detached from the support surface. At that time, the contraction rate of the regenerated corneal epithelial cell sheet or the layered sheet thereof is desirably 20% or less, preferably 10% or less, more preferably 5% or less, in any direction in the sheet. Preferably, there is. If the length in any direction of the sheet is 20% or more, the detached cell sheet becomes slack and cannot be adhered to the tissue even when attached to a living tissue in that state. I cannot expect wearability.
The method of not shrinking the regenerated corneal epithelial cell sheet or the layered sheet thereof is not particularly limited as long as the method does not shrink the cell sheet. At the time of peeling, there is a method in which a ring-shaped carrier or the like having a central portion cut out is closely attached to the cell sheet, and the cell sheet is peeled together with the carrier.
The carrier used when the highly viable regenerated corneal epithelial cell sheet or the layered sheet thereof is adhered is a structure for holding the cell sheet of the present invention so as not to shrink, for example, a polymer film or a polymer film. Structures, metal jigs, and the like molded from the same can be used. For example, when a polymer is used as the material of the carrier, specific materials include polyvinylidene difluoride (PVDF), polypropylene, polyethylene, cellulose and derivatives thereof, papers, chitin, chitosan, collagen, urethane, and the like. Can be mentioned.
In the present invention, the term "close contact" refers to a state in which the cell sheet does not shift or move on the carrier at the boundary surface between the cell sheet and the carrier so that the cell sheet does not shrink, and is physically bonded. Even if they are in close contact, they may be in contact via a liquid (for example, a culture solution or another isotonic solution) existing between them.
Although the shape of the carrier is not particularly limited, for example, when transplanting the obtained highly engraftment regenerated corneal epithelial cell sheet or the layered sheet thereof, a part of the carrier is almost the same as the transplant site or the transplant site. When a larger cutout is used, the cell sheet is fixed only to a portion around the cutout, and it is only necessary to apply the cell sheet in the cutout portion to the transplant site.
In addition, the high ability of the regenerated corneal epithelial cell sheet or the layered sheet thereof to adhere to living tissues, which is a feature of the present invention, is realized under specific culture conditions. That is, the cell sheet or the layered sheet of the present invention is obtained by disseminating corneal epithelial cells on the surface of the support and then culturing the cells, but after the cells become confluent (full) on the surface of the support. It has been found that it is preferably 21 days or less, preferably 15 days or less, and more preferably 10 days or less. If it is more than 21 days, the activity of the peeled regenerated corneal epithelial cell sheet or the cell in the lowermost layer of the layered sheet thereof is reduced, so that the adhesiveness is reduced, and the high engraftment of the present invention cannot be expected.
The anterior segment of the present invention is not particularly limited as long as it is an anterior segment, but generally includes corneal epithelial tissue, Bowman's tissue, corneal stromal tissue and the like.
The highly engraftment regenerated corneal epithelial cell sheet or the layered sheet thereof according to the present invention is, as described above, a cell sheet that can be very well adhered to the anterior segment tissue, which is a living tissue, and can be obtained at all from the prior art. That was not.
The temperature-responsive polymer used for coating the substrate in the cell culture support has an upper critical solution temperature or a lower critical solution temperature of 0 ° C to 80 ° C, more preferably 20 ° C to 50 ° C in an aqueous solution. If the upper critical solution temperature or the lower critical solution temperature exceeds 80 ° C., cells may be killed, which is not preferable. Further, if the upper critical dissolution temperature or the lower critical dissolution temperature is lower than 0 ° C., the cell growth rate is generally extremely reduced or the cells are killed, which is not preferable.
The temperature-responsive polymer used in the present invention may be either a homopolymer or a copolymer. As such a polymer, for example, a polymer described in Japanese Patent Application Laid-Open No. 221865/1990 is exemplified. Specifically, for example, it is obtained by homopolymerization or copolymerization of the following monomers. Examples of the monomer that can be used include a (meth) acrylamide compound, an N- (or N, N-di) alkyl-substituted (meth) acrylamide derivative, and a vinyl ether derivative. Two or more types can be used. Furthermore, copolymerization with monomers other than the above-mentioned monomers, grafting or copolymerization of polymers, or a mixture of polymers and copolymers may be used. It is also possible to crosslink within a range that does not impair the intrinsic properties of the polymer.
Examples of the substrate to be coated include glass, modified glass, polystyrene, and compounds such as polymethyl methacrylate that are generally used for cell culture, and substances that can be generally given a shape, for example, polymers other than those described above. All compounds, ceramics, and the like can be used.
The method of coating the support with the temperature-responsive polymer is not particularly limited, but may be, for example, the method described in JP-A-2-21865. That is, the coating is performed by subjecting the substrate and the above monomer or polymer to electron beam irradiation (EB), γ-ray irradiation, ultraviolet irradiation, plasma treatment, corona treatment, organic polymerization reaction, or physical such as coating and kneading. Can be carried out by means of selective adsorption.
The coating amount of the temperature-responsive polymer is 0.4 to 4.5 μg / cm. 2 Is good, preferably 0.7 to 3.5 μg / cm 2 And more preferably 0.9 to 3.0 μg / cm. 2 It is. 0.2 μg / cm 2 When the amount of coating is smaller, the cells on the polymer are difficult to exfoliate even when a stimulus is applied, and the working efficiency is remarkably deteriorated, which is not preferable. Conversely, 4.5 μg / cm 2 With the above, it is difficult for the cells to adhere to the region, and it is difficult to sufficiently adhere the cells.
The form of the support in the present invention is not particularly limited, and examples thereof include a dish, a multiplate, a flask, and a cell insert. Among them, cell inserts are particularly advantageous because, for example, 3T3 feeder cells necessary for laminating corneal epithelial cells can be cultured separately from corneal epithelial cells. At that time, the corneal epithelial cells may be on the cell insert side or on the dish side where the cell insert is mounted, and at least the surface on which the corneal epithelial cells are cultured is coated with a temperature-responsive polymer. There is a need.
In the present invention, cell culture is performed on the cell culture support produced as described above. The temperature of the culture medium is not particularly limited as long as the polymer coated on the surface of the base material has an upper critical melting temperature or lower, and if the polymer has a lower critical melting temperature, it is higher than the temperature. However, it goes without saying that culturing in a low temperature range where the cultured cells do not proliferate, or in a high temperature range where the cultured cells die, is inappropriate. Culture conditions other than temperature may be in accordance with a conventional method, and are not particularly limited. For example, the medium to be used may be a medium to which serum such as known fetal calf serum (FCS) is added, or a serum-free medium to which no such serum is added.
In the method of the present invention, in order to detach and recover the cultured cells from the support material, the cultured highly viable regenerated corneal epithelial cell sheet or the layered sheet thereof is brought into close contact with a carrier, and the support material having the cells attached thereto is removed. By setting the temperature to be equal to or higher than the upper critical solution temperature or lower than the lower critical solution temperature of the coating polymer of the support substrate, the polymer can be peeled off together with the carrier. The peeling of the sheet can be performed in a culture solution in which the cells have been cultured, or in another isotonic solution, and can be selected according to the purpose.
In the present invention, after the cell sheet has been applied to the affected area, the cell sheet may be peeled off from the carrier. The method of peeling is not restricted at all, for example, by using a jig such as a method of wetting the carrier and weakening the adhesion between the carrier and the cell sheet, or a scalpel, scissors, laser light, a plasma wave or the like. May also be cut. For example, when using a cell sheet that is in close contact with a partially cut-out carrier as described above, cutting along the border of the affected part using laser light or the like avoids adhesion of the cell sheet to unnecessary parts other than the affected part It is convenient.
The method of fixing the highly engraftment regenerated corneal epithelial cell sheet, the layered sheet thereof and the living tissue as shown in the present invention is not particularly limited, and the cell sheet and the living tissue may be sutured, or the present invention may be used. Since the highly engraftment regenerated corneal epithelial cell sheet or the layered sheet thereof, which is indicated by, rapidly adheres to the living tissue, the cell sheet attached to the affected part does not have to be sutured to the living body side. In particular, in the latter case, a contact lens may be used in combination to protect the transplanted cell sheet.
The method for producing the layered sheet in the present invention is not particularly limited. For example, a generally known method of growing and layering 3T3 cells as a feeder layer, or the method of high engraftment in close contact with the carrier described above. Production method using a regenerated corneal epithelial cell sheet. Specifically, the following method is exemplified.
(1) A cell sheet adhered to a carrier is adhered to a cell culture support, the carrier is peeled off from the cell sheet by adding a medium, and a cell sheet adhered to another carrier is repeatedly attached. A method of layering sheets.
(2) The cell sheet in close contact with the carrier is turned over and fixed on the carrier side on the cell culture support, another cell sheet is attached to the cell sheet side, and then the medium is added to remove the carrier from the cell sheet, and again. A method of layering cell sheets by repeating the operation of attaching another cell sheet.
(3) A method in which the cell sheets in close contact with the carrier are brought into close contact with each other on the cell sheet side.
(4) A method in which a cell sheet adhered to a carrier is applied to an affected part of a living body, the cell sheet is attached to a living tissue, the carrier is peeled off, and another cell sheet is stacked again.
The stratified sheet in the present invention does not necessarily need to be composed only of corneal epithelial cells. For example, it is also possible to overlap a corneal endothelial cell sheet and / or a conjunctival epithelial cell sheet prepared by the same operation as the corneal epithelial cell sheet. Such a technique is extremely effective in making the tissue closer to the anterior eye tissue in the living body.
A method of tapping or shaking the cell culture support, and further stirring the medium using a pipette in order to peel and recover the highly viable regenerated corneal epithelial cell sheet or the layered sheet thereof in high yield. The methods and the like may be used alone or in combination. In addition, if necessary, the cultured cells may be separated and recovered by washing with an isotonic solution or the like.
The use of the highly engraftment regenerated corneal epithelial cell sheet or the layered sheet thereof shown in the present invention is not limited at all, but, for example, corneal erosion, corneal ulcer, or an excimer laser is applied to the central portion to irradiate the corneal surface. After shaving, reducing the refractive power of the cornea and correcting myopia, the PRK method, cutting the corneal stromal layer to a thickness of 160 μm with a microkeratome to create a flap, turning the flap over, and excimer laser The layer is scraped off, the surface is adjusted, and finally the flap is returned to its original position. LASIK method, alcohol is instilled to soften the corneal surface, and the corneal epithelium is cut off at a thickness of 50 μm without using a microkeratome. Make a flap, scrape the corneal stratum corneum with excimer laser, prepare the surface, and finally return the flap to its original position It is effective for refraction correction such as the LASEK method.
The highly engraftment regenerated corneal epithelial cell sheet obtained by the above-described method or the layered sheet thereof is extremely superior in non-invasiveness at the time of exfoliation as compared with that obtained by the conventional method, Clinical applications such as cornea are strongly expected. In particular, the highly engraftment regenerated corneal epithelial cell sheet of the present invention or the layered sheet thereof has a high engraftment with living tissues, unlike conventional transplanted sheets, so that it can be very quickly engrafted on living tissues. This is considered to be an extremely effective technique that improves the treatment efficiency of the affected area and further reduces the burden on the patient. The cell culture support used in the method of the present invention can be used repeatedly.
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but these do not limit the present invention in any way.
Examples 1 and 2
30% (Example 1) and 35% (Example 2) of N-isopropylacrylamide monomer on a commercially available 6-well cell insert (Falcon 3090 manufactured by Becton Dickinson Labware). ), 0.08 ml of a solution dissolved in isopropyl alcohol was applied. An electron beam having an intensity of 0.25 MGy was irradiated to immobilize N-isopropylacrylamide polymer (PIPAAm) on the surface of the culture dish. After irradiation, the culture dish was washed with ion-exchanged water to remove residual monomers and PIPAAm not bound to the culture dish, dried in a clean bench, and sterilized with ethylene oxide gas to obtain a cell culture support material. . When the temperature-responsive high molecular weight on the substrate surface was measured, each was 1.3 μg / cm. 2 (Example 1), 1.5 μg / cm 2 (Example 2) It was found that it was coated. Normal rabbit corneal epithelial cells were cultured on the obtained cell culture support material by an ordinary method (medium used: Cornepak (Kurabo Co., Ltd .; 37 ° C., 5% CO 2). 2 under). As a result, corneal epithelial cells on any cell culture support material adhered and proliferated normally.
The cells cultured after 7 days of culture become confluent, and a carrier molded from a 2.1 cm diameter polyvinylidene difluoride (PVDF) membrane cut into a 1.5 cm diameter circle on the cells cultured for further 7 days. , The medium was gently aspirated, and the cell culture support material was incubated with the cell culture support material for 30 minutes at 20 ° C. and cooled, whereby the cells on any of the cell culture support materials were detached together with the overlaid carrier. The obtained cell sheet had sufficient strength as one sheet having a shrinkage of 5% or less.
In each of the above examples, the "low temperature treatment" was performed under the condition of incubation at 20 ° C for 30 minutes, but the "low temperature treatment" is not limited to these temperatures and times in the present invention. The preferred temperature conditions for the "low-temperature treatment" in the present invention are 0C to 30C, and the preferred treatment time is 2 minutes to 1 hour.
The corneal epithelial cell sheets obtained in Examples 1 and 2 were transplanted into a rabbit, which is a corneal erosion disease model in which the corneal epithelial tissue was deleted, according to a conventional method. The corneal epithelial cell sheet was allowed to adhere to the wound for 15 minutes, and then the cell sheet overlapping other than the affected area was cut off using a scalpel. At that time, the cell sheet and the living body side were not sutured. In Example 2, a contact lens was attached to the affected area after transplantation. Three weeks later, the affected area was observed. As a result, the corneal epithelial cell sheets of both Examples 1 and 2 were well attached to the eyeball.
Example 3
On the cell culture support of Example 1, a similar method was used except that the medium was changed to a normal Green et al. Medium containing mitomycin C (DMEM + AB (for preparing a feeder layer), human neonatal keratinocytes). Normal rabbit corneal epithelial cells were cultured. As a result, the corneal epithelial cells on the culture support material adhered and proliferated normally.
After 6 days of culture, the cells became confluent, and the cells were further cultured for 6 days to form a layer. Next, a carrier molded from a polyvinylidene difluoride (PVDF) membrane of 2.1 cm in diameter cut out in a circular shape of 1.5 cm in diameter is covered, the medium is gently aspirated, and the cell culture support material together with the material at 20 ° C. After 30 minutes of incubation and cooling, the cell sheet on the cell culture support material was detached with the overlaid carrier. Furthermore, the layered corneal epithelial cells were detached by incubating with the cell culture support material at 20 ° C. for 30 minutes and cooling. The peeled multilayered sheet had sufficient strength as one sheet having a shrinkage of 5% or less.
The corneal epithelial cell stratified sheet obtained in Example 3 was transplanted to a rabbit, which is a corneal erosion disease model in which the corneal epithelial tissue part was deleted, according to a conventional method. The corneal epithelial cell sheet was allowed to adhere to the wound for 15 minutes, and then the cell sheet overlapping other than the affected area was cut off using laser light. At that time, the cell sheet and the living body side were not sutured. Three weeks later, when the affected part was observed, the corneal epithelial cell-layered sheet was well attached to the eyeball.
Comparative Example 1
A corneal epithelial cell sheet was produced in the same manner as in Example 1 except that a corneal epithelial cell sheet was prepared in Example 1, and the cell sheet was peeled off and shrunk without using a carrier. The shrinkage at that time was 42%.
The corneal epithelial cell sheet obtained in the same manner as in Example 1 was transplanted to a rabbit in which the corneal epithelial tissue was deleted in a conventional manner. The corneal epithelial cell sheet was allowed to adhere to the wound for 15 minutes, and then the cell sheet overlapping other than the affected area was cut off using a scalpel. At that time, the cell sheet and the living body side were not sutured. Observation of the affected area one day after transplantation revealed that the corneal epithelial cell sheet had poor adherence to the eyeball and was falling off the affected area.
Comparative Example 2
A corneal epithelial cell-layered sheet was prepared in the same manner as in Example 3 except that a corneal epithelial cell-layered sheet was prepared in Example 3, and a period until detachment from the cell culture support was 28 days after reaching confluence. Manufactured. The shrinkage of the obtained sheet was 5% or less, and the sheet was sufficiently strong as one sheet.
Next, the corneal epithelial cell stratified sheet obtained in the same manner as in Example 3 was implanted into a rabbit having a corneal epithelial tissue part deficient in a conventional manner. The corneal epithelial cell sheet was allowed to adhere to the wound for 15 minutes, and then the cell sheet overlapping other than the affected area was cut off using a scalpel. At that time, the cell sheet and the living body side were not sutured. Observation of the affected area one day after transplantation revealed that the corneal epithelial cell sheet had poor adherence to the eyeball and was falling off the affected area.
Example 4
A corneal epithelial cell stratified sheet in close contact with the carrier was produced in exactly the same manner as described in Example 3. It was examined whether this could be a substitute for the corneal epithelial flap in the LASIK method known as myopia treatment.
Specifically, first, the corneal stromal layer was cut into a rabbit cornea with a microkeratome at a thickness of 160 μm to form a flap, and then the flap was removed. Finally, a corneal epithelial cell layered sheet closely attached to the carrier obtained in Example 3 was attached to a place where the flap was originally returned. The stratified corneal epithelial cell sheet was cut to the same size as the affected area by laser light, and the transplantation was completed. No suturing was performed. Three weeks later, when the affected area was observed, the corneal epithelial cell-layered sheet was well attached to the eyeball, and it was considered that the corneal epithelial cell-layered sheet of the present invention was also effective for the LASIK method.
Example 5
A corneal epithelial cell stratified sheet in close contact with the carrier was produced in exactly the same manner as described in Example 3. It was examined whether this could be an alternative to the corneal epithelial flap in the LASEK method known as myopia treatment.
Specifically, first, alcohol was applied to the rabbit cornea to soften the corneal surface, and a corneal epithelium was cut off at a thickness of 50 μm without using a microkeratome to produce a flap, and the flap was removed. The corneal stromal layer was scraped off with a laser, the surface was adjusted, and finally, the corneal epithelial cell layered sheet adhered to the carrier obtained in Example 3 was adhered to the place where the flap was originally returned. The stratified corneal epithelial cell sheet was cut to the same size as the affected area by laser light, and the transplantation was completed. No suturing was performed. Three weeks later, the affected area was observed. As a result, the corneal epithelial cell-layered sheet was satisfactorily adhered to the eyeball, and it was considered that the corneal epithelial cell-layered sheet of the present invention was also effective for the Rezek method.
From the above results, it was found that according to the present technology, it is possible to prepare a highly engraftment regenerated corneal epithelial cell sheet with good adhesion to anterior ocular tissue and a layered sheet thereof. This is considered to be an extremely effective technique in terms of reducing the burden on patients by simplifying and increasing the efficiency of treatment.
【The invention's effect】
The highly engraftment regenerated corneal epithelial cell sheet obtained by the present invention and the layered sheet thereof have extremely high engraftment to living tissue, and clinical applications such as corneal transplantation, corneal disease treatment, and myopia treatment are strongly expected. Therefore, the present invention is a very useful invention in the fields of medicine, biology and the like such as cell engineering and medical engineering.

Claims (19)

キャリアに密着させた、高生着性再生角膜上皮細胞シートまたはその重層化シート。A highly engraftment regenerated corneal epithelial cell sheet or a layered sheet thereof adhered to a carrier. 蛋白質分解酵素による処理を施されることなく支持体から剥離され、剥離後の細胞シートの収縮率が20%以下に保たれた、請求項1記載の高生着性再生角膜上皮細胞シートまたはその重層化シート。2. The highly viable regenerated corneal epithelial cell sheet according to claim 1, wherein the cell sheet is detached from the support without being treated with a protease, and the contraction rate of the cell sheet after detachment is kept at 20% or less. Sheet. 剥離する時期が、細胞が支持体表面でコンフルエントになってから21日以内である、請求項2記載の高生着性再生角膜上皮細胞シートまたはその重層化シート。3. The highly engrafted regenerated corneal epithelial cell sheet or the layered sheet thereof according to claim 2, wherein the time of detachment is within 21 days after the cells become confluent on the surface of the support. 前眼部組織が角膜上皮組織、ボーマン膜、角膜実質組織である、請求項1記載の高生着性再生角膜上皮細胞シートまたはその重層化シート。2. The highly engraftment regenerated corneal epithelial cell sheet or the layered sheet thereof according to claim 1, wherein the anterior eye tissue is a corneal epithelial tissue, Bowman's membrane, or corneal stromal tissue. 重層化シートが角膜上皮細胞を重層化培養させたものである、請求項1〜4のいずれか1項記載の高生着性再生角膜上皮細胞シートまたはその重層化シート。The highly engrafted regenerated corneal epithelial cell sheet according to any one of claims 1 to 4, wherein the stratified sheet is obtained by stratifying and culturing corneal epithelial cells. 前眼部組織の一部或いは全部を損傷もしくは欠損した患部を治療するための、請求項1〜5のいずれか1項記載の高生着性再生角膜上皮細胞シートまたはその重層化シート。The highly engraftment regenerated corneal epithelial cell sheet according to any one of claims 1 to 5, or a layered sheet thereof, for treating an affected part in which a part or all of an anterior eye tissue is damaged or lost. 治療が高生着性再生角膜上皮細胞シートまたはその重層化シートを患部に対し縫合することなく被覆することを特徴とする、請求項6記載の再生角膜上皮細胞シートまたはその重層化シート。The regenerated corneal epithelial cell sheet or the layered sheet thereof according to claim 6, wherein the treatment covers the diseased site with a highly engrafted regenerated corneal epithelial cell sheet or a layered sheet thereof without suturing. 患部に被覆する際、患部の大きさ、形状に沿って切断された、請求項7記載の高生着性再生角膜上皮細胞シートまたはその重層化シート。The highly engrafted regenerated corneal epithelial cell sheet or the layered sheet thereof according to claim 7, which is cut along the size and shape of the affected part when covering the affected part. 水に対する上限もしくは下限臨界溶解温度が0〜80℃である温度応答性高分子で基材表面を被覆した細胞培養支持体上で細胞を培養し、必要に応じて常法により培養細胞層を重層化させ、その後、
(1)培養液温度を上限臨界溶解温度以上または下限臨界溶解温度以下とし、
(2)培養した角膜上皮細胞シートまたはその重層化シートをキャリアに密着させ、
(3)そのままキャリアと共に剥離する
ことを特徴とする、高生着性再生角膜上皮細胞シートまたはその重層化シートの製造方法。
The cells are cultured on a cell culture support having a substrate surface coated with a temperature-responsive polymer having an upper or lower critical solution temperature in water of 0 to 80 ° C., and if necessary, a cultured cell layer is overlaid by a conventional method. And then
(1) the temperature of the culture solution is not lower than the upper critical dissolution temperature or lower than the lower critical dissolution temperature;
(2) bringing the cultured corneal epithelial cell sheet or the layered sheet thereof into close contact with the carrier,
(3) A method for producing a highly viable regenerated corneal epithelial cell sheet or a layered sheet thereof, wherein the sheet is peeled off together with the carrier.
細胞培養支持体が膜を利用したセルインサートであることを特徴とする、請求項9記載の高生着性再生角膜上皮細胞シートまたはその重層化シートの製造方法。The method for producing a highly viable regenerated corneal epithelial cell sheet or a layered sheet thereof according to claim 9, wherein the cell culture support is a cell insert using a membrane. 温度応答性高分子が、ポリ(N−イソプロピルアクリルアミド)である、請求項9または10記載の高生着性再生角膜上皮細胞シートまたはその重層化シートの製造方法。The method for producing a highly viable regenerated corneal epithelial cell sheet or a layered sheet thereof according to claim 9 or 10, wherein the temperature-responsive polymer is poly (N-isopropylacrylamide). キャリアの形状が中心部を切り抜いたリング状のものであることを特徴とする、請求項9〜11記載の高生着性再生角膜上皮細胞シートまたはその重層化シートの製造方法。The method for producing a highly engraftment regenerated corneal epithelial cell sheet or a layered sheet thereof according to claim 9, wherein the carrier has a ring shape with a central portion cut out. 剥離が蛋白質分解酵素による処理が施されていない、請求項9〜12のいずれか1項記載の高生着性再生角膜上皮細胞シートまたはその重層化シートの製造方法。The method for producing a highly engrafted regenerated corneal epithelial cell sheet or a layered sheet thereof according to any one of claims 9 to 12, wherein the exfoliation is not treated with a protease. 前眼部組織の一部或いは全部を損傷もしくは欠損した患部に対し、請求項1〜8のいずれか1項記載の高生着性再生角膜上皮細胞シートまたはその重層化シートを移植することを特徴とする治療法。For a diseased part in which a part or all of an anterior ocular tissue has been damaged or lost, a highly engraftment regenerated corneal epithelial cell sheet according to any one of claims 1 to 8 or a layered sheet thereof is transplanted. Treatment to do. 移植が患部に対し縫合することなく被覆することを特徴とする、請求項14記載の治療法。15. The method of claim 14, wherein the implant covers the affected area without suturing. 患部に被覆する際、高生着性再生角膜上皮細胞シートまたはその重層化シートを患部の大きさ、形状に沿って切断することを特徴とする、請求項15記載の治療法。The method according to claim 15, wherein, when covering the affected part, the highly viable regenerated corneal epithelial cell sheet or the layered sheet thereof is cut along the size and shape of the affected part. 治療が角膜びらん、角膜潰瘍であることを特徴とする、請求項14〜16のいずれか1項に記載の治療法。The method according to any one of claims 14 to 16, wherein the treatment is corneal erosion or corneal ulcer. 治療がRK法、PRK法、LASIK法による屈折矯正であることを特徴とする、請求項14〜16のいずれか1項に記載の治療法。The treatment method according to any one of claims 14 to 16, wherein the treatment is refraction correction by an RK method, a PRK method, or a LASIK method. 治療がLASEK法による屈折矯正であることを特徴とする、請求項14〜16のいずれか1項に記載の治療法。The method according to any one of claims 14 to 16, wherein the treatment is refraction correction by the LASEK method.
JP2003068899A 2003-02-06 2003-02-06 Highly engrafted regenerative corneal epithelial cell sheet, production method and use thereof Expired - Lifetime JP3935093B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003068899A JP3935093B2 (en) 2003-02-06 2003-02-06 Highly engrafted regenerative corneal epithelial cell sheet, production method and use thereof
KR1020057014284A KR101141985B1 (en) 2003-02-06 2004-02-06 Cell sheets for ectocornea formation, method of producing the same and method of using the same
EP04708896.8A EP1602383B1 (en) 2003-02-06 2004-02-06 Cell sheets for ectocornea formation, method of producing the same and method of using the same
EP11192961.8A EP2450065B1 (en) 2003-02-06 2004-02-06 Corneal epithelium forming cell sheets, processes for producing the same, and methods of using the same
ES04708896.8T ES2538696T3 (en) 2003-02-06 2004-02-06 Cell sheets for the formation of the ectocornea, method to produce them and method to use them
US10/544,541 US20060234377A1 (en) 2003-02-06 2004-02-06 Cell sheets for ectocornea formation, method of producing the same and method of using the same
PCT/JP2004/001274 WO2004069295A1 (en) 2003-02-06 2004-02-06 Cell sheets for ectocornea formation, method of producing the same and method of using the same
CN2004800036987A CN1747753B (en) 2003-02-06 2004-02-06 Cell sheets for ectocornea formation, method of producing the same and method of using the same
US15/859,304 US10434219B2 (en) 2003-02-06 2017-12-29 Method of treatment using corneal epithelium forming cell sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068899A JP3935093B2 (en) 2003-02-06 2003-02-06 Highly engrafted regenerative corneal epithelial cell sheet, production method and use thereof

Publications (2)

Publication Number Publication Date
JP2004261532A true JP2004261532A (en) 2004-09-24
JP3935093B2 JP3935093B2 (en) 2007-06-20

Family

ID=33127207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068899A Expired - Lifetime JP3935093B2 (en) 2003-02-06 2003-02-06 Highly engrafted regenerative corneal epithelial cell sheet, production method and use thereof

Country Status (1)

Country Link
JP (1) JP3935093B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017128A (en) * 2008-07-10 2010-01-28 Toyota Central R&D Labs Inc Cultured cell-handling article, production method thereof and use thereof
JP2011250804A (en) * 2011-09-05 2011-12-15 Koji Nishida Method for culturing multilayered epithelial cell, multilayered epithelial cell sheet obtained by the same and use of the sheet
US8137964B2 (en) 2006-03-02 2012-03-20 Osaka University Method of producing three-dimensional tissue and method of producing extracellular matrix used in the same
JP2013138691A (en) * 2007-05-11 2013-07-18 Dainippon Printing Co Ltd Cell sheet maintaining dimension, method for producing the same, and cell culture carrier for use in the method
JP2014155494A (en) * 2005-02-28 2014-08-28 Cellseed Inc Cultured cell sheet, production method thereof, and application method thereof
JP2015029462A (en) * 2013-08-02 2015-02-16 大日本印刷株式会社 Cell cultivation tool for production and transportation of cell sheet
KR101723781B1 (en) * 2017-02-14 2017-04-06 이태희 A hybrid orthodontic appliance for non-extraction orthodontic treatment
JP2021531807A (en) * 2018-07-31 2021-11-25 ロキット ヘルスケア インク. A method for manufacturing a multi-layer cell sheet and a multi-layer cell sheet manufactured using the method.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014155494A (en) * 2005-02-28 2014-08-28 Cellseed Inc Cultured cell sheet, production method thereof, and application method thereof
US10533158B2 (en) 2005-02-28 2020-01-14 Tokai University Educational System Cultured cell sheet, production method thereof, and application method thereof
US8137964B2 (en) 2006-03-02 2012-03-20 Osaka University Method of producing three-dimensional tissue and method of producing extracellular matrix used in the same
JP2013138691A (en) * 2007-05-11 2013-07-18 Dainippon Printing Co Ltd Cell sheet maintaining dimension, method for producing the same, and cell culture carrier for use in the method
JP2010017128A (en) * 2008-07-10 2010-01-28 Toyota Central R&D Labs Inc Cultured cell-handling article, production method thereof and use thereof
JP4553038B2 (en) * 2008-07-10 2010-09-29 株式会社豊田中央研究所 Cultured cell handling body, method for producing the same, and use thereof
JP2011250804A (en) * 2011-09-05 2011-12-15 Koji Nishida Method for culturing multilayered epithelial cell, multilayered epithelial cell sheet obtained by the same and use of the sheet
JP2015029462A (en) * 2013-08-02 2015-02-16 大日本印刷株式会社 Cell cultivation tool for production and transportation of cell sheet
KR101723781B1 (en) * 2017-02-14 2017-04-06 이태희 A hybrid orthodontic appliance for non-extraction orthodontic treatment
JP2021531807A (en) * 2018-07-31 2021-11-25 ロキット ヘルスケア インク. A method for manufacturing a multi-layer cell sheet and a multi-layer cell sheet manufactured using the method.
JP7228672B2 (en) 2018-07-31 2023-02-24 ロキット ヘルスケア インク. Multilayer cell sheet manufacturing method and multilayer cell sheet manufactured using the same

Also Published As

Publication number Publication date
JP3935093B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
US10434219B2 (en) Method of treatment using corneal epithelium forming cell sheets
JP4475847B2 (en) Anterior segment-related cell sheet, three-dimensional structure, and production method thereof
JP4335873B2 (en) Regenerated corneal endothelial cell sheet, production method and use thereof
JP4921353B2 (en) Cultured cell sheet, production method and use thereof
JP5508511B2 (en) Cultured cell sheet, production method, and tissue repair method using the same
US8642338B2 (en) Anterior ocular segment related cell sheets, three-dimensional structures, and processes for producing the same
JP3935096B2 (en) Highly engraftable corneal epithelial substitute cell sheet, production method and use thereof
JP4874514B2 (en) Method for stratifying culture of epithelial cells, stratified epithelial cell sheet obtained therefrom, and method of use thereof
JP3935093B2 (en) Highly engrafted regenerative corneal epithelial cell sheet, production method and use thereof
JP2005000608A (en) Cultured cell sheet having high take capability and method for manufacturing and using the same
JP5227223B2 (en) Cell culture support
JP5264799B2 (en) Anterior segment-related cell sheet, three-dimensional structure, and production method thereof
JP2011250804A (en) Method for culturing multilayered epithelial cell, multilayered epithelial cell sheet obtained by the same and use of the sheet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Ref document number: 3935093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term